首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Both from Escherichia coli K12 W3630 carrying an R-factor, R+75, and from the parent strain at least six penicillin- and cephalosporin-binding proteins were obtained as soluble forms. The molecular weights of the binding proteins of the strain carrying an R-factor were similar to those of the parent strain and not affected by the presence of an R-factor which specified the production of a beta-lactamase. Gel filtration with [14C]benzylpenicillin suggested the equimolar binding of benzylpenicillin to each binding protein. Three binding proteins of E. coli carrying R+75 and two binding proteins of the parent strain were purified by affinity chromatography followed by gel filtration. In fluorescence titration, various penicillins and cephalosporins were shown to bind to the purified binding proteins and their association constants were in the range of 0.4 to 21-10(3) M-1. The binding proteins of both strains did not react with the antibody against the beta-lactamase specified by R+75.  相似文献   

2.
1. A cephalosporin-binding protein obtained from a strain of Citrobacter freundii was purified to the extent of a single band in analytical and sodium dodecyl sulfate-containing disc electrophoresis. 2. The molecular weight determined by disc electrophoresis was 53 000. 3. The binding protein did not show any beta-lactamase activity at substrate concentrations examined: 6 mM to 100 muM of penicillins and 12 mM to 100 muM of cephalosporins. 4. In gel filtration, [14C]benzylpenicillin was found not to bind to the binding protein. 5. In fluorescence titration, all cephalosporins tested quenched the fluorescence. Association constants of cephalosporins were in the range of 0.8-12-103 M-1, and one binding site was calculated for all cephalosporins tested.  相似文献   

3.
1. Penicillin N was synthesized by coupling alpha-amino-alpha-p-nitrobenzyl-N-p-nitro-benzyloxycarbonyl-D-adipate with 6-aminopenicillanic acid benzyl ester, followed by removal of the protecting groups through hydrogenolysis. 2. alpha-Amino-alpha-p-nitrobenzyl-N-p-nitrobenzyloxycarbonyl-D-[5-14C]adipate was prepared by treating alpha-p-nitrobenzyl-N-p-nitrobenzyloxycarbonyl-D-glutamic acid with [14C]diazomethane followed by rearrangement with silver trifluoromethanesulphonate. 3. Coupling of alpha-amino-alpha-p-nitrobenzyl-N-p-nitrobenzyloxycarbonyl-D-[5-14C]adipate with 6-aminopenicillanic acid benzyl ester gave triprotected [10-14C]penicillin N. 4. 3H was introduced at C-6 of the Schiff's base derivative (10) by oxidation followed by reduction with NaB3H4. 5. The so-derived (6 alpha-3H)-labelled Schiff's base was hydrolysed to give 6-amino [6 alpha-3H]penicillanic acid benzyl ester p-toluenesulphonic acid salt, which after coupling as the free amine with alpha-amino-alpha-p-nitrobenzyl-N-pnitrobenzyloxycarbonyl-D-adipate and then hydrogenolysis, yielded [6alpha-3H]penicillin N. 6. Triprotected [10-14C]penicillin N and triprotected [6alpha-3H]penicillin N in admixture were hydrogenolysed to give [10-14C,6alpha-3H]penicillin N.  相似文献   

4.
A series of 2beta-[3'-(substituted benzyl)isoxazol-5-yl]- and 2beta-[3'-methyl-4'-(substituted phenyl)isoxazol-5-yl]-3beta-(substituted phenyl)tropanes were prepared and evaluated for affinities at dopamine, serotonin, and norepinephrine transporters using competitive radioligand binding assays. The 2beta-[3'-(substituted benzyl)isoxazol-5-yl]-3beta-(substituted phenyl)tropanes (3a-h) showed high binding affinities for the dopamine transporter (DAT). The IC(50) values ranged from 5.9 to 22nM. On the other hand, the 2beta-[3'-methyl-4'-(substituted phenyl)isoxazol-5-yl]-3beta-(substituted phenyl)tropanes (4a-h), with IC(50) values ranging from 65 to 173nM, were approximately 3- to 25-fold less potent than the corresponding 2beta-[3'-(substituted benzyl)isoxazol]tropanes. All tested compounds were selective for the DAT relative to the norepinephrine transporter (NET) and serotonin transporter (5-HTT). 3Beta-(4-Methylphenyl)-2beta-[3'-(4-fluorobenzyl)isoxazol-5-yl]tropane (3b) with IC(50) of 5.9nM at the DAT and K(i)s of 454 and 113nM at the NET and 5-HTT, respectively, was the most potent and DAT-selective analog. Molecular modeling studies suggested that the rigid conformation of the isoxazole side chain in 4a-h might play an important role on their low DAT binding affinities.  相似文献   

