首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The leaves of Saussurea triangulata (Compositae) have been eaten with rice as a wrapping vegetable for preventing neuro-aging. However, the components responsible for the neuroprotective effects of S. triangulata still remain unidentified. In the process of investigating the neuroprotective activity of S. triangulata, we found that a methanol extract of S. triangulata exhibited significant protection against glutamate-induced toxicity in primary cultured rat cortical cells. Three quinic acid derivatives were isolated from the n-BuOH fraction of S. triangulata. Among these three quinic acid derivatives, methyl 5-caffeoylquinic acid (3) exhibited significant neuroprotective activities against glutamate-induced toxicity exhibiting cell viability of about 50%, at concentrations ranging from 0.1 μM to 10 μM. Therefore, the neuroprotective effect of S. triangulata might be due to the inhibition of glutamate-induced toxicity by the quinic acid derivatives from S. triangulata.  相似文献   

2.
Derivatives of chlorogenic acid or its analogues were synthesized by coupling protected chlorogenic acid or its analogues with p-octyloxyaniline and selected amino acids. Most of the compounds exhibited significant potency against Cryptococcus neoformans and Candida species with low toxicity to brine shrimps. The 4,5-dihydroxyl groups in the quinic acid moiety were necessary for the activity and introduction of a free amino group increased the inhibitory activity against Aspergillus fumigatus.  相似文献   

3.
Epidemiological data from retrospective and case-control studies have indicated that estrogen replacement therapy can decrease the risk of developing Alzheimer's disease. In addition, estrogen replacement therapy has been found to promote neuronal survival both in vivo and in vitro. We have shown that conjugated equine estrogens (CEE), containing 238 different molecules composed of estrogens, progestins, and androgens, exerted neurotrophic and neuroprotective effects in cultured neurons. In the current study, we sought to determine whether a steroidal formulation of nine synthetic conjugated estrogens (SCE) chemically derived from soybean and yam extracts is as effective as the complex multisteroidal formulation of CEE. Analyses of the neuroprotective efficacy indicate that SCE exhibited significant neuroprotection against beta amyloid, hydrogen peroxide, and glutamate-induced toxicity in cultured hippocampal neurons. Indices of neuroprotection included an increase in neuronal survival, a decrease in neurotoxin-induced lactate dehydrogenase release, and a reduction in neurotoxin-induced apoptotic cell death. Furthermore, SCE was found to attenuate excitotoxic glutamate-induced [Ca2+]i rise. Quantitative analyses indicate that the neuroprotective efficacy of SCE was comparable to that of the multisteroidal CEE formulation. Data derived from these investigations predict that SCE could exert neuroprotective effects comparable to CEE in vivo and therefore could reduce the risk of Alzheimer's disease in postmenopausal women.  相似文献   

4.
The neuroprotective efficacy of antioxidant molecules against iodoacetate (IAA) neurotoxicity in rat cerebellar granule cell (CGC) cultures was investigated. Transient exposure to IAA caused a concentration-dependent decrease in cell viability (ED50 = 9.8 microM). Dizocilpine maleate (MK-801), and 1,2,3,4-tetrahydro-6-nitro-2,3-dioxobenzo[f]quinoxaline-7-sulfonamide (NBQX), failed to prevent IAA toxicity. Certain antioxidant molecules were shown to be neuroprotective against IAA when combined with MK-801 but were ineffective when administered alone. (S)-(-)-Trolox, butylated hydroxytoluene (BHT), and U-83836E exhibited EC50 values of 78, 5.9, and 0.25 microM, respectively, in the presence of 10 microM MK-801. IAA also induced an increase in intracellular oxidative stress, which was quenched by the antioxidants (in the presence of MK-801) in cultures loaded with the oxidant sensitive dye 2'7'-dichlorodihydrofluorescein diacetate (DCFH-DA).  相似文献   

