首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Flavonoids are an important group of natural compounds that can interfere with the activity of some enzymes. In this study, effects of various flavonoids on aldehyde oxidase (AO) activity were evaluated in vitro. AO was partially purified from guinea pig liver. The effects of 12 flavonoids from three subclasses of flavon-3-ol, flavan-3-ol and flavanone on the oxidation of vanillin and phenanthridine as substrates of AO and xanthine as a substrate of xanthine oxidase (XO) were investigated spectrophotometrically. Among the 12 flavonoids, myricetin and quercetin were the most potent inhibitors of both AO and XO. In general, the oxidation of vanillin was more inhibited by flavonoids than that of phenanthridine. Almost all of the flavonoids inhibited AO activity more potently than XO, which was more evident with non-planner flavanols. A planner structure seems to be essential for a potent inhibitory effect and any substitution by sugar moieties reduces the inhibitory effects. This study could provide a new insight into AO natural inhibitors with potential to lead to some food-drug interactions.  相似文献   

2.
Mushroom tyrosinase (EC 1.14.18.1) is a copper containing oxidase that catalyzes both the hydroxylation of tyrosine into o-diphenols and the oxidation of o-diphenols into o-quinones, and then forms brown or black pigments. In the present study, the effects of some flavonoids on the oxidation of L-3,4-dihydroxyphenylalanine (L-DOPA) have been studied. The results show that flavonoids can lead to reversible inhibition of the enzyme. A kinetic analysis showed that the flavonols are competitive inhibitors, whereas luteolin is an uncompetitive inhibitor. The rank order of inhibition was: quercetin > galangin > morin; fisetin > 3,7,4"-trihydroxyflavone; luteolin > apigenin > chrysin.  相似文献   

3.
The in vitro and in vivo effects of three methylxanthines caffeine, theophylline and theobromine on the activity of the enzyme xanthine oxidase (EC 1.2.3.2.) was investigated with a view to understand their biochemical action. The studies revealed all the three methylxanthines to be inhibitors of the milk xanthine oxidase activity and the inhibition was found to be competitive in nature. The preincubation studies indicated a greater inhibition of the enzyme with the methylxanthines. Excessive amount of the substrate (2.5 × 10?4M) resulted in progressive inhibition of the enzyme activity. Low concentrations of methylxanthines exerted a definite inhibitory effect on the xanthine oxidase activity at lower substrate concentrations. At higher concentrations of the substrate, the inhibitory effect due to the same concentration of methylxanthines did not produce any added inhibition of the enzyme activity to that produced by the substrate alone. However, added inhibition by high concentrations of methylxanthines was detectable even when the enzyme activity was markedly inhibited by higher concentrations of the substrate. The in vivo administration of methylxanthines caused a significant inhibition of the xanthine oxidase activity in lungs, kidneys, heart and brain of rats. Consequently, the level of uric acid in the tissues of the drug treated animals was also found to be reduced.  相似文献   

4.
Oxime-metabolizing activity of liver aldehyde oxidase   总被引:1,自引:0,他引:1  
Liver aldehyde oxidase in the presence of its electron donor exhibited a significant oxime-metabolizing activity toward some different types of oximes under anaerobic conditions. Acetophenone oxime and salicylaldoxime were exclusively converted to the corresponding oxo compounds, whereas benzamidoxime was converted to the corresponding ketimine. With d-camphor oxime, the formation of both the corresponding oxo compound and ketimine was observed. Stoichiometric studies showed that the formation of oxo compounds is accompanied by nearly equimolar ammonia. We propose a mechanism of oxime biotransformation that liver aldehyde oxidase catalyzes the reduction of oximes to the corresponding ketimines which in turn undergo, depending on their chemical stability, nonenzymatic hydrolysis to the corresponding oxo compounds and ammonia.  相似文献   

5.
Sulfoxide reductase activity of liver aldehyde oxidase   总被引:1,自引:0,他引:1  
The present study provides evidence that guinea pig and rabbit liver aldehyde oxidase (EC 1.2.3.1) in the presence of its electron donors such as aldehydes or N-heterocyclic compounds functions as a sulfoxide reductase towards sulindac and other sulfoxide compounds. In addition, the study shows that a combination of liver aldehyde oxidase and milk xanthine oxidase also exhibits sulfoxide reductase activity in the presence of xanthine, and electron donor of xanthine oxidase. Based on these facts, we propose a new electron-transfer system consisting of these two flavoenzymes.  相似文献   