5.
Beta-lactams exert their antibiotic action through their inhibition of bacterial DD-peptidases (penicillin-binding proteins). Bacteria, in general, carry several such enzymes localized on the outside of their cell membrane to catalyze the final step in cell wall (peptidoglycan) synthesis. They have been classified into two major groups, one of high molecular weight, the other of low. Members of the former group act as transpeptidases in vivo, and their inhibition by beta-lactams leads to cessation of bacterial growth. The latter group consists of DD-carboxypeptidases, and their inhibition by beta-lactams is generally not fatal to bacteria. We have previously shown that representatives of the former group are ineffective at catalyzing the hydrolysis/aminolysis of peptidoglycan-mimetic peptides in vitro [Anderson et al. (2003) Biochem. J. 373, 949-955]. The theme of these experiments is expanded in the present paper where we describe the synthesis of a series of beta-lactams (penicillins and cephalosporins) containing peptidoglycan-mimetic side chains and the kinetics of their inhibition of a panel of penicillin-binding proteins spanning the major classes (Escherichia coli PBP 2 and PBP 5, Streptococcus pneumoniae PBP 1b, PBP 2x and PBP 3, the Actinomadura R39 DD-peptidase, and the Streptomyces R61 DD-peptidase). The results of these experiments mirror and expand the previous results with peptides. Neither peptides nor beta-lactams with appropriate peptidoglycan-mimetic side chains react with the solubilized constructs of membrane-bound penicillin binding proteins (the first five enzymes above) at rates exceeding those of generic analogues. Such peptides and beta-lactams do react at greatly enhanced rates with certain soluble low molecular weight enzymes (R61 and R39 DD-peptidases). The former result is unexpected and interesting. Why do the majority of penicillin-binding proteins not recognize elements of local peptidoglycan structure? Possible answers are discussed. That this question needs to be asked casts fascinating shadows on current studies of penicillin-binding proteins for new drug design.  相似文献   

6.
This study deals with the interaction of nocardicin A with Escherichia coli penicillin-binding proteins. Competition experiments with two different isotopically labelled beta-lactams indicated that nocardicin A interacts with penicillin-binding proteins 1a, 1b, 2 and 4 in intact cells. Binding of nocardicin A to the penicillin-binding proteins was abolished, or greatly reduced, when the assays were carried out with purified cell envelopes. Important differences between the binding patterns of benzyl[14C]penicillin to intact cells and to purified cell envelopes were also observed. These results suggest that the interaction of beta-lactam antibiotics with their target proteins depends to a very great extent on the state of the cell envelope as a whole.  相似文献   

7.
All penicillin-binding proteins (PBPs) contain a conserved box of homology in the carboxyl-terminal half of their primary sequence that can be Lys-Thr-Gly, Lys-Ser-Gly, or His-Thr-Gly. Site-saturation mutagenesis was used to address the role of the lysine residue at this position (Lys213) in Escherichia coli PBP 5, a D-alanine carboxypeptidase enzyme. A soluble form of PBP 5 was used to replace Lys213 with 18 other amino acids, and the ability of these mutant proteins to bind [3H]penicillin G was assessed. Only the substitution of lysine with arginine resulted in a protein that was capable of forming a stable covalent complex with antibiotic. The affinity of [14C]penicillin G for the arginine mutant was 1.2-fold higher than for wild-type PBP 5 (4.4 versus 5.1 micrograms/ml for 20 min at 30 degrees C), and both proteins showed identical rates of hydrolysis of the [14C]penicilloyl-bound complex (t1/2 = 9.1 min). Surprisingly, the arginine-substituted protein was unable to catalyze D-alanine carboxypeptidase activity in vitro, which suggests that there is a substantial difference in the geometries of the peptide substrate and penicillin G within the active site of PBP 5.  相似文献   

