首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
AIMS: The aim of this study was to isolate and identify bacteriocin-producing lactic acid bacteria (LAB) issued from Mongolian airag (traditional fermented mare's milk), and to purify and characterize bacteriocins produced by these LAB. METHODS AND RESULTS: Identification of the bacteria (Enterococcus durans) was carried out on the basis of its morphological, biochemical characteristics and carbohydrate fermentation profile and by API50CH kit and 16S rDNA analyses. The pH-neutral cell-free supernatant of this bacterium inhibited the growth of several Lactobacillus spp. and food-borne pathogens including Escherichia coli, Staphylococcus aureus and Listeria innocua. The antimicrobial agent (enterocin A5-11) was heat stable and was not sensitive to acid and alkaline conditions (pH 2-10), but was sensitive to several proteolytic enzymes. Its inhibitory activity was completely eliminated after treatment with proteinase K and alpha-chymotrypsin. The activity was however not completely inactivated by other proteases including trypsin and pepsin. Three-step purification procedure with high recovery yields was developed to separate two bacteriocins. The applied procedure allowed the recovery of 16% and 64% of enterocins A5-11A and A5-11B, respectively, present in the culture supernatant with purity higher than 99%. SDS-PAGE analyses revealed that enterocin A5-11 has a molecular mass of 5000 Da and mass spectrometry analyses demonstrates molecular masses of 5206 and 5218 Da for fractions A and B, respectively. Amino acid analyses of both enterocins indicated significant quantitative difference in their contents in threonine, alanine, isoleucine and leucine. Their N-termini were blocked hampering straightforward Edman degradation. CONCLUSIONS: Bacteriocins A5-11A and B from Ent. durans belong to the class II of bacteriocins. SIGNIFICANCE AND IMPACT OF THE STUDY: Judging from molecular masses, amino acid composition and spectrum of activities, bacteriocins A5-11A and B from Ent. durans show high degree of similarity with enterocins L50A and L50B isolated from Enterococcus faecium (Cintas et al. 1998, 2000) and with enterocin I produced by Ent. faecium 6T1a, a strain originally isolated from a Spanish-style green olive fermentation (Floriano et al. 1998).  相似文献   

2.
AIMS: Screening for lactic acid bacteria (LAB) producing bacteriocins and other antimicrobial compounds is of a great significance for the dairy industry to improve food safety. METHODS AND RESULTS: Six-hundred strains of LAB isolated from 'rigouta', a Tunisian fermented cheese, were tested for antilisterial activity. Eight bacteriocinogenic strains were selected and analysed. Seven of these strains were identified as Lactococcus lactis and produced nisin Z as demonstrated by mass spectrometry analysis of the purified antibacterial compound. Polymerase chain reaction experiments using nisin gene-specific primers confirmed the presence of nisin operon. Plasmid profiles analysis suggests the presence of, at least, three different strains in this group. MMT05, the eighth strain of this antilisterial collection was identified, at molecular level, as Enterococcus faecalis. The purified bacteriocin produced by this strain showed a molecular mass of 10 201.33 +/- 0.85 Da. This new member of class III bacteriocins was termed enterocin MMT05. CONCLUSIONS: Seven lactococcal strains producing nisin Z were selected and could be useful as bio-preservative starter cultures. Additional experiments are needed to evaluate the promising strain MMT05 as bio-preservative as Enterococci could exert detrimental or beneficial role in foods. SIGNIFICANCE AND IMPACT OF THE STUDY: Only a few antibacterial strains isolated from traditional African dairy products were described. The new eight strains described herein contribute to the knowledge of this poorly studied environment and constitute promising strains for fermented food safety.  相似文献   

3.
4.
Lactic acid bacteria (LAB) isolated from different sources (dairy products, fruits, fresh and fermented vegetables, fermented cereals) were screened for antimicrobial activity against other bacteria, including potential pathogens and food spoiling bacteria. Six strains have been shown to produce bacteriocins: Lactococcus lactis 19.3, Lactobacillus plantarum 26.1, Enterococcus durans 41.2, isolated from dairy products and Lactobacillus amylolyticus P40 and P50, and Lactobacillus oris P49, isolated from bors. Among the six bacteriocins, there were both heat stable, low molecular mass polypeptides, with a broad inhibitory spectrum, probably belonging to class II bacteriocins, and heat labile, high molecular mass proteins, with a very narrow inhibitory spectrum, most probably belonging to class III bacteriocins. A synergistic effect of some bacteriocins mixtures was observed. We can conclude that fermented foods are still important sources of new functional LAB. Among the six characterized bacteriocins, there might be some novel compounds with interesting features. Moreover, the bacteriocin-producing strains isolated in our study may find applications as protective cultures.  相似文献   

