首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
The self-sterile Senecio jacobaea (Asteraceae) presents its rayed heads in large, compound inflorescences (corymbs). I examined the role of head and corymb size in pollinator attraction, and whether the positive effect of intact rays (if any) depends on the size of the corymb. Using female fertility as a measure of pollination success, I assessed the performance of stems representing four experimentally produced character combinations: (1) few heads without rays, (2) many heads without rays, (3) few heads with rays, and (4) many heads with rays. The proportion of flowers setting fruit was higher for intact stems (treatments 2, 4) than for stems on which the majority of the heads had been removed (treatments 1, 3), suggesting selection for maximum inflorescence production. By contrast, experimental removal of all rays had a relatively weak negative effect on fruit set, with few-headed stems (treatment 1) experiencing a greater reduction than stems with many heads (treatment 2). These results suggest that clusters of heads produce a synergistic effect on pollinator attraction, allowing plants to maintain high visitation rates even if there are drastic reductions in the basic attraction units. Hence, the number of heads and the attractiveness of the individual heads interacted in their effect on pollination success. Fruit set per flower differed greatly between sites and was positively correlated with plant density.  相似文献   

2.
Abstract Protandry, a form of temporal separation of gender within hermaphroditic flowers, may reduce the magnitude of pollen lost to selfing (pollen discounting) and also serve to enhance pollen export and outcross siring success. Because pollen discounting is strongest when selfing occurs between flowers on the same plant, the advantage of protandry may be greatest in plants with large floral displays. We tested this hypothesis with enclosed, artificial populations of Chamerion angustifolium (Onagraceae) by experimentally manipulating protandry (producing uniformly adichogamous or mixed protandrous and adichogamous populations) and inflorescence size (two-, six-, or 10-flowered inflorescences) and measuring pollinator visitation, seed set, female outcrossing rate, and outcross siring success. Bees spent more time foraging on and visited more flowers of larger inflorescences than small. Female outcrossing rates did not vary among inflorescence size treatments. However, seed set per fruit decreased with increasing inflorescence size, likely as a result of increased abortion of selfed embryos, perhaps obscuring the magnitude of geitonogamous selfing. Protandrous plants had a marginally higher female outcrossing rate than adichogamous plants, but similar seed set. More importantly, protandrous plants had, on average, a twofold siring advantage relative to adichogamous plants. However, this siring advantage did not increase linearly with inflorescence size, suggesting that protandry acts to enhance siring success, but not exclusively by reducing between-flower interference.  相似文献   

3.
The inflorescences of Phyla incisa consist of flowers in two phases: younger, nectar-containing flowers that have yellow corolla throats and older, nectar-lacking flowers that have dark purple corolla throats. Observations of pollinator visitation patterns to both natural and manipulated inflorescences were made to determine the role of each flower phase in pollinator attraction. The effect of older-phase flowers on male and female reproductive success was determined by comparing stigmatic pollen loads and estimates of pollen removal from inflorescences having different numbers of these flowers. The pollinators of Phyla selected larger inflorescences more often than expected based upon the size distribution of inflorescences available to them. Both younger- and older-phase flowers contributed to the attraction of pollinators, but the latter were less effective in this function. The presence of older-phase flowers significantly increased the visitation rate to inflorescences and the amount of pollen removed but had little effect on pollen deposition on stigmas. The lack of correspondence between pollen deposition and pollinator-visitation rate was not due to stigma saturation, since stigma loads varied greatly. The data indicate that the deposition of pollen on stigmas in this species is a relatively stochastic process, whereas pollen removal from inflorescences occurs at a much more regular rate. Old-phase flower retention appears to contribute to reproductive success through increased pollen donation when pollinator activity is high and may also increase the probability of seed set when pollinators are rare.  相似文献   

4.
The fecundity of insect-pollinated plants may not be linearly related to the number of flowers produced, since floral display will influence pollinator foraging patterns. We may expect more visits to plants with more flowers, but do these large plants receive more or fewer visits per flower than small plants? Do all pollinator species respond in the same way? We would also expect foragers to move less between plants when the number of flowers per plant are large, which may reduce cross-pollination compared to plants with few flowers. We examine the relationships between numbers of inflorescence per plant, bumblebee foraging behaviour and seed set in comfrey, Symphytum officinale, a self-incompatible perennial herb. Bumblebee species differed in their response to the size of floral display. More individuals of Bombus pratorum and the nectar-robbing B.?terrestris were attracted to plants with larger floral displays, but B. pascuorum exhibited no increase in recruitment according to display size. Once attracted, all bee species visited more inflorescences per plant on plants with more inflorescences. Overall the visitation rate per inflorescence and seed set per flower was independent of the number of inflorescences per plant. Variation in seed set was not explained by the numbers of bumblebees attracted or by the number of inflorescences they visited for any bee species. However, the mean seed set per flower (1.18) was far below the maximum possible (4 per flower). We suggest that in this system seed set is not limited by pollination but by other factors, possibly nutritional resources.  相似文献   