8.
Membranes of myeloid differentiated human leukemia (HL 60) cells contain receptors for the chemotactic peptide, fMet-Leu-Phe (fMet, N-formylmethionine), interacting with pertussis-toxin-sensitive guanine-nucleotide-binding proteins (G proteins). Agonist activation of the receptors increases binding of the GTP analog, guanosine 5'-[gamma-thio]triphosphate (GTP[S]), to membrane G proteins, at 30 degrees C only in the presence of exogenous GDP. In contrast, at 0 degrees C fMet-Leu-Phe stimulated binding of GTP[S] to G proteins maximally without addition of GDP. Under conditions resulting in marked degradation of membrane-bound GDP, control binding of GTP[S] measured at 0 degrees C was significantly increased, whereas the extent of agonist-stimulated binding was reduced. Furthermore, there was a rapid spontaneous release of membrane-bound GDP at 30 degrees C, but not at 0 degrees C. The data suggest that in intact membranes of HL 60 cells G proteins are initially in a GDP-liganded form, which state allows the receptor-induced exchange of bound GDP for GTP[S] at low temperature. In contrast, at or near physiological temperature, bound GDP is rapidly released (and degraded), resulting in unligated G proteins to which GTP[S] will bind independently of agonist-activated receptors.  相似文献   

9.
The hydroxylaminolysis of the penicilloyl moiety from [14C]penicillin G binding component (PBC) complexes of the Bacillus subtilis D-alanine carboxypeptidase and of the mixture of PBC's of Staphylococcus aureus was inhibited by denaturation of the complexes by heat (55 degrees), detergent (1% sodium dodecyl sulfate), or trichloroacetic acid. The kinetics of inhibition by denaturation were comparable to those of the inhibition of [14C]penicillin G binding to the PBC's and of carboxypeptidase activity of the B. subtilis enzyme under identical denaturing conditions. These data establish that the hydroxylaminolysis is an enzymatically catalyzed process suggesting that penicillin G is bound to an enzymatically active site. Treatment of the denatured [14C]penicillin G-carboxypeptidase complex with sodium borohydride or at pH 12 resulted in the release of the penicilloyl moiety. These results are consistent with a carboxylic ester bond for the penicilloyl-PBC instead of a thiolester linkage as was initially presumed.  相似文献   

10.
Breakdown of the covalent complex formed between [14C]penicillin G and higher molecular weight, cephalosporin-sensitive penicillin-binding proteins was studied using mixtures of the purified proteins isolated from membranes of Staphylococcus aureus and Bacillus subtilis. These penicillin-binding proteins were found to release the bound 14C label in a first order process characterized by half-lives of 10 to 300 min at 37 degrees C. Denaturation of the penicilloyl.penicillin-binding proctein complex prevented this release, indicating that the process is enzyme-catalyzed. [14C]Phenylacetylglycine was identified as the major labeled fragmentation product, indicating that these cephalosporin-sensitive penicillin-binding proteins, for which no in vitro transpeptidase or carboxypeptidase activity has been found, catalyze the same fragmentation of the bound penicilloyl moiety previously described for several penicillin-sensitive D-alanine carboxypeptidases.  相似文献   

11.
Perfluorinated fatty acids alter hepatic lipid metabolism and are potent peroxisome proliferators in rodents. Two such perfluorinated acids, perfluorodecanoic acid (PFDA) and perfluorooctanoic acid (PFOA), were examined to determine if they covalently bind cellular proteins. PFDA and PFOA were found to covalently bind proteins when administered to rats in vivo. The liver, plasma and testes of male rats treated with [1-14C]PFDA or PFOA (9.4 mumol/kg) contained detectable levels of covalently bound 14C (0.1-0.5% of the tissue 14C content). Characterization of PFDA covalent binding to albumin in vitro showed that cysteine significantly decreased binding with no effect of methionine, suggesting protein sulfhydryl groups are involved. In cytosolic and microsomal incubation there was no effect of the addition of CoA, ATP or NADPH on the magnitude of the covalent binding of PFDA. Therefore PFDA need not be metabolically activated to form covalent adducts. Despite demonstration of covalent binding of PFDA and PFOA to proteins both in vivo and in vitro, the role of this macromolecular binding in perfluorinated fatty acid toxicity is not known.  相似文献   