5.
The antioxidant properties of galloyl quinic derivatives isolated from Pistacia lentiscus L. leaves have been investigated by means of Electron Paramagnetic Resonance spectroscopy (EPR) and UV-Vis spectrophotometry. Antioxidant properties have been also estimated using the biologically relevant LDL test. The scavenger activities of gallic acid, 5- O -galloyl, 3,5- O -digalloyl, 3,4,5- O -trigalloyl quinic acid derivatives, have been estimated against 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical, superoxide ( O 2 - ) radical, and hydroxyl (OH) radical. On the whole, the scavenger activity raised as the number of galloyl groups on the quinic acid skeleton increased. The half-inhibition concentrations (IC 50 ) of di- and tri-galloyl derivatives did not exceed 30 μM for all the tested free radicals. All the tested metabolites strongly reduced the oxidation of low-density lipoproteins (LDL), following a trend similar to that observed for the scavenger ability against OH radical.  相似文献   

6.
22R-Hydroxycholesterol is an intermediate in the steroid biosynthesis pathway shown to exhibit a neuroprotective property against beta-amyloid (1-42) (Abeta) toxicity in rat PCl2 and human NT2N neuronal cells by binding and inactivating Abeta. In search of potent 22R-hydroxycholesterol derivatives, we assessed the ability of a series of naturally occurring entities containing the 22R-hydroxycholesterol structure to protect PC12 cells against Abeta-induced neurotoxicity, determined by measuring changes in membrane potential, mitochondrial diaphorase activity, ATP levels and trypan blue uptake. 22R-Hydroxycholesterol derivatives sharing a common spirost-5-en-3-ol or a furost-5-en-3-ol structure were tested. Although some of these compounds were neuroprotective against 0.1 microM Abeta, only three protected against the 1-10 microM Abeta-induced toxicity and, in contrast to 22R-hydroxycholesterol, all were devoid of steroidogenic activity. These entities shared a common structural feature, a long chain ester in position 3 and common stereochemistry. The neuroprotective property of these compounds was coupled to their ability to displace radiolabeled 22R-hydroxycholesterol from Abeta, suggesting that the Abeta-22R-hydroxycholesterol physicochemical interaction contributes to their beneficial effect. In addition, a 22R-hydroxycholesterol derivative inhibited the formation of neurotoxic amyloid-derived diffusible ligands. Computational docking simulations of 22R-hydroxycholesterol and its derivatives on Abeta identified two binding sites. Chemical entities, as 22R-hydroxycholesterol, seem to bind preferentially only to one site. In contrast, the presence of the ester chain seems to confer the ability to bind to both sites on Abeta, leading to neuroprotection against high concentrations of Abeta. In conclusion, these results suggest that spirost-5-en-3-ol naturally occurring derivatives of 22R-hydroxycholesterol might offer a new approach for Alzheimer's disease therapy.  相似文献   

7.
Kataria H  Wadhwa R  Kaul SC  Kaur G 《PloS one》2012,7(5):e37080
Glutamate neurotoxicity has been implicated in stroke, head trauma, multiple sclerosis and neurodegenerative disorders. Search for herbal remedies that may possibly act as therapeutic agents is an active area of research to combat these diseases. The present study was designed to investigate the neuroprotective role of Withania somnifera (Ashwagandha), also known as Indian ginseng, against glutamate induced toxicity in the retinoic acid differentiated rat glioma (C6) and human neuroblastoma (IMR-32) cells. The neuroprotective activity of the Ashwagandha leaves derived water extract (ASH-WEX) was evaluated. Cell viability and the expression of glial and neuronal cell differentiation markers was examined in glutamate challenged differentiated cells with and without the presence of ASH-WEX. We demonstrate that RA-differentiated C6 and IMR-32 cells, when exposed to glutamate, undergo loss of neural network and cell death that was accompanied by increase in the stress protein HSP70. ASH-WEX pre-treatment inhibited glutamate-induced cell death and was able to revert glutamate-induced changes in HSP70 to a large extent. Furthermore, the analysis on the neuronal plasticity marker NCAM (Neural cell adhesion molecule) and its polysialylated form, PSA-NCAM revealed that ASH-WEX has therapeutic potential for prevention of neurodegeneration associated with glutamate-induced excitotoxicty.  相似文献   

