首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
HLA-A2 and -A3 genes have been modified in their third exon (second domain) by using in vivo recombination. In this method Escherichia coli are transfected with a plasmid which contains two highly homologous sequences (e.g., the third exons of HLA-A2 and -A3) and has been linearized by cleavage between these two sequences. Circularization takes place in the bacteria by homologous recombination leading to hybrid A2-A3 sequences. The analysis by DNA sequencing of a number of such recombinants shows that they indeed occur by homologous recombination (no insertions or deletions) and that the probability of crossing over decreases as the distance from the free end of DNA in the homologous region increases. No double recombinants were observed. These hybrid exons were reinserted into either HLA-A2 or HLA-A3 genes, thus generating a panel of functional hybrid genes containing one or several HLA-A2 specific substitutions in an HLA-A3 background or vice versa. These genes were expressed by transfection into murine P815-high transfection efficiency recipient cells. Serologic analysis leads to the conclusion that expression of polymorphic antigenic determinants specific for HLA-A2 (detected with M58, A2A28M1, and CR11.351 mAb) is linked to the presence of threonine residue (amino acid (AA) 142) and/or histidine residue (AA 145) and valine residue (AA 152). The expression of specific HLA-A3 polymorphic determinants (recognized by GAP-A3 mAb) is correlated with the existence of a asparagine residue (AA 127) and a aspartic residue (AA 161). But aspartic residue 161 contributes with glutamic acid residue 152 in the formation of the A3 epitope recognized by the anti-A3 mAb X1.23.2.  相似文献   

2.
3.
The HLA-A9 family has been characterized as possessing two well defined specificities; HLA-A23 and A24. Serological studies have suggested the presence of a third member of this family HLA-A9.3, however there is doubt surrounding the existence of this specificity. HLA-A23, A24, and the putative A9.3 proteins were analyzed biochemically by immunoprecipitation and isoelectric focusing. Both HLA-A24 and A9.3 have identical isoelectric points whereas A23 is different. We have sequenced cDNA encoding HLA-A23, A24, and A9.3. From the observed protein sequences, we found A9.3 to differ from A24 by two amino acid substitutions located in the 2 helix of the class I molecule. These substitutions are expected to significantly change the shape of the peptide binding cleft.The nucleotide sequence data reported in this paper have been submitted to the GenBank nucleotide sequence database and have been assigned the accession numbers M64740 (HLA-A *2402); M64741 (HLA-A *2403); M64742 (HLA-A *2301). Address correspondence and offprint requests to: P. Parham.  相似文献   

4.
The HLA-A28* molecule expressed by the B-cell line IDF is serologically distinct and intermediate between HLA-A28 and HLA-A2. Comparative tryptic peptide mapping of biosynthetically labeled HLA-A28*, A28, and A2 molecules showed that HLA-A28* is also chemically distinct. Reverse-phase high pressure liquid chromatographic analysis of tryptic peptides labeled with 3H-arginine and 3H-lysine revealed that A28*. A28, and A2 share 65% of their tryptic peptides. Multiple differences were observed between A28* and both A28 and A2. No peptides unique to A28* were detected and 25 peptides were shared with both A28 and A2. These results show that A28* is a novel HLA product that is closely related to A28 and A2. Tryptic peptide map comparisons of these molecules labeled separately with 11 amino acids confirm these results. The data suggest that HLA-A28 * may have arisen from a genetic exchange event involving HLA-A28 and -A2. These data are consistent with the hypothesis that A28* is identical with A28 in the first extracellular domain ( 1) and identical with A2 in the second domain ( 2).Abbreviations used in this paper EDTA ethylenediaminetetraacetic acid - HPLC high-pressure liquid chromatography - MHC major histocompatibility complex - NP40 Nonidet P40 - PMSF phenylmethylsulphonylfluoride - SDS-PAGE sodium dodecyl sulfate-polyacrylamide gel electrophoresis - TPCK L(tosylamido-2-phenyl) ethyl chloromethyl ketone - Tris tris (hydroxymethyl)-aminomethane - A alanine - C cysteine - D aspartic acid - E glutamic acid - G glycine - H histidine - K lysine - L leucine - M methionine - N asparagine - Q glutamine - R arginine - S serine - T threonine - V valine - W tryptophan - Y tyrosine  相似文献   