5.
AIMS: The aim of this study was to perform a detailed characterization of bacteriocins produced by lactic acid bacteria (LAB) isolated from malted barley. METHODS AND RESULTS: Bacteriocin activities produced by eight LAB, isolated from various types of malted barley, were purified to homogeneity by ammonium sulphate precipitation, cation exchange, hydrophobic interaction and reverse-phase liquid chromatography. Molecular mass analysis and N-terminal amino acid sequencing of the purified bacteriocins showed that four non-identical Lactobacillus sakei strains produced sakacin P, while four Leuconostoc mesenteroides strains were shown to produce bacteriocins highly similar or identical to leucocin A, leucocin C or mesenterocin Y105. Two of these bacteriocin-producing strains, Lb. sakei 5 and Leuc. mesenteroides 6, were shown to produce more than one bacteriocin. Lactobacillus sakei 5 produced sakacin P as well as two novel bacteriocins, which were termed sakacin 5X and sakacin 5T. The inhibitory spectrum of each purified bacteriocin was analysed and demonstrated that sakacin 5X was capable of inhibiting the widest range of beer spoilage organisms. CONCLUSION: All bacteriocins purified in this study were class II bacteriocins. Two of the bacteriocins have not been described previously in the literature while the remaining purified bacteriocins have been isolated from environments other than malted barley. SIGNIFICANCE AND IMPACT OF THE STUDY: This study represents a thorough analysis of bacteriocin-producing LAB from malt and demonstrates, for the first time, the variety of previously identified and novel inhibitory peptides produced by isolates from this environment. It also highlights the potential of these LAB cultures to be used as biological controlling agents in the brewing industry.  相似文献   

6.
7.
8.
Acquired antibiotic resistance in lactic acid bacteria from food   总被引:17,自引:0,他引:17  
Acquired antibiotic resistance, i.e. resistance genes located on conjugative or mobilizable plasmids and transposons can be found in species living in habitats (e.g. human and animal intestines) which are regularly challenged with antibiotics. Most data are available for enterococci and enteric lactobacilli. Raw material from animals (milk and meat) which are inadvertantly contaminated with fecal matters during production will carry antibiotic resistant lactic acid bacteria into the final fermented products such as raw milk cheeses and raw sausages. The discovered conjugative genetic elements of LAB isolated from animals and food are very similar to elements studied previously in pathogenic streptococci and enterococci, e.g. -type replicating plasmids of the pAM1, pIP501-family, and transposons of the Tn916-type. Observed resistance genes include known genes like tetM, ermAM, cat, sat and vanA. A composite 29'871 bp resistance plasmid detected in Lactococcus lacti s subsp. lactis isolated from a raw milk soft cheese contains tetS previously described in Listeria monocytogenes, cat and str from Staphylococcus aureus. Three out of five IS elements on the plasmid are almost or completely identical to IS1216 present in the vanA resistance transposon Tn1546. These data support the view that in antibiotic challenged habitats lactic acid bacteria like other bacteria participate in the communication systems which transfer resistance traits over species and genus borders. The prevalence of such bacteria with acquired resistances like enterococci is high in animals (and humans) which are regularly treated with antibiotics. The transfer of antibiotic resistant bacteria from animals into fermented and other food can be avoided if the raw substrate milk or meat is pasteurized or heat treated. Antibiotic resistance traits as selectable markers in genetic modification of lactic acid bacteria for different purposes are presently being replaced, e.g. by metabo lic traits to generate food-grade vectors.  相似文献   

9.
AIMS: To isolate, characterize and identify lactic acid bacteria (LAB) in dochi (fermented black beans), a traditional fermented food in Taiwan. METHODS AND RESULTS: A total of 30 samples were collected from three different dochi producers and analysed after different periods of storage. Fifty-two cultures of LAB were isolated from dochi samples and the isolates were divided into classes by phenotype and then into groups by restriction fragment length polymorphism analysis and sequencing of 16S ribosomal DNA. Phenotypic and biochemical characteristics identified six different bacterial groups (A-F) and showed that the majority of the isolates were homofermentative LAB. Enterococcus faecium was the most abundant of the dochi-isolated LAB. All isolated LAB were able to grow in MRS broth containing 6% NaCl, but only Enterococcus, Pediococcus and Tetragenococcus species could grow in MRS broth containing 10% NaCl. Furthermore, antibacterial activities of isolates were determined, and four isolates showed inhibitory activities against the indicator strain Lactobacillus sakei JCM 1157(T). CONCLUSIONS: These results suggest that Ent. faecium is the main LAB present during the fermentation of dochi. SIGNIFICANCE AND IMPACT OF THE STUDY: This is the first report describing the distribution and varieties of LAB that exist in the dochi fermentation process.  相似文献   