8.
A number of studies indicate that reactive oxygen species (ROS) are involved in neurodegenerative diseases, such as Alzheimer's disease (AD) and Parkinson's disease (PD). The neuroprotective effects of salvianolic acid B (SalB) from Radix Salviae miltiorrhizae (RSM) against hydrogen peroxide (H2O2)-induced rat pheochromocytoma line PC12 injury were evaluated in the present study. Vitamin E, a potent antioxidant, was employed as a positive control agent. Following exposure of cells to H2O2 (150 microM), a marked decrease in cell survival and activities of superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GSH-Px), as well as increased levels of malondialdehyde (MDA) production and lactate dehydrogenase (LDH) release were observed. In parallel, H2O2 caused significant elevation in intracellular Ca2+ level and caspase-3 activity, and induced apoptotic death as determined by flow cytometric assay. However, pretreatment of the cells with SalB (0.1-10 microM) prior to H2O2 exposure blocked these H2O2-induced cellular events noticeably. Moreover, SalB exhibited significantly higher potency as compared to Vitamin E. The present findings indicated that SalB exerts neuroprotective effects against H2O2 toxicity, which might be of importance and contribute to its clinical efficacy for the treatment of neurodegenerative diseases.  相似文献   

9.
The quinic acid derivatives (including 4-feruoyl quinic and 5-ferruoyl quinic acids characterized for first time in propolis samples) and other phenolic compounds were quantified in thirteen Brazilian propolis samples by HPLC analysis. For chemometrical analysis, the distribution of quinic acid derivatives and other phenolic compounds were considered. The results suggest that the Brazilian propolis with floral origin from Citrus sp. have the highest concentration of the quinic acid derivatives (between 11.0 to 58.4 mg/mg of the dried crude hydroalcoholic extract) and therefore would probably show a more effective hepatoprotective activity.  相似文献   

10.
Koo KA  Kim SH  Oh TH  Kim YC 《Life sciences》2006,79(7):709-716
We have previously reported that acteoside isolated from the leaves of Callicarpa dichotoma has significant neuroprotective activity against glutamate-induced neurotoxicity in primary cultured rat cortical cells. To determine the essential structural moiety within this phenylethanoid glycoside needed to exert neuroprotective activity, acteoside was hydrolyzed with acid into its aglycones, caffeic acid and 3',4'-dihydroxylphenylethanol. Caffeic acid and 3',4'-dihydroxylphenylethanol also showed significant neuroprotective activities. Acteoside and its aglycones inhibited glutamate-induced intracellular Ca2+ influx resulting in overproduction of nitric oxide and reduced the formation of reactive oxygen species. These compounds preserved the mitochondrial membrane potential and the activities of antioxidative enzymes, such as superoxide dismutase, glutathione reductase and glutathione peroxidase reduced by glutamate. It was followed by the preservation of the level of glutathione and finally the inhibition of membrane lipid peroxidation.  相似文献   

11.
We investigated whether water extract of Brazilian green propolis (WEP) and its main constituents [caffeoylquinic acid derivatives (3,4-di-O-caffeoylquinic acid, 3,5-di-O-caffeoylquinic acid, chlorogenic acid) and cinnamic acid derivatives (p-coumaric acid, artepillin C, drupanin, baccharin)] exert neuroprotective effects against the retinal damage induced by oxidative stress. Additionally, their neuroprotective effects were compared with their antioxidant effects. WEP, 3,4-di-O-caffeoylquinic acid, 3,5-di-O-caffeoylquinic acid, chlorogenic acid, and p-coumaric acid (but not artepillin C, baccharin, or drupanin) concentration-dependently inhibited oxidative stress-induced neurotoxicity [achieved using L-buthionine-(S,R)-sulfoximine (BSO) to deplete glutathione in combination with glutamate to inhibit cystine uptake] in cultured retinal ganglion cells (RGC-5, a rat ganglion cell line transformed using E1A virus). At their effective concentrations against oxidative stress-induced retinal damage, WEP, 3,4-di-caffeoylquinic acid, 3,5-di-caffeoylquinic acid, and chlorogenic acid (but not cinnamic acid derivatives) inhibited lipid peroxidation (LPO) in mouse forebrain homogenates. Thus, the neuroprotective effects of WEP and caffeoylquinic acid derivatives paralleled those against LPO. These findings indicate that WEP and caffeoylquinic acid derivatives have neuroprotective effects against retinal damage in vitro, and that these effects may be partly mediated via antioxidant effects.  相似文献   

