首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Transposition of the Ty1 element of the yeast Saccharomyces cerevisiae is temperature sensitive. We have identified a null allele of the silent information regulator gene SIR4 as a host mutant that allows for transposition at high temperature. We show that the apparent increase in transposition activity in sir4 mutant strains at high temperature is dependent on the RAD52 gene and is thus likely resulting from an increase in Ty1 cDNA recombination, rather than in IN-mediated integration. General cellular recombination is not increased at high temperature, suggesting that the increase in recombination at high temperature in sir4 mutants is specific for Ty1 cDNA. Additionally, this high-temperature Ty1 recombination was found to be dependent on functional Sir2p and Sir3p. We speculate that the increase in recombination seen in sir4 mutants at high temperature may be due to changes in chromatin structure or Ty1 interactions with chromosomal structures resulting in higher recombination rates.  相似文献   

2.
The secY205 mutant is cold-sensitive for protein export, with an in vitro defect in supporting ATP- and preprotein-dependent insertion of SecA into the membrane. We characterized SecA81 with a Gly516 to Asp substitution near the minor ATP-binding region, which suppresses the secY205 defect at low temperature and exhibits an allele-specific synthetic defect with the same SecY alteration at 42 degrees C. The overproduced SecA81 aggregated in vivo at temperatures above 37 degrees C. Purified SecA81 exhibited markedly enhanced intrinsic and membrane ATPase activities at 30 degrees C, while it was totally inactive at 42 degrees C. The trypsin digestion patterns indicated that SecA81 has some disorder in the central region of SecA, which encompasses residues 421-575. This conformational abnormality may result in unregulated ATPase at low temperature as well as the thermosensitivity of the mutant protein. In the presence of both proOmpA and the wild-type membrane vesicles, however, the thermosensitivity was alleviated, and SecA81 was able to catalyze significant levels of proOmpA-stimulated ATP hydrolysis as well as proOmpA translocation at 42 degrees C. While SecA81 was able to overcome the SecY205 defect at low temperature, the SecY205 membrane vesicles could not significantly support the translocation ATPase or the proOmpA translocation activity of SecA81 at 42 degrees C. The inactivated SecA81 molecules seemed to jam the translocase since it interfered with translocase functions at 42 degrees C. Based on these results, we propose that under preprotein-translocating conditions, the SecYEG channel can stabilize and activate SecA, and that this aspect is defective for the SecA81-SecY205 combination. The data also suggest that the conformation of the central region of SecA is important for the regulation of ATP hydrolysis and for the productive interaction of SecA with SecY.  相似文献   

3.
Analysis of Yeast Retrotransposon Ty Insertions at the Can1 Locus   总被引:5,自引:6,他引:5       下载免费PDF全文
The target site distribution for 55 independent Ty insertions that inactivate the function of the Saccharomyces cerevisiae CAN1 gene is reported. Under some selection conditions Ty elements inserted preferentially into the promoter and exhibited an orientation bias. In contrast, under other conditions no insertions were detected in the promoter region and transposition appeared to occur randomly throughout the CAN1 coding sequence. These results show that the target site distribution for Ty insertions may be a function of the selection conditions.  相似文献   

4.
5.
Retrotransposon and retroviral RNA delivery to particle assembly sites is essential for their replication. mRNA and Gag from the Ty1 retrotransposon colocalize in cytoplasmic foci, which are required for transposition and may be the sites for virus‐like particle (VLP) assembly. To determine which Ty1 components are required to form mRNA/Gag foci, localization studies were performed in a Ty1‐less strain expressing galactose‐inducible Ty1 plasmids (pGTy1) containing mutations in GAG or POL. Ty1 mRNA/Gag foci remained unaltered in mutants defective in Ty1 protease (PR) or deleted for POL. However, Ty1 mRNA containing a frameshift mutation (Ty1fs) that prevents the synthesis of all proteins accumulated in the nucleus. Ty1fs RNA showed a decrease in stability that was mediated by the cytoplasmic exosome, nonsense‐mediated decay (NMD) and the processing body. Localization of Ty1fs RNA remained unchanged in an nmd2Δ mutant. When Gag and Ty1fs mRNA were expressed independently, Gag provided in trans increased Ty1fs RNA level and restored localization of Ty1fs RNA in cytoplasmic foci. Endogenously expressed Gag also localized to the nuclear periphery independent of RNA export. These results suggest that Gag is required for Ty1 mRNA stability, efficient nuclear export and localization into cytoplasmic foci.  相似文献   