10.
This review highlights the main genetic features of circular bacteriocins, which require the co-ordinated expression of several genetic determinants. In general terms, it has been demonstrated that the expression of such structural genes must be combined with the activity of proteins involved in maturation (cleavage/circularization) and secretion outside the cell via different transporter systems, as well as multifaceted immunity mechanisms essential to ensuring the bacteria's self-protection against such strong inhibitors. Several circular antibacterial peptides produced by Gram-positive bacteria have been described to date, including enterocin AS-48, from Enterococcus faecalis S-48 (the first one characterized), gassericin A, from Lactobacillus gasseri LA39, and a similar one, reutericin 6, from Lactobacillus reuteri LA6, butyrivibriocin AR10, from the ruminal anaerobe Butyrivibrio fibrisolvens AR10, uberolysin, from Streptococcus uberis, circularin A, from Clostridium beijerinckii ATCC 25752, and subtilosin A, from Bacillus subtilis. We summarize here the progress made in the understanding of their principal genetic features over the last few years, during which the functional roles of circular proteins with wide biological activity have become clearer.  相似文献   

11.
AIMS: To investigate the effects of two prebiotics and trehalose on the production of bacteriocins. METHODS AND RESULTS: Four carbohydrates [dextrose, fructo-oligosaccharides (FOS), raffinose, and trehalose] were used as the sole carbon source in a simple broth. Five bacteriocin-producing strains of bacteria, including those producing nisin, enteriocin, and other bacteriocins, were used, and their inhibitory activities when grown on each carbohydrate were determined. The inhibitory activity assay was performed using the agar well diffusion method, and Lactobacillus sakei JCM 1,157(T) was used as the indicator strain. Effective enhancement of bacteriocin production was observed with FOS and trehalose incubation. CONCLUSIONS: The results suggest that FOS and trehalose can effectively enhance the production of the five kinds of bacteriocins evaluated in this study. SIGNIFICANCE AND IMPACT OF THE STUDY: This study offers useful information for not only a new application of FOS and trehalose, but also the potential improvement of food preservation.  相似文献   

12.
13.
AIM: To partially characterize the bacteriocin produced by the GM-1 strain of Enterococcus faecium, isolated from the faeces of a newborn human infant. METHODS AND RESULTS: The bacteriocin produced by E. faecium GM-1 showed a broad spectrum of activity against indicator strains of Escherichia coli, Staphylococcus aureus, Vibrio spp., Salmonella typhimurium, Listeria monocytogenes, Lactobacillus acidophilus, and Streptococcus thermophilus. Treatment of the GM-1 bacteriocin with proteolytic enzymes reduced its inhibitory activities. The bacteriocin was stable at 100 degrees C for 20 min and displayed inhibitory activity at neutral pH. The optimal production of bacteriocin from E. faecium GM-1 was obtained when the culture conditions were pH 6.0-6.5 and 35-40 degrees C. The inhibitory activity of the bacteriocin was not substantially changed by the use of different carbon sources in the media, except when galactose was substituted for glucose. The use of a sole nitrogen source caused a decrease in inhibitory activity. A bacteriocin gene similar to enterocin P was identified from the total DNA of E. faecium GM-1 by PCR and direct sequencing methods. CONCLUSION: E. faecium GM-1, which was isolated from the faeces of a newborn baby, produces an enterocin P-like bacteriocin with inhibitory activity against Gram-positive and Gram-negative bacteria, including food-borne pathogens. SIGNIFICANCE AND IMPACT OF THE STUDY: E. faecium GM-1, isolated from infant faeces, produces a new bacteriocin that is similar to enterocin P. This bacteriocin is heat stable and has a broad antibacterial spectrum that includes both Gram-positive and Gram-negative bacteria.  相似文献   

14.
AIMS: To identify and characterize bacteriocion-producing lactic acid bacteria (LAB) in sourdoughs and to compare in vitro and in situ bacteriocin activity of sourdough- and nonsourdough LAB. METHODS AND RESULTS: Production of antimicrobial compounds by 437 Lactobacillus strains isolated from 70 sourdoughs was investigated. Five strains (Lactobacillus pentosus 2MF8 and 8CF, Lb. plantarum 4DE and 3DM and Lactobacillus spp. CS1) were found to produce distinct bacteriocin-like inhibitory substances (BLIS). BLIS-producing Lactococcus lactis isolated from raw barley showed a wider inhibitory spectrum than sourdough LAB, but they did not inhibit all strains of the key sourdough bacterium Lb. sanfranciscensis. Antimicrobial production by Lb. pentosus 2MF8 and Lc. lactis M30 was also demonstrated in situ. CONCLUSIONS: BLIS production by sourdough LAB appears to occur at a low frequency, showing limited inhibitory spectrum when compared with BLIS-producing Lc. lactis. Nevertheless, they are active BLIS producers under sourdough and bread-making conditions. SIGNIFICANCE AND IMPACT OF THE STUDY: The activity of BLIS has been demonstrated in situ. It may influence the complex sourdough microflora and support the implantation and stability of selected insensitive bacteria, such as Lb. sanfranciscensis, useful to confer good characteristics to the dough.  相似文献   