6.
Al-Salmy HS 《IUBMB life》2001,51(4):249-253
Aldehyde oxidase (AO) is a molybdo-flavo enzyme expressed predominantly in the liver, lung, and kidney. AO plays a major role in oxidation of aldehydes, as well as oxidation of various N-heterocyclic compounds of pharmacological and toxicological importance including antiviral (famciclovir), antimalarial (quinine), antitumour (methotrexate), and nicotine. The aim of this study was to investigate cytosolic aldehyde oxidase activity in human liver. Cytosolic AO was characterised using both the metabolism of N-[(2-dimethylamino)ethyl] acridine-4-carboxamide (DACA) and benzaldehyde to form DACA-9(10H)-acridone (quantified by HPLC with fluorescence detection) and benzoic acid (quantified spectrophotometrically). Thirteen livers (10 female, 3 male) were examined. The intrinsic clearance (Vmax/Km) of DACA varied 18-fold (0.03-0.50 m/min/mg). Vmax ranged from 0.20-3.10 nmol/ min/mg, and Km ranged from 3.5-14.2 microM. In the same specimens, the intrinsic clearance for benzaldehyde varied 5-fold (0.40-1.8 ml/min/mg). Vmax ranged from 3.60-12.6 nmol/min/mg and Km ranged from 3.6-14.6 microM. Furthermore, there were no differences in AO activity between male and female human livers, nor was there any relationship to age of donor (range 29-73 years), smoking status, or disease status. In conclusion, our results showed that there are variations in AO activity in human liver. These variations in aldehyde oxidase activity might reflect individual variations or they might be due to AO stability during processing and storage.  相似文献   

7.
In Drosophila melanogaster aldehyde oxidase occurs in at least two forms that can be separated electrophoretically. The mutant allele lao (low aldehyde oxidase activity) causes a deficiency of the major form of this enzyme. Immunoelectrophoretic analyses suggest that lao homozygotes produce aldehyde oxidase cross-reacting-material in nearly wild-type levels. Although aldehyde oxidase from the mutant stock is heat labile. properties such as Km and pH optima are not different from the normal enzyme.  相似文献   

8.
The inhibitory effects of flavonoids (galangin, kaempferol, quercetin, myricetin, morin, and taxifolin) on rabbit heart carbonyl reductase (RHCR) were investigated using 4-benzoylpyridine (4BP) as the substrate. The stereochemical characteristics of the flavonoids were found to be a factor determining their inhibitory potencies toward RHCR. Furthermore, the lipophilicity, and the scavenging or antioxidative effects of the flavonoids were likely to complicate the structure-activity relationship of their inhibitory effects on RHCR. Quercetin inhibited RHCR uncompetitively with respect to NADPH and competitively with respect to 4BP, suggesting that it competes with 4BP at the substrate-binding site of RHCR. RHCR efficiently reduced benzoquinones (1,4-benzoquinone and 2-methyl-1, 4-benzoquinone) and naphthoquinones (1,4-naphthoquinone and menadione). Galangin was a potent inhibitor of RHCR when menadione was used as the substrate, and prevented the formation of the superoxide anion radical in the presence of RHCR, NADPH, and menadione. Flavonoids may be useful compounds for suppressing the cardiotoxicity of quinones by inhibiting RHCR.  相似文献   

9.
The inhibitory effects of 15 flavonoids on animal fatty acid synthase (FAS, EC 2.3.1.85) were investigated, and 9 of them were found to inhibit FAS with IC(50) (the inhibitor concentration inhibiting 50% of the activity of FAS) values ranging from 2 to 112 microM. A structure-activity relationship study showed that the flavonoids containing two hydroxyl groups in the B ring and 5,7-hydroxyl groups in the A ring in combination with a C-2, 3 double bond were the most inhibitory. Morin (IC(50) = 2.33 +/- 0.09 microM) was further investigated kinetically to detail the inhibitory mechanism. The results showed that morin inhibited the overall reaction of FAS competitively with Ac-CoA, noncompetitively with Mal-CoA and in a mixed manner with NADPH. The study indicated that morin bound reversibly to the beta-ketoacyl synthase domain of FAS to inhibit the elongation of the saturated acyl groups in fatty acids synthesis.  相似文献   

10.
Inhibitory effects of flavonoids on plant alternative respiration were investigated using isolated mitochondria of Vigna radiata seedlings. The antioxidant flavonoids quercetin and myricetin effectively inhibited alternative respiration. We suggest that radical scavenging activity is involved in the inhibitory mechanism.  相似文献   

11.
The inhibitory effects of diesel exhaust components and flavonoids on 20alpha-hydroxysteroid dehydrogenase (20alpha-HSD) activity were examined in cytosolic fractions from the liver, kidney and lung of male mice. 9,10-Phenanthrenequinone (9,10-PQ) and 1,2-naphthoquinone (1,2-NQ), which are contained in diesel exhaust particles (DEPs), potently inhibited 20alpha-HSD activity in liver cytosol. 9,10-PQ also inhibited the enzyme activity in lung cytosol. However, 20alpha-HSD activity in kidney cytosol was little inhibited by 9,10-PQ or 1,2-NQ. Flavonoids such as quercetin, fisetin and kaempferol exhibited high inhibitory potencies for 20alpha-HSD activity in liver cytosol, whereas these flavonoids were poor inhibitors for the enzyme activity in kidney cytosol. It is likely that several diesel exhaust components and flavonoids augment the signaling of progesterone in the liver cells, by potently inhibiting 20alpha-HSD activity in mouse liver cytosol. The possibility that there are distinct enzymes catalyzing 20alpha-HSD activity in the non-reproductive tissues of male mice is also discussed.  相似文献   

