首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A review of the spectral sensitivity and the rhodopsin and metarhodopsin characteristics in three compound eye receptor types (R1–6, R7, and R8) and ocellar receptors is presented (Fig. 1). Photopigment properties were determined from measures of conversion efficiency. The photopigments of R1–6 were studied using in vivo microspectrophotometry in the deep pseudopupil of white-eyed flies. These studies yielded a refined estimate of the R1–6 metarhodopsin spectrum (Fig. 2). The quantum efficiency relative to the spectral sensitivity estimate of the rhodopsin spectrum was factored out. The quantum efficiency of rhodopsin is about 1.75 times that of metarhodopsin. The peak absorbance of metarhodopsin was estimated to be about 2.6 times that of rhodopsin. The mechanism of the two-peaked R1–6 spectral sensitivity and metarhodopsin spectrum is discussed in terms of evidence that there is only one rhodopsin in R1–6 and that vitamin A deprivation preferentially lowers ultraviolet sensitivity. The prolonged depolarizing afterpotential is reviewed from the standpoint of the internal transmitter hypothesis of visual excitation. A careful comparison of the intensity-responsivity for photopigment conversion and its adaptional consequences is made (Fig. 3).  相似文献   

2.
3.
Summary The surface structure of the compound eyes of 6 Drosophila species and 12 eye mutants of D. melanogaster were compared by scanning electron microscopy. D. melanogaster, D. simulans, D. hydei, D. funebris and D. virilis displayed hexagonal facets and differed only slightly in the distribution of bristles. D. lebanonensis displayed tetragonal facets.No obvious differences in surface structure of the eyes of colour mutants of D. melanogaster were found. Mutants with structural modifications of the eyes revealed irregular patterns of bristles, variations in bristle number and variations in facet shape, size and organization. The mutant spapol does not display clear-cut delineated facets.  相似文献   

4.
Establishment of planar polarity in the Drosophila compound eye requires precise 90 degrees rotation of the ommatidial clusters during development. We found that the morphogenetic furrow controls the stop of ommatidial rotation at 90 degrees by emitting signals to posterior ommatidial clusters. One such signal, Scabrous, is synthesized in the furrow cells and transported in vesicles to ommatidial row 6-8. Scabrous vesicles are transported through actin-based cellular extensions but not transcytosis. Scabrous functions nonautonomously to control the stop of ommatidial rotation by suppressing nemo activity in the second 45 degrees rotation. We propose that the morphogenetic furrow regulates precise ommatidial rotation by transporting Scabrous and perhaps other factors through actin-based cellular extensions.  相似文献   

5.
During nervous system development stem cell daughters must exit the proliferative cycle to adopt specific neural and glial fates and they must do so in the correct positions. Cell proliferation in the central nervous system occurs in neuroepithelia such as the neural retina and the ventricular zones. As cells are assigned specific fates they migrate out of the plane of the epithelium to form higher layers. Recent evidence from the Drosophila compound eye suggests that a novel mode of Ras pathway regulation may be crucial in both cell-cycle exit and neural patterning: "MAP Kinase cytoplasmic hold".  相似文献   

6.
Ten-a is one of the two Drosophila proteins that belong to the Ten M protein family. This protein is a type Ⅱ transmembrane protein and is expressed mainly in the embryonic CNS, in the larval eye imaginal disc and in the compound eye of the pupa. Here, we investigate the role of ten-α during development of the compound eye by using the Gal4/ UAS system to induce ten-α overexpression in the developing eye. We found that overexpression of ten-α can perturb eye development during all stages examined. In an early stage, overexpression of ten-α in eye primordial cells caused small and rough eyes and interfered with photoreceptor cell recruitment, resulting in some ommatidia having fewer or extra photoreceptor cells. Conversely, ten-α overexpression daring ommatidial formation caused severe eye defects due to absence of many cellular components. Interestingly, overexpression of ten-α in the late stage developing ommatidial cluster affected the number of pigment cells, caused cone cells proliferation in many ommatidia, and caused some photoreceptor cell defects. These results suggest that ten-α may be a novel gene required for normal eye morphogenesis.  相似文献   

