首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 572 毫秒
1.
Tryptophanase (tryptophan indole-lyase, Tnase, EC 4.1.99.1), a bacterial enzyme with no counterpart in eukaryotic cells, produces from L-tryptophan pyruvate, ammonia and indole. It was recently suggested that indole signaling plays an important role in the stable maintenance of multicopy plasmids. In addition, Tnase was shown to be capable of binding Rcd, a short RNA molecule involved in resolution of plasmid multimers. Binding of Rcd increases the affinity of Tnase for tryptophan, and it was proposed that indole is involved in bacteria multiplication and biofilm formation. Biofilm-associated bacteria may cause serious infections, and biofilm contamination of equipment and food, may result in expensive consequences. Thus, optimal and specific factors that interact with Tnase can be used as a tool to study the role of this multifunctional enzyme as well as antibacterial agents that may affect biofilm formation. Most known quasi-substrates inhibit Tnase at the mM range. In the present work, the mode of Tnase inhibition by the following compounds and the corresponding Ki values were: S-phenylbenzoquinone-L-tryptophan, uncompetitively, 101 μM; α-amino-2-(9,10-anthraquinone)-propanoic acid, noncompetitively, 174 μM; L-tryptophane-ethylester, competitively, 52 μM; N-acetyl-L-tryptophan, noncompetitively, 48 μM. S-phenylbenzoquinone-L-tryptophan and α-amino-2-(9,10-anthraquinone)-propanoic acid were newly synthesized.  相似文献   

2.
3.
Biofilm is bacterial population adherent to each other and to surfaces or interfaces, often enclosed by a matrix. Various biomolecules contribute to the establishment of biofilms, yet the process of building a biofilm is still under active investigation. Indole is known as a metabolite of amino acid tryptophan, which, however, has recently been proved to participate in various aspects of bacterial life including virulence induction, cell cycle regulation, acid resistance, and especially, signaling biofilm formation. Moreover, indole is also proposed to be a novel signal involved in quorum sensing, a bacterial cooperation behavior sometimes concerning the biofilm formation. Here the signaling role and molecular mechanism of indole on bacterial biofilm formation are reviewed, as well discussed is its relation to bacterial living adaptivity.  相似文献   

4.
5.
群体感应抑制剂对海洋生态功能菌生物膜形成的影响   总被引:3,自引:0,他引:3  
[目的]研究天然群体感应抑制剂(Quorum sensing inhibitors,QSI)分子对海洋生态功能菌生物膜形成的影响.[方法]以对污损生物幼虫附着具有诱导作用的海洋细菌为目标菌,通过在其生物膜的形成过程中添加天然群体感应抑制剂,研究其对目标菌成膜细菌数和浮游细菌数、生物膜形态以及生物膜表面胞外多糖含量的影响.[结果]呋喃酮和吡啶在50 mg/L时,对8株目标菌的成膜有显著的抑制作用,抑制率在80%左右,吲哚、青霉烷酸和香豆素在较高浓度800 mg/L才有比较好的抑制活性.生长抑制实验结果显示,同等浓度下,QSI分子对目标菌成膜的抑制活性明显高于其对浮游细菌生长的抑制活性.结果表明,QSI分子主要通过干扰目标菌群体感应系统以抑制生物膜的形成.[结论]研究证实QSI分子在海洋菌生物膜形成过程中具有一定的调控作用.通过添加QSI可能能够间接抑制由生物膜诱导的污损生物附着,从而以新的角度研制新型抗污损物质.  相似文献   

6.
7.
Differential centrifugation, precipitation with ammonium sulphate and chromatography on DEAE-cellulose led to a twenty-fold purification of glucosyltransferase from Streptomyces aureofaciens B 96. The Michaelis constants for glucosyluridyl diphosphate (UDP-glucose) was 10.8 microM for 1,2-dihydroxy-9,10-anthraquinone (alizarin) 110 microM; the maximum rate of glucosylation reaction was 5.32 mumol per s per mg protein. The pH optimum was at 7.1; the flat temperature optimum was at 30 degrees C. Using some hydroxy derivatives of 9,10-anthraquinone it was found that the production of glucosides from aglycones with alpha-hydroxyl groups was about 1/8 of the values obtained with beta-hydroxyl substrates. In both types of aglycones the presence of another hydroxyl group led to a higher glucoside production.  相似文献   