5.
Both differences in local plant density and phenotypic traits may affect pollination and plant reproduction, but little is known about how density affects trait–fitness relationships via changes in pollinator activity. In this study we examined how plant density and traits interact to determine pollinator behaviour and female reproductive success in the self‐incompatible, perennial herb Phyteuma spicatum. Specifically, we hypothesised that limited pollination service in more isolated plants would lead to increased selection for traits that attract pollinators. We conducted pollinator observations and assessed trait–fitness relationships in a natural population, whose individuals were surrounded by a variable number of inflorescences. Both local plant density and plant phenotypic traits affected pollinator foraging behaviour. At low densities, pollinator visitation rates were low, but increased with increasing inflorescence size, while this relationship disappeared at high densities, where visitation rates were higher. Plant fitness, in terms of seed production per plant and per capsule, was related to both floral display size and flowering time. Seed production increased with increasing inflorescence size and was highest at peak flowering. However, trait–fitness relationships were not density‐dependent, and differences in seed production did not appear to be related to differences in pollination. The reasons for this remain unclear, and additional studies are needed to fully understand and explain the observed patterns.  相似文献   

6.
Ørjan Totland 《Oikos》2004,106(3):558-564
The preference for certain floral phenotypes by flower visiting animals may fuel the evolution of floral traits because variation in flower visitation rates may lead to fitness variation within a population. Here, I examine the importance of flower size for pollinator visitation rate, seed set, and seed mass in two alpine populations of the insect-pollinated herb Ranunculus acris L. during two seasons. There was no pollen limitation of seed set or mass. Pollinators discriminated strongly against flowers experimentally reduced in size. Despite this, there were no signs of any significant impact of flower size on female reproductive success. The results show that although pollinators discriminate strongly among floral phenotypes, this may not always result in female fitness differences within a population because seed set or mass is not limited by pollen availability alone. Probably abiotic environmental constraints prevent plants with high pollinator visitation from capitalizing on the high pollen deposition.  相似文献   

7.
Inflorescences of the terrestrial aroid Xanthosoma daguense in the Andes of Colombia are visited by Dinastinae and Nitidulidae beetles. Plants produce one inflorescence at a time, which is pollinated during the first night of opening. Dynastine beetles act as pollinators, whereas Nitidulids lay eggs in the inflorescence and the larvae damage the seeds. We explored the effects of floral offer and distance among inflorescences on the number of pollinator visits, fruit production, and predispersal seed predation. Number of Dynastine visits per inflorescence tended to increase with increasing distances among inflorescences, but fruit predation increased when inflorescences were more clumped. Both pollinator visitation rates and predispersal seed predation were low at high floral offer. Fruit set increased when inflorescences were visited by two or more Dynastines, but the proportion of fruits damaged by Nitidulid larvae was equivalent to the increase in fruit production due to more Dinastine visits. The net result was a similar number of undamaged fruits in all infructescences produced, independent of the number of Dinastine visits. Our results revealed that both pollinators and predators responded to the number of available inflorescences and their spatial distribution, but they had opposing effects on the infructescences. Thus, our study suggests that the interaction of two ecological processes, pollination and predispersal seed predation, may cancel each other's effects under natural conditions.  相似文献   