12.
Vitamin E is a generic term for tocopherols and tocotrienols. This work is based on our striking evidence that, in neuronal cells, nanomolar concentrations of alpha-tocotrienol, but not alpha-tocopherol, block glutamate-induced death by suppressing early activation of c-Src kinase (Sen, C. K., Khanna, S., Roy, S., and Packer, L. (2000) J. Biol. Chem. 275, 13049-13055). This study on HT4 and immature primary cortical neurons suggests a central role of 12-lipoxygenase (12-LOX) in executing glutamate-induced neurodegeneration. BL15, an inhibitor of 12-LOX, prevented glutamate-induced neurotoxicity. Moreover, neurons isolated from 12-LOX-deficient mice were observed to be resistant to glutamate-induced death. In the presence of nanomolar alpha-tocotrienol, neurons were resistant to glutamate-, homocysteine-, and l-buthionine sulfoximine-induced toxicity. Long-term time-lapse imaging studies revealed that neurons and their axo-dendritic network are fairly motile under standard culture conditions. Such motility was arrested in response to glutamate challenge. Tocotrienol-treated primary neurons maintained healthy growth and motility even in the presence of excess glutamate. The study of 12-LOX activity and metabolism revealed that this key mediator of glutamate-induced neurodegeneration is subject to control by the nutrient alpha-tocotrienol. In silico docking studies indicated that alpha-tocotrienol may hinder the access of arachidonic acid to the catalytic site of 12-LOX by binding to the opening of a solvent cavity close to the active site. These findings lend further support to alpha-tocotrienol as a potent neuroprotective form of vitamin E.  相似文献   

13.
Pyruvate, an endogenous metabolite of glycolysis, is an anti-toxicity agent. Recent studies have suggested possible roles for pyruvate in protecting CNS neurons from excitotoxic and metabolic insults. Utilizing cultures derived from embryonic rat cortex, the studies presented in this paper indicate that an astroglia-mediated mechanism is involved in the neuroprotective effects of pyruvate against glutamate toxicity. Glutamate-induced toxicity could be reversed by pyruvate in a mixed culture of cortex cells. Importantly, in pure neuronal cultures from the same tissue, pyruvate failed to protect against glutamate toxicity. Addition of astroglia to the pure neuronal cultures restores the ability of pyruvate to protect neurons from glutamate-induced toxicity. Our results further suggest that pyruvate can induce glia to up-regulate the synthesis of glutathione (GSH), an antioxidant that protects cells from toxins such as free radicals. Taken together, our data suggest that astroglia in mixed cultures are essential for mediating the effects of pyruvate, revealing a novel mechanism by which pyruvate, an important intermediate of tricarboxylic acid cycle in the body, may act to protect neurons from damage during insults such as brain ischemia.  相似文献   

14.
3-Acetyl-11-keto-β-boswellic acid (AKBA), a pentacyclic triterpenic acid present in gum resin of Boswellia serrata, has been found to possess antioxidant and neuroprotective properties. In this study, we aimed to examine protective properties of AKBA against glutamate-induced neuronal injury. To investigate the effects of AKBA (2.5-10 µM) on glutamate injury in neuron-like cells PC12 and N2a, two treatment regimens (incubation for 2 or 0 hours before glutamate exposure) were used. Then, the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide method was used to determine viability of the cells. Cellular redox status was evaluated using fluorimetry and comet assays. Annexin V/propidium iodide double staining and Western blot analysis of relative apoptotic proteins were conducted. Based on the results, 24 hours incubation with glutamate (8 mM) increased the cell mortality of PC12 and N2a (P < .001). However, AKBA (2.5-10 µM) enhanced the cell viability in both treatment regimens (P < .001). Also co- and pretreatment with AKBA significantly attenuated lipid peroxidation, reactive oxygen species production, and DNA injury (P < .05 and P < .001). AKBA also restored the activity of cellular superoxide dismutase under glutamate toxicity; this effect was seen to be more significant during the pretreatment regimen (P < .001). Moreover, Western blot analysis indicated that AKBA inhibited glutamate-induced programmed cell death through depressing the elevation of the expression ratio of Bax/Bcl-2 and cleaved-caspase-3 proteins, concentration-dependently. Overall, the present findings suggest the neuroprotective activities of AKBA against glutamate-induced cell injury probably by inhibiting oxidative damage and reducing apoptotic cell death.  相似文献   