5.
Four anti-HLA-A3 sera crossreactive with HLA-A11 were tested with a panel of A3 positive cells pretreated with either Fab'2 prepared from one of the four anti-A3 sera or Fab'2 fragments of an anti-A11 serum displaying CYNAP crossreactivity with A3. The anti-A3 Fab'2 blocked the reactions of all anti-A3 sera with all A3 +, 11– cells; the anti-A11 Fab'2 blocked the reactions of only some serum-cell combinations. Each of the four anti-A3 sera tested were blocked by the anti-A11 Fab'2 in a different pattern, indicating that each could have a different anti-A3 specificity. Five different patterns of reactivity were observed among the 21 test lymphocytes. These findings are interpreted as evidence for shared antigenic components between A3 and A11.  相似文献   

6.
Human leukocyte antigen class I (HLA-I) molecules are highly polymorphic peptide receptors, which select and present endogenously derived peptide epitopes to CD8+ cytotoxic T cells (CTL). The specificity of the HLA-I system is an important component of the overall specificity of the CTL immune system. Unfortunately, the large and rapidly increasing number of known HLA-I molecules seriously complicates a comprehensive analysis of the specificities of the entire HLA-I system (as of June 2008, the international HLA registry holds >1,650 unique HLA-I protein entries). In an attempt to reduce this complexity, it has been suggested to cluster the different HLA-I molecules into “supertypes” of largely overlapping peptide-binding specificities. Obviously, the HLA supertype concept is only valuable if membership can be assigned with reasonable accuracy. The supertype assignment of HLA-A*3001, a common HLA haplotype in populations of African descent, has variously been assigned to the A1, A3, or A24 supertypes. Using a biochemical HLA-A*3001 binding assay, and a large panel of nonamer peptides and peptide libraries, we here demonstrate that the specificity of HLA-A*3001 most closely resembles that of the HLA-A3 supertype. We discuss approaches to supertype assignment and underscore the importance of experimental verification.  相似文献   

7.

Background

TcTLE is a nonamer peptide from Trypanosoma cruzi KMP-11 protein that is conserved among different parasite strains and that is presented by different HLA-A molecules from the A2 supertype. Because peptides presented by several major histocompatibility complex (MHC) supertypes are potential targets for immunotherapy, the aim of this study was to determine whether MHC molecules other than the A2 supertype present the TcTLE peptide.

Methodology/Principal Findings

From 36 HLA-A2-negative chagasic patients, the HLA-A genotypes of twenty-eight patients with CD8+ T cells that recognized the TcTLE peptide using tetramer (twenty) or functional (eight) assays, were determined. SSP-PCR was used to identify the A locus and the allelic variants. Flow cytometry was used to analyze the frequency of TcTLE-specific CD8+ T cells, and their functional activity (IFN-γ, TNFα, IL-2, perforin, granzyme and CD107a/b production) was induced by exposure to the TcTLE peptide. All patients tested had TcTLE-specific CD8+ T cells with frequencies ranging from 0.07–0.37%. Interestingly, seven of the twenty-eight patients had HLA-A homozygous alleles: A*24 (5 patients), A*23 (1 patient) and A*01 (1 patient), which belong to the A24 and A1 supertypes. In the remaining 21 patients with HLA-A heterozygous alleles, the most prominent alleles were A24 and A68. The most common allele sub-type was A*2402 (sixteen patients), which belongs to the A24 supertype, followed by A*6802 (six patients) from the A2 supertype. Additionally, the A*3002/A*3201 alleles from the A1 supertype were detected in one patient. All patients presented CD8+ T cells producing at least one cytokine after TcTLE peptide stimulation.

Conclusion/Significance

These results show that TcTLE is a promiscuous peptide that is presented by the A24 and A1 supertypes, in addition to the A2 supertype, suggesting its potential as a target for immunotherapy.  相似文献   