12.
13.
Aldehyde oxidase (AO) is a cytosolic enzyme expressed predominantly in the liver. AO is involved in the metabolism of many xenobiotics of pharmacological and toxicological importance including antivirals (famciclovir), antimalarials (quinine) and anticancer drugs (5-fluoro-2-pyrimidine and methotrexate). The aim of this study was to characterize AO activity in different strains of mice using two different substrates. AO activity in the cytosolic fraction was characterized using the metabolism of N-[2-(dimethylamino)ethyl]acridine-4-carboxamide (DACA), a novel antitumor drug, to form DACA-9(10H)-acridone (quantified by HPLC with fluorescence detection) and benzaldehyde to form benzoic acid (quantified spectrophotometrically). Characterization of mouse AO activity with DACA showed 15-fold variation in K(m), 10-fold variation in apparent V(max) and twofold differences in intrinsic clearance. Nude mice and C129/C57 had the highest intrinsic clearance (0.66 and 0.l53 ml/min per mg protein, respectively). Nude mice cleared DACA faster than nude tumor bearing mice by a factor of 2. Male Swiss CD had higher intrinsic clearance than female Swiss CD (0.36 and 0.28 ml/min per mg protein). A similar pattern of enzyme activity was observed with benzaldehyde; however, the extent of variation was less than that found with DACA. In conclusion, our results show that there are both strain and gender differences in AO activity. These differences are better detected by DACA. Furthermore, these results suggest caution when extrapolating the data obtained from mouse AO studies to humans.  相似文献   

14.
15.
This study investigated for the first time the potential effects of cis- and trans-resveratrol (c-RESV and t-RESV) on noradrenaline (NA) and 5-hydroxytryptamine (5-HT) uptake by synaptosomes from rat brain, on 5-HT uptake by human platelets, and on monoamine oxidase (MAO) isoform activity. Both c-RESV and t-RESV (5-200 microM) concentration-dependently inhibited the uptake of [3H]NA and [3H]5-HT by synaptosomes from rat brain and the uptake of [3H]5-HT by human platelets. In both experimental models, t-RESV was slightly more efficient than c-RESV. Furthermore, in synaptosomes from rat brain, the RESV isomers were less selective against [3H]5-HT uptake than the reference drug fluoxetine (0.1-30 microM). On the other hand, both c-RESV and t-RESV (5-200 microM) concentration-dependently inhibited the enzymatic activity of commercial (human recombinant) MAO isoform (MAO-A and MAO-B) activity, c-RESV being slightly less effective than t-RESV. In addition, both RESV isomers were slight but significantly more selective against MAO-A than against MAO-B. Since the principal groups of drugs used in the treatment of depressive disorders are NA/5-HT uptake or MAO inhibitors, under the assumption that the RESV isomers exhibit a similar behaviour in humans in vivo, our results suggest that these natural polyphenols may be of value as structural templates for the design and development of new antidepressant drugs with two important biochemical activities combined in the same chemical structure: NA/5-HT uptake and MAO inhibitory activity.  相似文献   

16.
17.
18.
19.
Aldehyde oxidase (EC 1.2.3.1) in monkey (Macaca fascicularis) liver was characterized. Liver cytosol exhibited extremely high benzaldehyde and phthalazine oxidase activities based on aldehyde oxidase, compared with those of rabbits, rats, mice and guinea pigs. Monkey liver aldehyde oxidase showed broad substrate specificity distinct from that of the enzyme from other mammals. Purified aldehyde oxidase from monkey liver cytosol showed two major bands and two minor bands in sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). These bands were also observed in Western blotting analysis using anti-rat aldehyde oxidase. The molecular mass of the enzyme was estimated to be 130-151 kDa by SDS-PAGE, and to be about 285 kDa by HPLC gel filtration. The results suggest that isoforms of aldehyde oxidase exist in monkey livers.  相似文献   

20.
The distribution of aldehyde oxidase activity was evaluated in unfixed cryostat sections from tissues of male Wistar rats using a tissue protectant, polyvinyl alcohol, with Tetranitro BT as a final electron acceptor. The distribution of aldehyde oxidase activity was compared with that of xanthine oxidoreductase. The enzyme histochemical method demonstrated aldehyde oxidase activity in the epithelium of the tongue, renal tubules and bronchioles, as well as in the cytoplasm of liver cells. Such activity was not detected in oesophagus, stomach, spleen, adrenal glands, small or large intestine or skeletal and heart muscle fibres. In contrast, xanthine oxidoreductase activity was demonstrated in the tongue, renal tubules, bronchioles, oesophageal, gastric, small and large intestinal epithelial cells, adrenal glands, spleen and liver cytoplasm but not in skeletal and heart muscle fibres. The significance of the ubiquitous distribution of aldehyde oxidase activity, especially in surface epithelial cells from various tissues, except for the gastrointestinal tract, is unclear. However, aldehyde oxidase may possess some physiological activity other than in the metabolism of N-heterocyclics or of certain drugs. © 1998 Chapman & Hall  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号