8.
Anthropogenic activities usually trigger changes in the population density of plants. Thus, land management practices can influence density‐dependent demographic parameters and species interactions. We investigated plant‐pollinator interactions and reproduction in Prosopis flexuosa, the largest tree species in the Central Monte desert of Argentina, an important economic and cultural resource for humans and a functionally prominent species. We hypothesized that reproductive output of P. flexuosa would be limited at low densities, and that exclusion of catle grazing would enhance population density and consequently interaction frequency with pollinators and reproductive success. The study was conducted in and around Ñacuñán Biosphere Reserve (Mendoza, Argentina), where cattle grazing has been excluded for over 35 years. Working in five pairs of protected and cattle grazed 1‐ha plots, we recorded density of adult trees, pollinator visitation frequency to inflorescences and seeds per inflorescence in focal trees. Adult tree density was higher in protected plots than in cattle grazed plots. Density of reproductive trees was positively correlated with seed production, suggesting positive density dependence for reproduction (Allee effect). Pollinator visitation to inflorescences and seed production was higher in protected plots compared with plots under cattle grazing. Suppression of anthropogenic degradation has resulted in higher adult tree density in protected plots, indirectly higher pollinator visitation to inflorescences and higher reproductive success of trees. Increased frequency of plant‐pollinator interactions and tree reproduction suggest success of management practices aimed at protecting P. flexuosa woodlands.  相似文献   

9.
Reproductive success of Calopogon tuberosus, which produces no nectar, was investigated in relation to inflorescence size and dispersion pattern. Mean inflorescence size was 2.56 (range 1–10). A bagging experiment showed that insects are required for pollen transfer and that fruits are produced from self-, geitonogamous, and cross-pollinations; fruit set was not 100%. Fruit set of nonmanipulated plants was limited by the number of pollinator visits. Reproductive success increased with increasing inflorescence size, although not above theoretical predictions. However, the probability of producing no fruit or contributing no pollinia decreased with increasing inflorescence size since sequential flowering increased the probability of a pollinator visit to the inflorescence over the blooming period. Large inflorescences did not provide a greater pollinator attraction than small ones, because inflorescences only presented a few open flowers at a time. In addition, flowers on plants growing in clumps of 2–8 plants had a higher probability of setting fruit, apparently because of increased pollinator attraction. Although there are obvious selective advantages for large inflorescences, the sequential flowering habit, and low resource availability may reduce the advantages of large inflorescence size at our study site.  相似文献   

10.
In many plants, including orchids, differential fruit set along the inflorescence has been attributed to pollinator behaviour. For instance, the pollinator, moving up the inflorescence, becomes satiated with the resources and leaves before visiting the upper flowers. Consequently, the pollinators do not visit flowers as frequently higher up the inflorescence. Alternatively, flower size may vary along the inflorescence, making pollination ineffective as flowers decrease in size. I tested for the presence of differential pollination along the inflorescence in a pollinator-limited tropical epiphyte, Lepanthes rupestris Stimson, and determined the likely cause of the observed pattern. As this species has inflorescences with sequential flowering, pollinator behaviour, moving up the inflorescence as in synchronous multiflowering inflorescences, can be discounted as an explanation for differential fruit set. Fruit set is shown to be more frequent at the base of the inflorescence, but male reproductive success through pollinarium removal is basically independent of flower position. Moreover, cross-pollination by hand at variable flower positions along the inflorescence results in equal fruit set, suggesting that resources are not limiting and cannot explain the cause of differential fruit production along the inflorescence in natural populations. Furthermore, flower size is shown to diminish along the inflorescence, suggesting that the pollinator(s) may be ineffective at depositing the pollinarium in the smaller higher flowers. Consequently, pollinator behaviour and its interaction with flower size, and not resource limitation, is likely to be the main cause of differential fruit set along the inflorescence in L. rupestris .  © 2006 The Linnean Society of London, Botanical Journal of the Linnean Society , 2006, 151 , 405–410.  相似文献   

11.
Plant-pollinator interactions are one of the most important and variable mutualisms in nature. Multiple pollinators often visit plants and can vary in visitation rates, pollen removal and deposition, and spatial and temporal distribution, altering plant reproduction and patterns of pollinator-mediated selection. Although some visitors may not be effective pollinators, pollinator effectiveness is rarely estimated directly as seed set resulting from a single visit by each taxon visiting generalist plants. For two years, effectiveness of visitors to wild radish, Raphanus raphanistrum, was quantified by counting seeds set and pollen grains removed as a result of a single visit. We calculated a pollinator's importance to plant reproduction as the product of visitation rate and single-visit seed set, and regressed pollinator body size on pollen-removal and on seed set effectiveness. Although pollinators differed in effectiveness and visitation rates, pollinator importance was primarily determined by visitation rates. In contrast to similar 2-yr studies, pollinator assemblage composition varied little, suggesting pollinator-mediated selection can be consistent across years for this generalist. Larger pollinators were more effective than smaller at effecting seed set, but body size was a poor predictor of pollen removal ability. Instead, pollen-removal effectiveness may be more influenced by foraging behavior than size.  相似文献   