8.
Trifluoroalanine is a mechanism-based inactivator of Escherichia coli tryptophan indole-lyase (tryptophanase) and E. coli tryptophan synthase (R. B. Silverman and R. H. Abeles, 1976, Biochemistry 15, 4718-4723). We have found that indole is able to prevent inactivation of tryptophan indole-lyase by trifluoroalanine. The protection of tryptophan indole-lyase by indole exhibits saturation kinetics, with a KD of 0.03 mM, which is comparable to the KI for inhibition of pyruvate ion formation (0.01 mM) and the Km for L-tryptophan synthesis. Fluoride electrode measurements indicate the formation of 28 mol of fluoride ion per mole of enzyme during inactivation of tryptophan indole-lyase, and 121 mol of fluoride ion are formed per mole of enzyme in the presence of 2 mM indole during the same incubation period. 19F NMR spectra of reaction mixtures of tryptophan indole-lyase and trifluoroalanine showed evidence only for fluoride ion formation, in either the absence or the presence of indole, and difluoropyruvic acid was not detected. The partition ratio, kcat/kinact, is estimated to be 9. Tryptophan indole-lyase in the presence of trifluoroalanine exhibits visible absorption peaks at 446 and 478 nm, which decay at the same rate as inactivation. However, in the presence of 1 mM indole and trifluoralanine, tryptophan indole-lyase exhibits a peak only at 420 nm, and the spectra show a gradual increase at 300-310 nm with incubation. In contrast, tryptophan synthase is not protected by indole from inactivation by trifluoroalanine, and the absorption peak at 408 nm for the tryptophan synthase-trifluoroalanine complex is unaffected by indole. These results demonstrate that inactivation of tryptophan indole-lyase occurs via a catalytically competent species, probably the beta,beta-difluoro-alpha-aminoacrylate intermediate, which can be partitioned from inactivation to products by a reactive aromatic nucleophile, indole.  相似文献   

9.
10.
11.
We demonstrated previously that genetic inactivation of tryptophanase is responsible for a dramatic decrease in biofilm formation in the laboratory strain Escherichia coli S17-1. In the present study, we tested whether the biochemical inhibition of tryptophanase, with the competitive inhibitor oxindolyl-L-alanine, could affect polystyrene colonization by E. coli and other indole-producing bacteria. Oxindolyl-L-alanine inhibits, in a dose-dependent manner, indole production and biofilm formation by strain S17-1 grown in Luria-Bertani (LB) medium. Supplementation with indole at physiologically relevant concentrations restores biofilm formation by strain S17-1 in the presence of oxindolyl-L-alanine and by mutant strain E. coli 3714 (S17-1 tnaA::Tn5) in LB medium. Oxindolyl-L-alanine also inhibits the adherence of S17-1 cells to polystyrene for a 3-h incubation time, but mutant strain 3714 cells are unaffected. At 0.5 mg/mL, oxindolyl-L-alanine exhibits inhibitory activity against biofilm formation in LB medium and in synthetic urine for several clinical isolates of E. coli, Klebsiella oxytoca, Citrobacter koseri, Providencia stuartii, and Morganella morganii but has no affect on indole-negative Klebsiella pneumoniae strains. In conclusion, these data suggest that indole, produced by the action of tryptophanase, is involved in polystyrene colonization by several indole-producing bacterial species. Indole may act as a signalling molecule to regulate the expression of adhesion and biofilm-promoting factors.  相似文献   

12.
吲哚作为细菌细胞间信号分子的研究进展   总被引:1,自引:0,他引:1  
吲哚广泛存在于自然界,目前已知超过145种革兰氏阳性和阴性细菌能产生吲哚,其中包括许多病原菌。随着细菌密度感应系统及其信号分子作用机制研究的深入,吲哚已被证实是肠道病原菌如致病性大肠杆菌、迟缓爱德华氏菌、霍乱弧菌等一类细胞间重要的信号分子,并参与细菌的多种生理活动,如毒力、抗药性、生物膜形成、运动性、质粒稳定性、抗酸性、孢子产生等。更为重要的是,吲哚及其衍生物还参与协调菌群竞争,有益于人体肠道菌群平衡和免疫系统。本文在吲哚作为细胞间信号分子参与迟缓爱德华氏菌的毒力、抗药性、生物膜形成和运动性的研究基础上,对近年来吲哚作为细菌细胞间信号分子的研究进展进行了综述。随着吲哚作用机制的进一步揭示,将有助于新型抗病原菌感染策略的研发和生物工程方面的应用。  相似文献   

13.
Summary It would thus appear that in Saccharomyces cerevisiae there are two forms of histidine-mediated control on the tryptophan pathway. In some strains histidine increases anthranilate synthetase and indole glycerol phosphate synthetase activities, while tryptophan synthetase decreases. In other strains histidine affects coordinately all enzymatic activities involved in tryptophan biosynthesis. The two groups of strains also differ in the formation, during the growth of the enzymatic activities involved in tryptophan biosynthesis. This difference in the relative rates at which the two enzymes are formed may explain the accumulation of intermediates in the cultural media of some strains. The derepression of anthranilate synthetase and indole glycerol phosphate synthetase activities by histidine is particularly manifest in the auxotrophic his3 strains that show these activities very depressed in histidine starvation; large amounts of this amino acid stimulate them to a considerably greater extent than in prototrophic strains.Abbreviations IGP imidazole glycerol phosphate - InGP indole glycerol phosphate - ASase anthranilate synthetase - InGPase indole-3-glycerol phosphate synthetase - TSase tryptophan synthetase - Tris tris (hydroxymethyl)-aminomethane This investigation was supported by a research grant of C.N.R. (Consiglio Nazionale delle Ricerche, Roma).  相似文献   