7.
8.
《Current biology : CB》2022,32(9):2101-2109.e5
  1. Download : Download high-res image (164KB)
  2. Download : Download full-size image
  相似文献   

9.
Throughout metazoan development cells select pathways of specialization that lead to the differentiation of specific cell types. Differential gene activation converts initially homogeneous populations of cells into spatial arrangements of diverse cell types. As discussed in other articles in this issue, the signals specifying divergent pathways can be encoded in a cell's lineage, its environment, or a combination of both. This article reviews recent analyses of the developing Drosophila compound eye which have focussed upon the mechanisms by which cells assess environmental information in order to determine their fate. More specifically, it examines the molecular mechanisms used by cells to communicate signals which instruct the developmental pathways of other cells.  相似文献   

10.
semang (sag), a mutation isolated as a suppressor of Drosophila Src42A, has previously been shown to affect some receptor tyrosine kinase mediated embryonic processes. Here we show that sag specifically affects the development of R1, R6 and R7 photoreceptor cells in a cell-autonomous manner. These cells are absent in the mutant at the time when they normally appear in the ommatidial pre-clusters. Genetic analyses suggest that sag functions downstream of, or parallel to, Mapk and Yan in the photoreceptor differentiation pathway. The autonomous requirement of sag for R1/R6/R7 development could be explained by a selective impairment of the late, but not early, rounds of Egfr-induced precursor cell assembly by the sag mutations. Egfr signaling is highly regulated by autocrine or paracrine mechanisms in different cells. Knowing that the photoreceptor cluster formation is a complex process involving dynamic changes in cell-cell contact, our hypothesis is that the sag alleles affected certain special aspects of Egfr-signaling that are unique for the recruitment of R1/R6/R7 cells.  相似文献   

11.
12.
The Drosophila epidermal growth factor receptor (EGFR), functioning through the Ras/Raf/MAPK pathway, promotes cell proliferation and differentiation. Recent work has demonstrated that EGFR functions via the same Ras/Raf/MAPK pathway to promote cell survival. This review summarizes the role of EGFR in differentiation and survival during Drosophila eye development.  相似文献   

13.
Yang CH  Axelrod JD  Simon MA 《Cell》2002,108(5):675-688
Planar polarity is evident in the coordinated orientation of ommatidia in the Drosophila eye. This process requires that the R3 photoreceptor precursor of each ommatidium have a higher level of Frizzled signaling than its neighboring R4 precursor. We show that two cadherin superfamily members, Fat and Dachsous, and the transmembrane/secreted protein Four-jointed play important roles in this process. Our data support a model in which the bias of Frizzled signaling between the R3/R4 precursors results from higher Fat function in the precursor cell closer to the equator, which becomes R3. We also provide evidence that positional information regulating Fat action is provided by graded expression of Dachsous across the eye and the action of Four-jointed, which is expressed in an opposing expression gradient and appears to modulate Dachsous function.  相似文献   

14.
15.
A G protein beta subunit gene (Gbe) is expressed only in the eyes of adult D. melanogaster. This gene was identified by probing a Drosophila head cDNA expression library with monoclonal antibodies to a previously characterized Drosophila G protein beta subunit (Gbb). Immunoblot and Northern analyses demonstrate that Gbe protein and mRNA is not present in Drosophila mutants that lack eyes. Immunocytochemical and in situ hybridization analyses further demonstrate that Gbe is expressed in the eyes but not in the brain, whereas Gbb is abundantly expressed in the brain. The Gbe product is approximately 45% identical to previously identified G beta subunits and defines a new G beta class. Its localization suggests a possible role in phototransduction.  相似文献   

16.
Drosophila steroid receptors and related receptor-like proteins show remarkable conservation of structure and function relative to vertebrate homologues. While those proteins are involved in numerous embryonic and post-embryonic developmental processes, a striking number of receptor-like proteins are clustered in regulatory hierarchies under the control of the insect molting hormone ecdysone. This has suggested a number of models based on competitive, cooperative and inter-regulatory interactions between these proteins.  相似文献   