6.
To understand long terminal repeat (LTR)-retrotransposon copy number dynamics, Ty1 elements were reintroduced into a "Ty-less" Saccharomyces strain where elements had been lost by LTR-LTR recombination. Repopulated strains exhibited alterations in chromosome size that were associated with Ty1 insertions, but did not become genetically isolated. The rates of element gain and loss under genetic and environmental conditions known to affect Ty1 retrotransposition were determined using genetically tagged reference elements. The results show that Ty1 retrotransposition varies with copy number, temperature, and cell type. In contrast to retrotransposition, Ty1 loss by LTR-LTR recombination was more constant and not markedly influenced by copy number. Endogenous Ty1 cDNA was poorly utilized for recombination when compared with LTR-LTR recombination or ectopic gene conversion. Ty1 elements also appear to be more susceptible to copy number fluctuation in haploid cells. Ty1 gain/loss ratios obtained under different conditions suggest that copy number oscillates over time by altering the rate of retrotransposition, resulting in the diverse copy numbers observed in Saccharomyces.  相似文献   

7.
Cortical granules are specialized organelles whose contents interact with the extracellular matrix of the fertilized egg to form the block to polyspermy. In sea urchins, the granule contents form a fertilization envelope (FE), and this construction is critically dependent upon protease activity. An autocatalytic serine protease, cortical granule serine protease 1 (CGSP1), has been identified in the cortical granules of Strongylocentrotus purpuratus eggs, and here we examined the regulation of the protease activity and tested potential target substrates of CGSP1. We found that CGSP1 is stored in its full-length, enzymatically quiescent form in the granule, and is inactive at pH 6.5 or below. We determined the pH of the cortical granule by fluorescent indicators and micro-pH probe measurements and found the granules to be pH 5.5, a condition inhibitory to CGSP1 activity. Exposure of the protease to the pH of seawater (pH 8.0) at exocytosis immediately activates the protease. Activation of eggs at pH 6.5 or lower blocks activation of the protease and the resultant FE phenotypes are indistinguishable from a protease-null phenotype. We find that native cortical granule targets of the protease are beta-1,3 glucanase, ovoperoxidase, and the protease itself, but the structural proteins of the granule are not proteolyzed by CGSP1. Whole mount immunolocalization experiments demonstrate that inhibition of CGSP1 activity affects the localization of ovoperoxidase but does not alter targeting of structural proteins to the FE. The mistargeting of ovoperoxidase may lead to spurious peroxidative cross-linking activity and contribute to the lethality observed in protease-null cells. Thus, CGSP1 is proteolytically active only when secreted, due to the low pH of the cortical granules, and it has a small population of targets for cleavage within the cortical granules.  相似文献   

8.
The accuracy of DNA synthesis by DNA polymerase B1 from the hyperthermophilic archaeon Sulfolobus solfataricus (Sso pol B1) at near the physiological temperature was investigated using M13-based mutational assays. Sso pol B1 showed replication fidelity similar to or higher than most viral, bacterial, and eukaryotic replicases. The fidelity of the enzyme was about three times as high at 70°C as at 55°C. Approximately two-thirds of the errors made by the enzyme were single-base substitutions, of which 58% were C → T transition. Frameshift mutations, mostly resulting from single-base deletions, accounted for 19% of the total errors. An exonuclease-deficient mutant of Sso pol B1 was three times as mutagenic as the wild-type enzyme, suggesting that the intrinsic proofreading function contributed only modestly to the fidelity of the enzyme. Kinetic assays showed that the frequencies of all possible misincorporations by an exonuclease-deficient triple-point mutant of Sso pol B1 ranged from 5.4 × 10−5 to 4.6 × 10−4. The high fidelity of this enzyme in DNA synthesis was based primarily on K m difference rather than V max difference. These properties of Sso pol B1 are consistent with the proposed role of the enzyme as a replicase in S. solfataricus.  相似文献   