12.
Plant density varies naturally, from isolated plants to clumped individuals, and this can influence pollinator foraging behaviour and plant reproductive success. In addition, the effect of conspecific density on reproduction may depend on the pollination system, and deceptive species differ from rewarding ones in this regard, a high density being often associated with low fruit set in deceptive plants. In our study, we aimed to determine how local conspecific density and floral display size (i.e. number of flowers per plant) affect fruit set in a deceptive orchid (Orchis militaris) through changes in pollinator visitation. We measured fruit set in a natural population and recorded pollinator abundance and foraging behaviour within plots of different O. militaris densities. Detailed data were recorded for the most abundant potential pollinators of O. militaris, i.e. solitary bees. Floral display size was negatively correlated to fruit set in medium‐density plots, but uncorrelated in low‐ and high‐density plots. Plot density had no effect on solitary bee abundance and visitation, which may be due to low pollinator abundance within the study site. The proportion of visited flowers per inflorescence was negatively influenced by floral display size, which is in line with previous studies. In addition, solitary bees spent decreasing time in successive flowers within an inflorescence, and the time spent per flower was negatively affected by ambient temperature. Our results suggest that pollinator behaviour during visitation is poorly linked to pollen deposition and reproductive success in O. militaris.  相似文献   

13.
Plant invasions disrupt native plant reproduction directly via competition for light and other resources and indirectly via competition for pollination. Furthermore, shading by an invasive plant may reduce pollinator visitation and therefore reproduction in native plants. Our study quantifies and identifies mechanisms of these direct and indirect effects of an invasive shrub on pollination and reproductive success of a native herb. We measured pollinator visitation rate, pollen deposition, and female reproductive success in potted arrays of native Geranium maculatum in deciduous forest plots invaded by the non-native shrub Lonicera maackii and in two removal treatments: removal of aboveground L. maackii biomass and removal of flowers. We compared fruit and seed production between open-pollinated and pollen-supplemented plants to test for pollen and light limitation of reproduction. Plots with L. maackii had significantly lower light, pollinator visitation rate, and conspecific pollen deposition to G. maculatum than biomass removal plots. Lonicera maackii flower removal did not increase pollinator visitation or pollen deposition compared to unmanipulated invaded plots, refuting the hypothesis of competition for pollinators. Thus, pollinator-mediated impacts of invasive plants are not limited to periods of co-flowering or pollinator sharing between potential competitors. Geranium maculatum plants produced significantly fewer seeds in plots containing L. maackii than in plant removal plots. Seed set was similar between pollen-supplemented and open-pollinated plants, but pollen-supplemented plants exhibited higher seed set in plant removal plots compared to invaded plots. Therefore, we conclude that the mechanism of impact of L. maackii on G. maculatum reproduction was increased understory shade.  相似文献   

14.
Sex allocation theory forecasts that larger plant size may modify the balance in fitness gain in both genders, leading to uneven optimal male and female allocation. This reasoning can be applied to flowers and inflorescences, because the increase in flower or inflorescence size can differentially benefit different gender functions, and thus favour preferential allocation to specific floral structures. We investigated how inflorescence size influenced sexual expression and female reproductive success in the monoecious Tussilago farfara, by measuring patterns of biomass, and N and P allocation. Inflorescences of T.?farfara showed broad variation in sex expression and, according to expectations, allocation to different sexual structures showed an allometric pattern. Unexpectedly, two studied populations had a contrasting pattern of sex allocation with an increase in inflorescence size. In a shaded site, larger inflorescences were female-biased and had disproportionately more allocation to attraction structures; while in an open site, larger inflorescences were male-biased. Female reproductive success was higher in larger, showier inflorescences. Surprisingly, male flowers positively influenced female reproductive success. These allometric patterns were not easily interpretable as a result of pollen limitation when na?vely assuming an unequivocal relationship between structure and function for the inflorescence structures. In this and other Asteraceae, where inflorescences are the pollination unit, both male and female flowers can play a role in pollinator attraction.  相似文献   