14.
Indole has many, diverse roles in bacterial signaling. It regulates the transition from exponential to stationary phase, it is involved in the control of plasmid stability, and it influences biofilm formation, virulence, and stress responses (including antibiotic resistance). Its role is not restricted to bacteria, and recently it has been shown to include mutually beneficial signaling between enteric bacteria and their mammalian hosts. In many respects indole behaves like the signaling component of a quorum-sensing system. Indole synthesized within the producer bacterium is exported into the surroundings where its accumulation is detected by sensitive cells. A view often repeated in the literature is that in Escherichia coli the AcrEF-TolC and Mtr transporter proteins are involved in the export and import, respectively, of indole. However, the evidence for their involvement is indirect, and it has been known for a long time that indole can pass directly through a lipid bilayer. We have combined in vivo and in vitro approaches to examine the relative importance of protein-mediated transport and direct passage across the E. coli membrane. We conclude that the movement of indole across the E. coli membrane under normal physiological conditions is independent of AcrEF-TolC and Mtr. Furthermore, direct observation of individual liposomes shows that indole can rapidly cross an E. coli lipid membrane without the aid of any proteinaceous transporter. These observations not only enhance our understanding of indole signaling in bacteria but also provide a simple explanation for the ability of indole to signal between biological kingdoms.  相似文献   

15.
The following enzyme activities of the tryptophan-nicotinic acid pathway were studied in male New Zealand rabbits: liver tryptophan 2,3-dioxygenase, intestine indole 2,3-dioxygenase, liver and kidney kynurenine 3-monooxygenase, kynureninase, kynurenine-oxoglutarate transaminase, 3-hydroxyanthranilate 3,4-dioxygenase, and aminocarboxymuconate-semialdehyde decarboxylase. Intestine superoxide dismutase and serum tryptophan were also determined. Liver tryptophan 2,3-dioxygenase exists only as holoenzyme, but intestine indole 2,3-dioxygenase is very active and can be considered the key enzyme which determines how much tryptophan enters the kynurenine pathway also under physiological conditions. The elevated activity of indole 2,3-dioxygenase in the rabbit intestine could be related to the low activity of superoxide dismutase found in intestine. Kynurenine 3-monooxygenase appeared more active than kynurenine-oxoglutarate transaminase and kynureninase, suggesting that perhaps a major portion of kynurenine available from tryptophan may be metabolized to give 3-hydroxyanthranilic acid, the precursor of nicotinic acid. In fact, 3-hydroxyanthranilate 3,4-dioxygenase is much more active than the other previous enzymes of the kynurenine pathway. In the rabbit liver 3-hydroxyanthranilate 3,4-dioxygenase and aminocarboxymuconate-semialdehyde decarboxylase show similar activities, but in the kidney 3-hydroxyanthranilate 3,4-dioxygenase activity is almost double. These data suggest that in rabbit tryptophan is mainly metabolized along the kynurenine pathway. Therefore, the rabbit can also be a suitable model for studying tryptophan metabolism in pathological conditions.  相似文献   

16.
Indole constitutes a major component of the side chain of the amino acid tryptophan. Application of indole slows activation of voltage-dependent potassium channels and reduces steady-state conductance in a voltage- and concentration-dependent manner. The steep concentration dependence indicates that multiple indole molecules may interact with the channel. Indole does not noticeably change the unitary conductance or the mean open duration, however, it accelerates off-gating currents without altering on-gating currents. These properties of the modification of channel gating induced by indole are consistent with a model in which indole binds independently to every subunit of the channel complex to prevent the final concerted transition to the open state. We suggest that exogenously applied indole and side-chains of the tryptophan residues of the channel protein involved in activation may compete for the same effector position and that indole might be useful as a probe to study functional roles of tryptophan residues.  相似文献   