15.
The impact of lactic acid bacteria on cheese flavor   总被引:2,自引:0,他引:2  
Abstract Chesse flavor is a manifestation of complex interactions of volatile and non-volatile flavor-active compounds plus tactual perception. Numerous agents, including lactic acid bacteria, procece the flavou sensations. The effect of lactic acid bacteria is more dominant in cheese varieties with limited growth of secondary flora. This review describes the indirect and direct impacts of lactic acid bacteria in cheese with emphasis on carbohydrate fermentation, changes in oxidation-reduction potential, interactions with non-starter bacteria, autolysis, proteolytic and peptidolytic activities, transport of metabolites and flavor production.  相似文献   

16.
17.
Ten strains of bacteriocin-producing lactic acid bacteria were isolated from retail cuts of meat. These 10 strains along with 11 other bacteriocin-producing lactic acid bacteria were tested for inhibitory activity against psychotrophic pathogens, including four strains of Listeria monocytogenes, two strains of Aeromonas hydrophila, and two strains of Staphylococcus aureus. Inhibition due to acid, hydrogen peroxide, and lytic bacteriophage were excluded. The proteinaceous nature of the inhibitory substance was confirmed by demonstration of its sensitivity to proteolytic enzymes. Eight of the meat isolates had inhibitory activity against all four L. monocytogenes strains. Bacteriocin activity against L. monocytogenes was found in all of the strains obtained from other sources. Activity against A. hydrophila and S. aureus was also common.  相似文献   

18.
19.
Understanding the mechanisms of stress response and adaptation to stress in the case of lactic acid bacteria (LAB), especially in the case of strains with functional properties, is very important when such strains are potential candidates for starter cultures or probiotics. In this context, our study shows the response of some LAB [four exopolysaccharide (EPS)-producing strains and one strain with potential probiotic effect] to the stresses induced by low and high incubation temperatures, acidity, NaCl, and bile salts, often encountered during the technological processes in food or during the passage through the human gastro-intestinal tract. The strains were able to grow at temperatures up to 40 °C (the mesophilic strains) and 47 °C (the thermophilic strain), in medium with an initial pH of at least 4.0 (Lactobacillus acidophilus IBB801), or in the presence of NaCl up to 10 % (Weissella confusa/cibaria 38.2), or bile salts up to 0.2 % (L. acidophilus IBB801). The protein and isoenzyme patterns of the strains subjected to various stress conditions presented several differences compared with the control patterns, among which the overexpression of some proteins of about 50–60 kDa, differences in the bands intensity in the case of the intracellular enzymes, or the complete loss of some of these bands. The best survival to low pH values and high temperatures was observed for strain L. acidophilus IBB801, the candidate probiotic strain. The EPS production of the four tested strains was, in general, directly related to the growth, the highest yields being obtained when strains were incubated at 24 °C.  相似文献   

20.
AIMS: The aim of this study was to isolate bacteriocin-producing lactic acid bacteria (LAB) from human intestine. METHODS AND RESULTS: A total of 111 LAB were isolated from human adult stool and screened for their bacteriocin production. Neutralized cell-free supernatants from Lactococcus lactis subsp. lactis MM19 and Pediococcus acidilactici MM33 showed antimicrobial activity. The antimicrobials in the supernatant from a culture of L. lactis inhibited Enterococcus faecium, various species of Lactobacillus and Staphylococcus aureus; while those in the supernatant from a culture of P. acidilactici inhibited Enterococcus spp., some lactobacilli and various serotypes of Listeria monocytogenes. The antimicrobial metabolites were heat-stable and were active over a pH range of 2-10. The antimicrobial activities of the supernatants of both bacteria were inhibited by many proteases but not by catalase. The plate overlay assay allowed an approximation of size between 3.5 and 6 kDa for both antimicrobial substances. CONCLUSIONS: As the antagonistic factor(s) produced by L. lactis MM19 and P. acidilactici MM33 were sensitive to proteolytic enzymes, it could be hypothesized that bacteriocins were involved in the inhibitory activities. Inhibition spectrum and biochemical analysis showed that these bacteria produced two distinct bacteriocins. SIGNIFICANCE AND IMPACT OF THE STUDY: We are the first to isolate bacteriocin-producing strains of Pediococcus and Lactococcus from human intestine. These strains might be useful for control of enteric pathogens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号