15.
Large floral displays favour pollinator attraction and the import and export of pollen. However, large floral displays also have negative effects, such as increased geitonogamy, pollen discounting and nectar/pollen robber attraction. The size of the floral display can be measured at different scales (e.g. the flower, inflorescence or entire plant) and variations in one of these scales may affect the behaviour of flower visitors in different ways. Moreover, the fragmentation of natural forests may affect flower visitation rates and flower visitor behaviour. In the present study, video recordings of the inflorescences of a tree species (Tabebuia aurea) from the tropical savannah of central Brazil were used to examine the effect of floral display size at the inflorescence and tree scales on the visitation rate of pollinators and nectar robbers to the inflorescence, the number of flowers approached per visit, the number of visits per flower of potential pollinators and nectar robbers, and the interaction of these variables with the degree of landscape disturbance. Nectar production was quantified with respect to flower age. Although large bees are responsible for most of the pollination, a great diversity of flower insects visit the inflorescences of T. aurea. Other bee and hummingbird species are highly active nectar robbers. Increases in inflorescence size increase the visitation rate of pollinators to inflorescences, whereas increases in the number of inflorescences on the tree decrease visitation rates to inflorescences and flowers. This effect has been strongly correlated with urban environments in which trees with the largest floral displays are observed. Pollinating bees (and nectar robbers) visit few flowers per inflorescence and concentrate visits to a fraction of available flowers, generating an overdispersed distribution of the number of visits per inflorescence and per flower. This behaviour reflects preferential visits to young flowers (including flower buds) with a greater nectar supply.  相似文献   

16.
毛翠雀花花序内的性分配和繁殖成功   总被引:1,自引:0,他引:1  
张新  安宇梦  史长莉  米兆荣  张婵 《广西植物》2021,41(8):1324-1332
两性花植物花序内不同位置的性分配和繁殖成功一般存在差异,通常认为资源竞争、结构效应和交配环境是形成这种差异的主要原因。为了研究雄性和雌性繁殖资源在花序内不同位置间的最优分配问题,该文以青藏高原高寒草甸典型高山植物毛翠雀花为材料,通过比较花序内不同位置的花部特征和种子性状,对其花序内的性分配模式和雌性繁殖成功进行研究,并通过观察传粉者运动特点以及人工去花和补授花粉实验,探讨花序内资源竞争和交配环境对繁殖资源分配的影响。结果表明:(1)不同位置间的雄蕊数、雄蕊鲜重/雌蕊鲜重、花粉数及花粉胚珠比从花序基部到上部显著增加,而雌蕊鲜重和胚珠数逐渐减少,表现出上部花偏雄的性分配;上部花的结籽率显著低于基部花和中部花,不同位置间的发育种子数/果实和发育种子重/果实随着花位置的升高而显著降低,说明基部花具有更佳的雌性繁殖成效。(2)去花处理后,剩余果实的单个种子重/果实显著增加,但发育种子数/果实没有显著增加;而给上部花人工补授异花花粉后,位置间结籽率的差异消失,说明传粉限制而非资源竞争导致了花序内位置依赖的种子生产模式。(3)毛翠雀花雄性先熟的开花特征,以及传粉者苏氏熊蜂从花序基部到上部的定向访花行为,导致了花序内交配环境的变化。综上结果表明,毛翠雀花花序内的性分配和繁殖成功差异是对交配环境适应的结果,对其在高山环境中实现雌雄适合度最优化具有重要意义。  相似文献   

17.
Among plants visited by many pollinator species, the relative contribution of each pollinator to plant reproduction is determined by variation in both pollinator and plant traits. Here we evaluate how pollinator movement among plants, apparent pollen carryover, ovule number, resource limitation of seed set, and pollen output affect variation in contribution of individual pollinator species to seed set in Lithophragma parviflorum (Saxifragaceae), a species visited by a broad spectrum of visitors, including beeflies, bees and a moth species. A previous study demonstrated differences among visitor species in their single-visit pollination efficacy but did not evaluate how differences in visitation patterns and pollen carryover affect pollinator efficacy. Incorporation of differential visitation patterns and pollen carryover effects —commonly cited as potentially important in evaluating pollinator guilds — had minor effects (0–0.6% change) on the estimates of relative contribution based on visit frequency and single-visit efficacy alone. Beeflies visited significantly more flowers per inflorescence than the bees and the moth. Seed set remained virtually constant during the first three visited flowers for beeflies and larger bees, indicating that apparent pollen carryover did not reduce per-visit efficacy of these taxa. In contrast, Greya moth visits showed a decrease in seed set by 55.4% and the smaller bees by 45.4% from first to second flower. The larger carryover effects in smaller bees and Greya were diminished in importance by their small overall contribution to seed set. Three variable plant traits may affect seed set: ovule number, resource limitation on seed maturation, and pollen output. Ovule number per flower declined strongly with later position within inflorescences. Numbers were much higher in first-year greenhouse-grown plants than in field populations, and differences increased during 3 years of study. Mean pollen count by position varied 7-fold among flowers; it paralleled ovule number variation, resulting in a relatively stable pollen:ovule ratio. Resource limitation of seed set increased strongly with later flowering, with seed set in hand-pollinated flowers ranging from 66% in early flowers to 0% in the last two flowers of all plants. Variation in ovule number and resource limitation of seed maturation jointly had a strong effect on the number of seeds per flower. Visitation to early flowers had the potential to cause more seed set than visitation to later flowers. Overall, the most important sources of variation to seed production contribution were differences among pollinators in abundance and absolute efficacy (ovules fertilized on a single visit) and potentially differential phenology among visitor species. These effects are likely to vary among populations and years.  相似文献   