15.
Recent findings suggest that gonadal steroid hormones are neuroprotective and may provide clinical benefits in delaying the development of Parkinson's disease. In this report we investigated the ability of oestradiol to protect mesencephalic dopaminergic neurones cultured in serum-free or serum-supplemented medium from toxicity induced by 6-hydroxydopamine or 1-methyl-4-phenylpyridinium ion (MPP+). The efficiency of both toxins and oestradiol was evaluated by tyrosine hydroxylase (TH) immunocytochemistry, [3H]dopamine ([3H]DA) uptake, length of dopaminergic processes and lactate dehydrogenase (LDH) release measurement. In cultures grown in serum-supplemented medium, a 2-h pre-treatment with high concentrations (10-100 microM) of 17beta-oestradiol or 17alpha-oestradiol, the stereoisomer with weak oestrogenic activity, protected both dopaminergic and non-dopaminergic neurones from toxicity induced by 6-hydroxydopamine (6-OHDA; 40 or 100 microM) and by the high MPP+ concentrations (50 microM) necessary to obtain significant neuronal death under those culture conditions. At these concentrations, MPP+ was no longer selective for dopaminergic neurones but affected all cells present in the culture. In contrast, the hormonal treatments did not protect against selective degeneration of dopaminergic neurones induced by lower MPP+ concentrations (below 10 microM), related to inhibition of complex I of respiratory chain. In cultures grown in serum-free medium, oestradiol concentrations higher than 1 microM induced neuronal degeneration and no protection against 6-OHDA or MPP+ toxicity was observed at lower concentrations of the steroid. The neuroprotective effects of 17alpha- or 17beta-oestradiol evidenced in this model might be due to the antioxidant properties of these compounds. However, other non-genomic effects of the steroids cannot be excluded.  相似文献   

16.
Glutamate-induced excitotoxicity appears to play a crucial role in neurological disorders. Neuroprotection against glutamate-induced excitotoxicity has been proposed as a therapeutic strategy for preventing and/or treating these excitotoxicity-mediated diseases. In the present study, atractylenolide III, which exhibited significantly neuroprotective effect against glutamate-induced neuronal apoptosis, was isolated from Atractylodes macrocephala by means of bioactivity-guided fractionation. The inhibitory effect of atractylenolide III on glutamate-induced neuronal apoptosis was in a concentration-dependent manner. The anti-apoptotic property of atractylenolide III might be mediated, in part, via inhibiting caspase signaling pathway. Atractylenolide III may have therapeutic potential in excitotoxicity-mediated neurological diseases.  相似文献   

17.
Glutamate induces cell death by upsetting the cellular redox homeostasis, termed oxidative glutamate toxicity, in a mouse hippocampal cell line, HT22. Extracellular signal-regulated kinases (ERK) 1/2 are known key players in this process. Here we characterized the roles of both MAP kinases and cell cycle regulators in mediating oxidative glutamate toxicity and the neuroprotective mechanisms of curcumin in HT22 cells. c-Jun N-terminal kinase (JNK) and p38 kinase were activated during the glutamate-induced HT22 cell death, but at a later stage than ERK activation. Treatment with a JNK inhibitor, SP600125, or a p38 kinase inhibitor, SB203580, partly attenuated this cell death. Curcumin, a natural inhibitor of JNK signaling, protected the HT22 cells from glutamate-induced death at nanomolar concentrations more efficiently than SP600125. These doses of curcumin affected neither the level of intracellular glutathione nor the level of reactive oxygen species, but inactivated JNK and p38 significantly. Moreover, curcumin markedly upregulated a cell-cycle inhibitory protein, p21cip1, and downregulated cyclin D1 levels, which might help the cell death prevention. Our results suggest that curcumin has a neuroprotective effect against oxidative glutamate toxicity by inhibiting MAP kinase signaling and influencing cell-cycle regulation.  相似文献   