17.
Sugar receptors in Drosophila   总被引:1,自引:0,他引:1  
The detection and discrimination of chemical compounds in potential foods are essential sensory processes when animals feed. The fruit fly Drosophila melanogaster employs 68 different gustatory receptors (GRs) for the detection of mostly nonvolatile chemicals that include sugars, a diverse group of toxic compounds present in many inedible plants and spoiled foods, and pheromones [1-6]. With the exception of a trehalose (GR5a) and a caffeine (GR66a) receptor [7-9], the functions of GRs involved in feeding are unknown. Here, we show that the Gr64 genes encode receptors for numerous sugars. We generated a fly strain that contained a deletion for all six Gr64 genes (DeltaGr64) and showed that these flies exhibit no or a significantly diminished proboscis extension reflex (PER) response when stimulated with glucose, maltose, sucrose, and several other sugars. The only considerable response was detected when Gr64 mutant flies were stimulated with fructose. Interestingly, response to trehalose is also abolished in these flies, even though they contain a functional Gr5a gene, which has been previously shown to encode a receptor for this sugar [8, 9]. This observation indicates that two or more Gr genes are necessary for trehalose detection, suggesting that GRs function as multimeric receptor complexes. Finally, we present evidence that some members of the Gr64 gene family are transcribed as a polycistronic mRNA, providing a mechanism for the coexpression of multiple sugar receptors in the same taste neurons.  相似文献   

18.
 The lozenge locus is genetically complex, containing two functionally distinct units, cistrons A and B, that influence the structure of the compound eye. Extreme mutations of either cistron produce adult phenotypes that share similarities and that have striking differences. We have analyzed the expression of several developmentally important eye genes including boss, scabrous, rhomboid, seven-up, and Bar in lozenge mutant backgrounds representing both cistrons. This analysis follows the progressive recruitment of photoreceptor neurons during eye development and has confirmed that the initial development of photoreceptors is normal up to the five cell precluster stage (R8, R2/5 and R3/4). However, when lozenge is mutant, further eye development is perturbed. As cells R1, R6 and R7 are recruited, patterns of gene expression for seven-up and Bar become abnormal. We have also characterized the expression of two different enhancer trap alleles of lozenge. The lozenge product(s) appear to be first expressed in the eye disc in undifferentiated cells shortly after the five cell precluster forms. Then, as distinct cells are recruited to a fate, lozenge expression persists and is refined in those cells. Our data suggests that lozenge functions in cone cells and pigment cells as well as in specific glia. With respect to photoreceptor neurons, lozenge biases the developmental potential of cells R1, R6 and R7, by directly influencing the expression of genes important for establishing cell fate. Received: 26 July 1996 / Accepted: 6 January 1997  相似文献   

19.
20.
The electroretinogram of the dipteran compound eye in response to an intense flash contains an early, diphasic potential that has been termed the M potential. Both phases of the M potential arise from the photostimulation of metarhodopsin. The early, corneal-negative component, the M1, can be recorded intracellularly in the photoreceptors and has properties similar to the classical early receptor potential (ERP). The M1 is resistant to cold, anaesthesia, and anoxia and has no detectable latency. It depends on flash intensity and metarhodopsin fraction in the manner predicted for a closed, two-state pigment system, and its saturation is shown to correspond to the establishment of a photoequilibrium in the visual pigment. On the other hand, the dominant, corneal-positive component, the M2, does not behave like an ERP. It arises, not in the photoreceptors, but deeper in the retina at the level of the lamina, and resembles the on-transient of the electroretinogram in its reversal depth and sensitivity to cooling or CO2. The on-transient, which is present over a much wider range of stimulus intensity than the M potential, has been shown to arise from neurons in the lamina ganglionaris. Visual mutants in which the on- transient is absent or late are also defective in the M2. It is proposed that the M2 and the on-transient arise from the same or similar groups of second-order neurons, and that the M2 is a fast laminar response to the depolarizing M1 in the photoreceptors, just as the on-transient is a fast laminar response to the depolarizing late receptor potential. Unlike the M1, the M2 is not generally proportional to the amount of metarhodopsin photoconverted, and the M2 amplitude is influenced by factors, such as a steady depolarization of the photoreceptor, which do not affect the M1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号