17.
Azospirillum brasilense, a nitrogen-fixing bacterium found in the rhizosphere of various grass species, was investigated to establish the effect on plant growth of growth substances produced by the bacteria. Thin-layer chromatography, high-pressure liquid chromatography, and bioassay were used to separate and identify plant growth substances produced by the bacteria in liquid culture. Indole acetic acid and indole lactic acid were produced by A. brasilense from tryptophan. Indole acetic acid production increased with increasing tryptophan concentration from 1 to 100 μg/ml. Indole acetic acid concentration also increased with the age of the culture until bacteria reached the stationary phase. Shaking favored the production of indole acetic acid, especially in a medium containing nitrogen. A small but biologically significant amount of gibberellin was detected in the culture medium. Also at least three cytokinin-like substances, equivalent to about 0.001 μg of kinetin per ml, were present. The morphology of pearl millet roots changed when plants in solution culture were inoculated. The number of lateral roots was increased, and all lateral roots were densely covered with root hairs. Experiments with pure plant hormones showed that gibberellin causes increased production of lateral roots. Cytokinin stimulated root hair formation, but reduced lateral root production and elongation of the main root. Combinations of indole acetic acid, gibberellin, and kinetin produced changes in root morphology of pearl millet similar to those produced by inoculation with A. brasilense.  相似文献   

18.
DNA microarrays revealed that expression of ycfR, which encodes a putative outer membrane protein, is significantly induced in Escherichia coli biofilms and is also induced by several stress conditions. We show that deletion of ycfR increased biofilm formation fivefold in the presence of glucose; the glucose effect was corroborated by showing binding of the cyclic AMP receptor protein to the ycfR promoter. It appears that YcfR is a multiple stress resistance protein, since deleting ycfR also rendered the cell more sensitive to acid, heat treatment, hydrogen peroxide, and cadmium. Increased biofilm formation through YcfR due to stress appears to be the result of decreasing indole synthesis, since a mutation in the tnaA gene encoding tryptophanase prevented enhanced biofilm formation upon stress and adding indole prevented enhanced biofilm formation upon stress. Deleting ycfR also affected outer membrane proteins and converted the cell from hydrophilic to hydrophobic, as well as increased cell aggregation fourfold. YcfR seems to be involved in the regulation of E. coli K-12 biofilm formation by decreasing cell aggregation and cell surface adhesion, by influencing the concentration of signal molecules, and by interfering with stress responses. Based on our findings, we propose that this locus be named bhsA, for influencing biofilm through hydrophobicity and stress response.  相似文献   

19.
AIM: To screen rumen bacterial cultures and fresh ruminal isolates for indole and skatole production. METHODS AND RESULTS: Culture collection strains and fresh bacterial isolates from rumen contents of sheep and dairy cows were screened for the production of indolic compounds. Clostridium aminophilum FT, Peptostreptococcus ssp. S1, Fusobacterium necrophorum D4 produced indole and Clostridium sticklandii SR produced indoleacetic acid. Fresh isolates from sheep (TrE9262 and TrE7262) and dairy cows (152R-1a, 152R-1b, 152R-3 and 152R-4) produced indole, indolepropionic acid, tryptophol and skatole from the fermentation of tryptophan and indoleacetic acid. Glucose altered the indolic compounds produced in some, but not all, isolates. TrE7262 and 152R-4 were identified as Clostridium sporogenes and 152R-1b as a new Cl. aminophilum strain. Isolates TrE9262, 152R-1a and 152R-3 were not closely related to any described species but belong to Megasphaera, Prevotella and Actinomyces genera, respectively. CONCLUSIONS: Rumen bacteria that produced a range of indolic compounds were identified. Some isolates are distinct from the previously described bacteria and may represent novel species. SIGNIFICANCE AND IMPACT OF THE STUDY: These observations will contribute to understanding skatole and indole formation in the rumen and will lead to methods that control the formation of indolic compounds in pasture-grazed ruminants.  相似文献   

20.
In previous paper, we have reported the synthesis and the cytotoxic effect of 1,3-dihydroxy-9,10-anthraquinone derivatives. For further design of more potent compounds, a new series of 1-hydroxy-3-(3-alkylaminopropoxy)-9,10-anthraquinones and 3-(3-alkylaminopropoxy)-9,10-anthraquinones have been synthesized. The cytotoxicity of synthetic compounds were evaluated against human Hep G2, Hep 3B and HT-29 cells. Almost all compounds indicated significant inhibitory activity against Hep G2, Hep 3B and HT-29 cell lines in vitro. Compound 5 exhibited selective cytotoxicity against Hep G2 in a concentration-dependent manner with ED50 value of 1.23 +/- 0.05 microM. Structure-activity analysis revealed that most of the 1-hydroxy-3-(3-alkylamino-2-hydroxypropoxy)-9,10-anthraquinone showed stronger cytotoxic effects than those of 1-hydroxy-3- or 3-(3-alkylaminopropoxy)-9,10-anthraquinones against Hep 3B cell line in vitro. A sub-G1 cell stage and DNA fragmentation in MCF-7 cells were significantly observed after 72 h incubation with selective compound 16. The results show that 16 causes cell death by apoptosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号