12.
It has been proposed that penicillin and other beta-lactam antibiotics are substrate analogs which inactivate certain essential enzymes of bacterial cell wall biosynthesis by acylating a catalytic site amino acid residue (Tipper, D.J., and Strominger, J.L. (1965) Proc. Natl. Acad. Sci. U.S.A. 54, 1133-1141). A key prediction of this hypothesis, that the penicilloyl moiety and an acyl moiety derived from substrate both bind to the same active site residue, has been examined. D-Alanine carboxypeptidase, a penicillin-sensitive membrane enzyme, was purified from Bacillus subtilis and labeled covalently at the antibiotic binding site with [14C]penicillin G or with the cephalosporin [14C]cefoxitin. Alternatively, an acyl moiety derived from the depsipeptide substrate [14C]diacetyl L-Lys-D-Ala-D-lactate was trapped at the catalytic site in near-stoichiometric amounts by rapid denaturation of an acyl-enzyme intermediate. Radiolabeled peptides were purified from a pepsin digest of each of the 14C-labeled D-alanine carboxypeptidases and their amino acid sequences determined. Antibiotic- and substrate-labeled peptic peptides had the same sequence: Tyr-Ser-Lys-Asn-Ala-Asp-Lys-Arg-Leu-Pro-Ile-Ala-Ser-Met. Acyl moieties derived from antibiotic and from substrate were shown to be bound covalently in ester linkage to the identical amino acid residue, a serine at the penultimate position of the peptic peptide. These studies establish that beta-lactam antibiotics are indeed active site-directed acylating agents. Additional amino acid sequence data were obtained by isolating and sequencing [14C]penicilloyl peptides after digestion of [14C]penicilloyl D-alanine carboxypeptidase with either trypsin or cyanogen bromide and by NH2-terminal sequencing of the uncleaved protein. The sequence of the NH2-terminal 64 amino acids was thus determined and the active site serine then identified as residue 36. A computer search for homologous proteins indicated significant sequence homology between the active site of D-alanine carboxypeptidase and the NH2-terminal portion of beta-lactamases. Maximum homology was obtained when the active site serine of D-alanine carboxypeptidase was aligned correctly with a serine likely to be involved in beta-lactamase catalysis. These findings provide strong evidence that penicillin-sensitive D-alanine carboxypeptidases and penicillin-inactivating beta-lactamases are related evolutionarily.  相似文献   

13.
A second peptidoglycan hydrolase (muramidase-2) of Streptococcus faecium ATCC 9790 (Enterococcus hirae) has been purified to apparent homogeneity. The enzyme has been shown to be a beta-1,4-N-acetylmuramoylhydrolase (muramidase; EC 3.2.1.17) and to differ in substrate specificity from a previously isolated muramidase. Purified enzyme appears as two protein staining bands with molecular masses of 125 and 75 kilodaltons (kDa) on polyacrylamide gels after sodium dodecyl sulfate electrophoresis. Elution and renaturation of protein bands from sodium dodecyl sulfate-polyacrylamide gels showed that both proteins have muramidase-2 activity. Both proteins have been shown to bind radioactive benzylpenicillin and have the same electrophoretic mobilities as penicillin-binding proteins 1 and 5 present in membrane preparations of this organism, respectively. Incubation of a [14C]penicillin G-labeled 125-kDa form of the enzyme with crude alkaline extracts from S. faecium (which did not contain added proteinase inhibitors) showed the endogenous conversion of the radiolabeled 125-kDa form to the radiolabeled 75-kDa form of the enzyme.  相似文献   

14.
Time courses for inhibition of carnitine palmitoyltransferase (CPT) I activity in, and [14C]malonyl-CoA binding to, liver mitochondria from fed or 48 h-starved rats were obtained at 37 degrees C by using identical incubation conditions and a fixed concentration of malonyl-CoA (3.5 microM), which represents the middle of the physiological range observed previously [Zammit (1981) Biochem. J. 198, 75-83] Incubation of mitochondria in the absence of malonyl-CoA resulted in a time-dependent decrease in the ability of the metabolite instantaneously to inhibit CPT I and to bind to the mitochondria. Both degree of inhibition and binding were restored in parallel over a period of 6-8 min on subsequent addition of malonyl-CoA to the incubation medium. However, the increased inhibition of CPT I activity on addition of mitochondria directly to malonyl-CoA-containing medium was not accompanied by an increase in the amount of [14C]malonyl-CoA bound to mitochondria at 37 degrees C. Time courses for binding of [14C]malonyl-CoA performed at 0 degree C were different from those obtained at 37 degrees C. There was little loss of ability of [14C]malonyl-CoA to bind to mitochondria on incubation in the absence of the metabolite, but there was a time-dependent increase in binding on addition of mitochondria to malonyl-CoA-containing medium. It is suggested that these temperature-dependent differences between the time courses obtained may be due to the occurrence of different changes at 37 degrees C and at 0 degree C in the relative contributions of different components (with different affinities) to the binding observed at 3.5 microM-malonyl-CoA. Evidence for multi-component binding was obtained in the form of strongly curvilinear Scatchard plots for instantaneous (5s) binding of malonyl-CoA to mitochondria. Such multi-component binding would be expected from previous results on the different affinities of CPT I for malonyl-CoA with respect to inhibition [Zammit (1984) Biochem. J. 218, 379-386]. Mitochondria obtained from starved rats showed qualitatively the same time courses as those described above, with notable quantitative differences with respect both to the absolute extents of CPT I inhibition and [14C]malonyl-CoA binding achieved as well as to the time taken to attain them.  相似文献   