18.
Glutamate excitotoxicity is involved in many neurodegenerative diseases including Alzheimer’s disease (AD). Attenuation of glutamate toxicity is one of the therapeutic strategies for AD. Wolfberry (Lycium barbarum) is a common ingredient in oriental cuisines. A number of studies suggest that wolfberry has anti-aging properties. In recent years, there is a trend of using dried Wolfberry as food supplement and health product in UK and North America. Previously, we have demonstrated that a fraction of polysaccharide from Wolfberry (LBA) provided remarkable neuroprotective effects against beta-amyloid peptide-induced cytotoxicity in primary cultures of rat cortical neurons. To investigate whether LBA can protect neurons from other pathological factors such as glutamate found in Alzheimer brain, we examined whether it can prevent neurotoxicity elicited by glutamate in primary cultured neurons. The glutamate-induced cell death as detected by lactate dehydrogenase assay and caspase-3-like activity assay was significantly reduced by LBA at concentrations ranging from 10 to 500 μg/ml. Protective effects of LBA were comparable to memantine, a non-competitive NMDA receptor antagonist. LBA provided neuroprotection even 1 h after exposure to glutamate. In addition to glutamate, LBA attenuated N-methyl-d-aspartate (NMDA)-induced neuronal damage. To further explore whether LBA might function as antioxidant, we used hydrogen peroxide (H2O2) as oxidative stress inducer in this study. LBA could not attenuate the toxicity of H2O2. Furthermore, LBA did not attenuate glutamate-induced oxidation by using NBT assay. Western blot analysis indicated that glutamate-induced phosphorylation of c-jun N-terminal kinase (JNK) was reduced by treatment with LBA. Taken together, LBA exerted significant neuroprotective effects on cultured cortical neurons exposed to glutamate.  相似文献   

19.
Catechol-substituted L-chicoric acid analogues as HIV integrase inhibitors   总被引:4,自引:0,他引:4  
HIV integrase catalyzes the integration of HIV DNA copy into the host cell DNA, which is essential for the production of progeny viruses. L-Chicoric acid and dicaffeoylquinic acids, isolated from plants, are well known potent inhibitors of HIV integrase. The common structural features of these inhibitors are caffeic acid derivatives connected to tartaric acid or quinic acid through ester bonds. In the present study, we have synthesized and tested the inhibitory activities of a new type of HIV IN inhibitors, which has catechol groups in place of caffeoyl groups in the structure of L-chicoric acid. Upon substitution of catechol groups at succinic acid, pyrrole-dicarboxylic acid, maleimide or maleic anhydride, the inhibitory activities (IC(50)=3.8-23.6 microM) were retained or remarkably increased when compared to parent compound L-chicoric acid (IC(50)=13.7 microM).  相似文献   

20.
Cho J  Kong JY  Jeong DY  Lee KD  Lee DU  Kang BS 《Life sciences》2001,68(13):1567-1573
Acori graminei Rhizoma (AGR) is shown to exhibit a number of pharmacological actions including sedation and anticonvulsive action. To further characterize its actions in the CNS, the present study evaluated the effects of essential oils (EO) from AGR on the excitotoxic neuronal cell death induced in primary rat cortical cell cultures. EO inhibited the glutamate-induced excitotoxicity in a concentration-dependent manner, with the IC50 of 0.241 mg/ml. EO exerted more potent neuroprotection against the toxicity induced by NMDA (IC50 = 0.139 mg/ml). In contrast, the AMPA-induced toxicity was not inhibited by EO. Receptor-ligand binding studies were performed to investigate the neuroprotective action mechanism. EO dramatically inhibited the specific bindings of a use-dependent NMDA receptorion channel blocker [3H]MK-801, indicating an NMDA receptor antagonist-like action. However, the bindings of [3H]MDL 105,519, a ligand selective for the glycine binding site of NMDA receptor, were not considerably inhibited. These results demonstrated that EO extracted from AGR exhibited neuroprotective effects on cultured cortical neurons through the blockade of NMDA receptor activity, and that the glycine binding site appeared not to be the major site of action.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号