9.
The degP gene, required for proteolysis in the cell envelope of Escherichia coli, maps at approximately 3.5 min on the chromosome. Null mutations in degP result in temperature-sensitive growth. In certain genetic backgrounds, expression of abnormal periplasmic or inner membrane proteins (protein fusions or proteins with internal deletions) enhances the temperature-sensitive phenotype. Such growth defects were used as a selection for cloning the degP gene into Mud4042 and pACYC184 plasmid vectors, and a restriction map was determined. Analysis of deletion and insertion mutations on one of these plasmids showed that the degP gene is approximately 1.5 kilobases in size. The plasmid-encoded DegP protein had an apparent molecular weight of 50,000, as determined by maxicell analysis. Protein fusions between DegP and alkaline phosphatase had high alkaline phosphatase enzymatic activity, indicating that DegP is a periplasmic or membrane protein.  相似文献   

10.
Enzymic nature of F-actin at high temperature   总被引:1,自引:0,他引:1  
  相似文献   

11.
12.
13.
14.
15.
This study describes a novel strategy to improve the glycolysis flux of Saccharomyces cerevisiae at high temperature. The TSL1 gene-encoding regulatory subunit of the trehalose synthase complex was overexpressed in S. cerevisiae Z-06, which increased levels of trehalose synthase activity in extracts, enhanced stress tolerance and glucose consuming rate of the yeast cells. As a consequence, the final ethanol concentration of 185.5 g/L was obtained at 38 °C for 36 h (with productivity up to 5.2 g/L/h) in 7-L fermentor, and the ethanol productivity was 92.7 % higher than that of the parent strain. The results presented here provide a novel way to enhance the carbon metabolic flux at high temperature, which will be available for the purposes of producing other primary metabolites of commercial interest using S. cerevisiae as a host.  相似文献   

16.
Ty1 Transposition in Saccharomyces Cerevisiae Is Nonrandom   总被引:7,自引:8,他引:7       下载免费PDF全文
A large collection of Ty1 insertions in the URA3 and LYS2 loci was generated using a GAL1-Ty1 fusion to augment the transposition frequency. The sites of insertion of most of these Ty elements were sequenced. There appears to be a gradient of frequency of insertion from the 5' end (highest frequency) to the 3' end (lowest frequency) of both loci. In addition we observed hotspots for transposition. Twelve of the 82 Ty1 insertions in the URA3 locus were inserted in exactly the same site. Hotspots were also observed in the LYS2 locus. All hotspots were in the transcribed part of the genes. Alignment of the sites of insertion and of the neighboring sequences only reveals very weak sequence similarities.  相似文献   

17.
18.
19.
20.
Cryptococcus neoformans is a basidiomycete yeast and opportunistic human pathogen of increasing clinical importance due to the increasing population of immunocompromised patients. To further investigate signal transduction cascades regulating fungal pathogenesis, we have identified the gene encoding a RAS homologue in this organism. The RAS1 gene was disrupted by transformation and homologous recombination. The resulting ras1 mutant strain was viable, but failed to grow at 37 degrees C, and exhibited significant defects in mating and agar adherence. The ras1 mutant strain was also avirulent in an animal model of cryptococcal meningitis. Reintroduction of the wild-type RAS1 gene complemented these ras1 mutant phenotypes and restored virulence in animals. A dominantly active RAS1 mutant allele, RAS1Q67L, induced a differentiation phenotype known as haploid fruiting, which involves filamentation, agar invasion and sporulation in response to nitrogen deprivation. The ras1 mutant mating defect was suppressed by overexpression of MAP kinase signalling elements and partially suppressed by exogenous cAMP. Additionally, cAMP also suppressed the agar adherence defect of the ras1 mutant. However, the ability of the ras1 mutant strain to grow at elevated temperature was not restored by cAMP or MAP kinase overexpression. Our findings support a model in which RAS1 signals in C. neoformans through cAMP-dependent, MAP kinase, and RAS-specific signalling cascades to regulate mating and filamentation, as well as growth at high temperature which is necessary for maintenance of infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号