15.
R. factors conferring resistance to penicillins and cephalosporins were transferred by conjugation from six strains of Shigella and from four strains of Salmonella typhimurium to a standard strain of S. typhimurium LT2. The beta-lactamases produced were then characterized by using cell-free extracts. The enzymes were of two types, I and II, with respect to specific activity against benzyl penicillin, substrate profile, K(m), pH optimum, temperature optimum, inhibition by chloride and nitrate ions, and heat inactivation. The six type I enzymes were associated with R factors from Shigella strains; five of these were R(f) factors. The four type II enzymes were associated with R factors from S. typhimurium; all these were R(i) factors.  相似文献   

16.
1. Binding of [14C] DDT by submitochondrial particles and by liposomes prepared from lipids extracted from the particles was studied by the discontinuous sucrose gradient method. 2. Binding of the insecticide was a biphasic linear function of the biomembrane- and liposome-concentration with a break in the binding curve occurring at identical concentrations of phospholipid for both the biomembrane and vesicle. The biphasic binding curve is interpreted in terms of decreased availability of binding sites as a result of particle-particle interaction. 3. [14C] DDT was bound mainly by the membrane lipids and only negligible binding was detected for the delipidated membrane. 4. A 100-200-fold excess of unlabeled DDT had no effect on the binding of [14C] DDT and a 600-fold excess of unlabeled DDT reduced the binding by 20% suggesting that binding of [14C] DDT by lipids was nonspecific. 5. These results are discussed in relation to the strong inhibition by DDT of mitochondrial bioenergetics.  相似文献   

17.
(1) Incubation of the beef heart mitochondrial ATPase, F1 with Mg-ATP was required for the binding of the natural inhibitor, IF1, to F1 to form the inactive F1-IF1 complex. When F1 was incubated in the presence of [14C]ATP and MgCl2, about 2 mol 14C-labeled adenine nucleotides were found to bind per mol of F1; the bound 14C-labeled nucleotides consisted of [14C]ADP arising from [14C]ATP hydrolysis and [14C]ATP. The 14C- labeled nucleotide binding was not prevented by IF1. These data are in agreement with the idea that the formation of the F1-IF1 complex requires an appropriate conformation of F1. (2) The 14C-labeled adenine nucleotides bound to F1 following preincubation of F1 with Mg-[14C] ATP could be exchanged with added [3H]ADP or [3H]ATP. No exchange occurred between added [3H]ADP or [3H]ATP and the 14 C-labeled adenine nucleotides bound to the F1-IF1 complex. These data suggest that the conformation of F1 in the isolated F1-IF1 complex is further modified in such a way that the bound 14C-labeled nucleotides are no longer available for exchange. (3) 32Pi was able to bind to isolated F1 with a stoichiometry of about 1 mol of Pi per mol of F1 (Penefsky, H.S. (1977) J. Biol. Chem. 252, 2891-2899). There was no binding of 32Pi to the F1-IF1 complex. Thus, not only the nucleotides sites, but also the Pi site, are masked from interaction with external ligands in the isolated F1-IF1 complex.  相似文献   