8.
The peptide motif of HLA-A*6603 was determined and compared with the available data on the peptide motifs of A*6601 and A*6602. A*6601 differs from A*6602 by two amino acids at positions 90 (Asp90Ala; outer loop) and 163 (Arg163Glu; pocket A). A*6603 differs from A*6601 and A*6602 by a single amino-acid exchange at position 70 (His70Gln; pockets A, B and C). No significant differences were found between the A*6602 and A*6603 peptide motifs suggesting that the Gln70His variation is of minor importance. However, the auxiliary anchors at position P1 of peptides bound by A*6601 (polar/acidic: Asp, Glu) and A*6602/6603 (polar/neutral: Ser) had striking differences. This finding may be best explained by the Arg163Glu substitution that results in a shift towards higher acidity in pocket A of A*6602/6603, apparently leading to the loss of preference for acidic auxiliary anchors. The similarity of A*6602 and A*6603 peptide motifs suggests low allogenicity when mismatched in stem cell transplantation. Inversely, the differences in A*6601 versus A*6602/6603 peptide motifs suggest that mismatches will have a higher allogenicity. These data will contribute to both assessing permissive mismatches in the A*66 group and weighting the impact of this individual amino-acid variation for matching and peptide binding algorithms.  相似文献   

9.
10.
11.
12.
13.
14.
15.
16.
A cosmid clone containing two class I sequences was found to cause expression of the HLA-AW24 protein after transfection into mouse L cells. The restriction map of this cosmid shows extensive homology over 26 kb with the map of the HLA-A3 region obtained from cosmids of the same library, constructed with DNA from an HLA-A3/HLA-AW24 heterozygote, but diverges over the remaining 14 kb. The HLA-AW24 gene was subcloned from this cosmid and its nucleotide sequence was determined. Amino acid and, more strikingly, nucleotide sequence comparisons with other HLA alleles indicate that the A locus alleles are more closely related to each other than to alleles from other HLA loci. A very skewed distribution of silent substitutions is apparent, and the occurrence of clustered multiple substitutions hints at gene-conversion-like events.  相似文献   

17.
Shao HY  Lin YW  Yu SL  Lin HY  Chitra E  Chang YC  Sia C  Chong P  Hsu MT  Wei OL  Chow YH 《PloS one》2011,6(9):e25500
Identification of HLA-restricted CD8+ T cell epitopes is important to study RSV-induced immunity and illness. We algorithmically analyzed the sequence of the fusion protein (F) of respiratory syncytial virus (RSV) and generated synthetic peptides that can potentially bind to HLA-A*0201. Four out of the twenty-five 9-mer peptides tested: peptides 3 (F33-41), 13 (F214-222), 14 (F273-281), and 23 (F559-567), were found to bind to HLA-A*0201 with moderate to high affinity and were capable of inducing IFN-γ and IL-2 secretion in lymphocytes from HLA-A*0201 transgenic (HLA-Tg) mice pre-immunized with RSV or recombinant adenovirus expressing RSV F. HLA-Tg mice were immunized with these four peptides and were found to induce both Th1 and CD8+ T cell responses in in vitro secondary recall. Effector responses induced by these peptides were observed to confer differential protection against live RSV challenge. These peptides also caused better recovery of body weight loss induced by RSV. A significant reduction of lung viral load was observed in mice immunized with peptide 23, which appeared to enhance the levels of inflammatory chemokines (CCL17, CCL22, and IL-18) but did not increase eosinophil infiltration in the lungs. Whereas, significant reduction of infiltrated eosinophils induced by RSV infection was found in mice pre-immunized with peptide 13. Our results suggest that HLA-A2-restricted epitopes of RSV F protein could be useful for the development of epitope-based RSV vaccine.  相似文献   

18.
A new polymorphic probe close to HLA-A   总被引:4,自引:2,他引:2  
  相似文献   

19.
The HLA-A2 and HLA-Aw69 molecules share an antigenic determinant not expressed by HLA-Aw68 and HLA-A3. Comparison of the amino acid (aa) sequences of these molecules and previous studies of the antigenic determinant expressed by different HLA-A2 X HLA-A3 hybrid molecules had established that three aa at positions 95, 97, and 107 were possibly involved in the formation of this determinant. The HLA-A3 gene was therefore mutagenized to replace successively at these positions the HLA-A3-specific aa by the HLA-A2 residues. A single substitution at position 107 of a glycine by a tryptophan residue is sufficient for full expression by HLA-A3 molecules of the HLA-A2/Aw69 shared antigenic determinant without modification of the other serological reactivities characteristic of the HLA-A3 molecules. Previous studies of ethyl methanesulfonate mutants having shown the involvement of aa 161 in this determinant, we assume that the two aa residues 107 and 161 are close to each other.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号