18.
The roles of herbivory and pollination success in plant reproduction have frequently been examined, but interactions between these two factors have gained much less attention. In three field experiments, we examined whether artificial defoliation affects allocation to attractiveness to pollinators, pollen production, female reproductive success and subsequent growth in Platanthera bifolia L. (Rich.). We also recorded the effects of inflorescence size on these variables. We studied the effects of defoliation on reproductive success of individual flowers in three sections of inflorescence. Defoliation and inflorescence size did not have any negative effects on the proportion of opened flowers, spur length, nectar production or the weight of pollinia. However, we found that hand-pollination increased relative seed production and defoliation decreased seed set in most cases. Interactions between hand-pollination and defoliation were non-significant indicating that defoliation did not affect female reproductive success indirectly via decreased pollinator attraction. Plants with a large inflorescence produced relatively more seeds than plants with a small inflorescence only after hand-pollination. The negative effect of defoliation on relative capsule production was most clearly seen in the upper sections of the inflorescence. In addition to within season effects of leaf removal, defoliated P. bifolia plants may also have decreased lifetime fitness as a result of lower seed set within a season and because of a lower number of reproductive events due to decreased plant size (leaf area) following defoliation. Our study thus shows that defoliation by herbivores may crucially affect reproductive success of P. bifolia.  相似文献   

19.
? Despite the wide inflorescence diversity among angiosperms, the effects of inflorescence architecture (three-dimensional flower arrangement) on pollinator behaviour and mating success have not been sufficiently studied in natural plant populations. ? Here, we investigated how inflorescence architecture affected inter- and intra-plant pollinator movements and consequent mating success in a field population of Spiranthes sinensis var. amoena (S. sinensis). In this species, the flowers are helically arranged around the stem, and the degree of twisting varies greatly among individuals. The large variation in inflorescence architecture in S. sinensis results from variation in a single structural parameter, the helical angle (the angular distance between neighbour-flower directions). ? The numbers of visits per inflorescence and successive probes per visit by leaf-cutting bees decreased with helical angle, indicating that individual flowers of tightly twisted inflorescences received less visitations. As expected from pollinator behaviour, pollinia removal and fruit set of individual flowers decreased with helical angle. Meanwhile, geitonogamy decreased in tightly twisted inflorescences. ? Our novel findings demonstrate that natural variation in inflorescence architecture significantly affects pollinator behaviour and reproductive success, suggesting that inflorescence architecture can evolve under pollinator-mediated natural selection in plant populations. We also discuss how diverse inflorescence architectures may have been maintained in S. sinensis populations.  相似文献   

20.
The Orchidaceae characteristically contain a very large number of species that attract pollinators but do not offer them any form of reward in return for visitation. Such a strategy is highly unusual in the plant kingdom. We conducted experiments in order to manipulate the reward strategy of the rewardless bumble-bee-pollinated orchid Barlia robertiana by adding sucrose solution to inflorescences. We found that supplementation decreased the probability of a pollinator removing pollinia by approximately ten times. Despite pollinators visiting many more flowers per inflorescence on supplemented plants, eight times fewer pollinia were removed from supplemented inflorescences during each visit. Pollinia deposition patterns were not significantly affected by supplementation and no geitonogamous deposition was recorded. In populations where inflorescences were supplemented for 20 days, pollinia removal was reduced by over half for supplemented inflorescences, whereas fruit set was unmodified by supplementation. We conclude that rewardlessness would increase total seed paternity, but not change either total seed maternity or the probability that offspring were outcrossed in this species. To the authors' knowledge this is the first time that there has been an unequivocal experimental demonstration of an evolutionary advantage for rewardlessness in the Orchidaceae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号