18.
1. Antisera have been produced in rabbits to benzylpenicillin and four members of the cephalosporin C family and to conjugates of these substances with bovine gamma-globulin. 2. Deacetoxycephalosporin C reacted less readily and deacetylcephalosporin C lactone more readily with bovine gamma-globulin than did benzylpenicillin, cephalosporin C or deacetylcephalosporin C. 3. Antisera to free or conjugated benzylpenicillin agglutinated red cells sensitized with a variety of penicillins, but only reacted to a significant extent with cells sensitized with the cephalosporins tested when the latter contained an N-phenylacetyl or chemically related side chain. 4. Antisera to members of the cephalosporin C family agglutinated cells sensitized with these cephalosporins or with penicillin N, but did not react with cephalosporins whose side chains were chemically unrelated to alpha-aminoadipic acid. 5. Members of the cephalosporin C family and products of hydrolysis of cephalosporin C behaved as hapten inhibitors of antisera to cephalosporin C, but 7-aminocephalosporanic acid was relatively ineffective. 6. These findings are discussed in relation to differences in the chemical properties of penicillins and cephalosporins.  相似文献   

19.
The compound P1-(5'-adenosyl)-P2-N-(2-mercaptoethyl)diphosphoramidate (AMEDA) was synthesized as an ATP analogue for in situ reaction with the 4-nitro-2,1,3-[14C]benzoxadiazolyl group (NBD) in the labeled F1-ATPase (F1). AMEDA was found to reactivate O-[14C]NBD-F1 via a dual-path mechanism. The principal path involves the binding of AMEDA at a site in F1 with Kd = 14.5 microM and subsequent reaction with the [14C]NBD label. The second slower path involves the direct biomolecular reaction of AMEDA with the radioactive label on F1. The rate of reactivation of O-[14C]NBD-F1 by AMEDA was decreased by ADP or ATP which competes with the ATP analogue for binding to the labeled enzyme. The reaction product was found to contain one adenine group, two phosphate groups, and one [14C]NBD label per molecule as expected from the structure of the compound AMEDA-[14C]NBD. Purified AMEDA-[14C]NBD was found to bind to unlabeled F1 with Kd = 2 microM. These observations demonstrate the in situ reaction of bound AMEDA with the nearby [14C]NBD label attached to Tyr-beta 311 and support the assumed presence of Tyr-beta 311 near the phosphate groups of ATP bound at the hydrolytic site of F1-ATPase. The possible locations of Tyr-beta 364, His-beta 427, and Tyr-beta 345 relative to Tyr-beta 311 in F1 are discussed, and the validity of the previously proposed model for F1-ATPase with one hydrolytic site assisted by two auxiliary sites is examined and compared with that of the widely accepted alternating sites model.  相似文献   

20.
A series of replacement experiments of [14C]-triazines, [14C]-atrazine and [7-14C]-2-benzylamino-4-methyl-6-trifluoromethyl-1,3,5-triazine, bound to thylakoids isolated from wild-type and atrazine-resistant Chenopodium album (lambsquarters) were conducted. Replacement experiments of [14C]-triazines bound to wild-type Chenopodium thylakoids with non-labeled atrazine and 2-benzylamino-4-methyl-6-trifluoromethyl-1,3,5-triazine were carried out, to elucidate whether benzylamino-1,3,5-triazines use the same binding niche as atrazine. [14C]-Atrazine and [7-14C]-2-benzylamino-4-methyl-6-trifluoromethyl-1,3,5-triazine bound to wild-type thylakoids were replaced by non-labeled 2-benzylamino-4-methyl-6-trifluoromethyl-1,3,5-triazine and non-labeled atrazine, respectively. The above two replacements showed mutual competition. To clarify further whether benzylamino-1,3,5-triazines bind at the D1-protein to amino acid residue(s) different from atrazine or not, experiments to replace [7-14C]-2-benzylamino-4-methyl-6-trifluoromethyl-1,3,5-triazines bound to atrazine-resistant Chenopodium thylakoids by non-labeled atrazine, 2-(4-bromobenzylamino)-4-methyl-6-trifluoromethyl-1,3,5-triazine, DCMU and DNOC were carried out. Although the bound [7-14C]-2-benzylamino-4-methyl-6-trifluoromethyl-1,3,5-triazine was difficult to be replaced even with high concentrations of atrazine, [14C]-labeled 1,3,5-triazine was competitively replaced by non-labeled 2-(4-bromobenzylamino)-4-methyl-6-trifluoromethyl-1,3,5-triazine, DCMU or DNOC. Thus, 2-benzylamino-4-methyl-6-trifluoromethyl-1,3,5-triazine herbicides are considered to bind to the same niche at the D1 protein as atrazine, but use amino acid residue(s) different from those involved with atrazine binding. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号