首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Undifferentiated embryonic mesenchymal cells are round/cuboidal in shape. During development, visceral myogenesis is shortly preceded by mesenchymal cell elongation. To determine the role of the cell's shape on smooth muscle development, undifferentiated embryonic mesenchymal cells from intestine (abundant visceral muscle), lung (some visceral muscle) or kidney (no visceral muscle) were plated under conditions that maintained cell rounding or promoted elongation. Regardless of their fate in vivo, all the cells differentiated into smooth muscle upon elongation as indicated by the expression of smooth muscle-specific proteins and the development of membrane potentials of -60 mV and voltage-dependent Ca2+ currents, characteristic of excitable cells. Smooth muscle differentiation occurred within 24 hours and was independent of cell proliferation. Regardless of their fate in vivo, all the round cells remained negative for smooth muscle markers, had membrane potentials of -30 mV and showed no voltage-activated current. These cells, however, differentiated into smooth muscle upon elongation. The role of the cell's shape in controlling smooth muscle differentiation was not overcome by treatment with retinoic acid, TGF-beta1, PDGF BB or epithelial-conditioned medium (all modulators of smooth muscle differentiation). These studies suggest that the mesenchymal cell shape plays a main role in visceral myogenesis.  相似文献   

3.
4.
The dopamine beta-hydroxylase promoter has been shown to direct expression of the reporter gene product, beta-galactosidase, to enteric neurons and putative embryonic neuroblasts in transgenic mice (Mercer et al., 1991; Kapur et al., 1991). In this paper, expression of the transgene, D beta H-nlacZ, in the gastrointestinal tract is characterized in more detail in wild-type mice and mice which are also homozygous for the lethal spotted allele (ls). Expression of the transgene in wild-type embryos was first detected in scattered mesenchymal cells in the proximal foregut on embryonic day 9.5, and progressed distally until embryonic day 13.5 when the entire length of the gut was colonized by such cells. Several observations suggest that the mesenchymal cells which express the transgene (MCET) are, in fact, enteric neuroblasts, probably derived from the vagal neural crest. (1) The presence of MCET in progressively more caudal portions of the embryonic gut correlated with the neurogenic potential of isolated gastrointestinal segments grafted under the renal capsule. (2) Mitotic activity of MCET was demonstrated by incorporation of [3H]thymidine in utero. (3) The migratory behavior of MCET and/or their precursors was revealed in anastomotic subcapsular grafts of gut from transgenic and non-transgenic embryos; enteric ganglia of the latter were populated by MCET from the former. (4) Enteric expression of the transgene postnatally was restricted to intrinsic neurons that coexpressed other phenotypic markers of neuronal differentiation. The pattern of transgene expression in ls/ls mice was identical to that seen in ls/+ and +/+ mice until embryonic day 12.5.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
Bronchial smooth muscle (SM) mesenchymal cell precursors change their shape from round to spread/elongated while undergoing differentiation. Here we show that this change in cell shape induces the expression of laminin (LM) alpha2 chain not present in round mesenchymal cells. LM alpha2 expression is reversible and switched on and off by altering the cell's shape in culture. In comparison, the expression of LM beta1 and gamma1 remains unchanged. Functional studies showed that mesenchymal cell spreading and further differentiation into SM are inhibited by an antibody against LM alpha2. Dy/dy mice express very low levels of LM alpha2 and exhibit congenital muscular dystrophy. Lung SM cells isolated from adult dy/dy mice spread defectively and synthesized less SM alpha-actin, desmin, and SM-myosin than controls. These deficiencies were completely corrected by exogenous LM-2. On histological examination, dy/dy mouse airways and gastrointestinal tract had shorter SM cells, and lungs from dy/dy mice contained less SM-specific protein. The intestine, however, showed compensatory hyperplasia, perhaps related to its higher contractile activity. This study therefore demonstrated a novel role for the LM alpha2 chain in SM myogenesis and showed that its decrease in dy/dy mice results in abnormal SM.  相似文献   

6.
The Wnt genes encode a large family of secreted proteins that play a key role in embryonic development and tissue differentiation in many species (Rijsewijk et al., 1987 and Nusse and Varmus, 1992). Genetic and biochemical studies have suggested that the frizzled proteins are cell surface receptors for Wnts (Vinson et al., 1989, Chan et al., 1992, Bhanot et al., 1996 and Wang et al., 1996). In parallel, a number of secreted frizzled-like proteins with a conserved N-terminal frizzled motif have been identified (Finch et al., 1997, Melkonyan et al., 1997 and Rattner et al., 1997). One of these proteins, FrzA, the bovine counterpart of the murine sFRP-1 (93% identity) is involved in vascular cell growth control, binds Wg in vitro and antagonizes Xwnt-8 and hWnt-2 signaling in Xenopus embryos (Xu et al., 1998 and Duplàa et al., 1999). In this study, we report that sFRP-1 is expressed in the heart and in the visceral yolk sac during mouse development, and that sFRP-1 and mWnt-8 display overlapping expression patterns during heart morphogenesis. From 8.5 to 12.5 d.p.c., sFRP-1 is expressed in cardiomyocytes together with mWnt-8 but neither in the pericardium nor in the endocardium; at 17.5 d.p.c., they are no longer present in the heart. In mouse adult tissues, while sFRP-1 is highly detected in the aortic endothelium and media and in cardiomyocytes, mWnt-8 is not detected in these areas. Immunoprecipitation experiments demonstrates that FrzA binds to mWnt-8 in cell culture experiments.  相似文献   

7.
Recent studies indicate a role for Wnt signaling in regulating lens cell differentiation (Stump et al., 2003). Here we investigated expression patterns of Wnt receptors, the Frizzleds (Fzs) and the Wnt signaling regulators, the secreted frizzled-related proteins (Sfrps), during rodent lens development. RT-PCR showed that Fz receptors, Fz1-Fz8 are expressed in lens. In situ hybridization showed that all the Fz genes examined have similar expression patterns. Fzs are expressed throughout the early lens primordium. At embryonic day 14.5 (E14.5), Fz gene expression is predominantly localized to the epithelium and elongating cells at the lens equator. Fz expression is absent from lens fibers. This pattern of Fz gene expression continues throughout early postnatal development. Immunolocalization studies showed that Fz protein distribution closely follows that of the mRNAs. In addition, epithelial cells in FGF-treated explants show strongest Fz reactivity in cellular protrusions as they migrate and elongate. Sfrp1- Sfrp5 are expressed and all, except Sfrp2, have similar patterns of expression to each other and to the Fzs during lens development. Sfrp2 is strongly expressed in all lens pit cells but becomes restricted to the presumptive epithelial cells of the lens vesicle. By E14.5, Sfrp2 is only present in a few cells above the lens equator. Sfrp2 is not detected in the lens at E18.5 or at later stages. This study shows that multiple Fz and Sfrp genes are expressed during lens morphogenesis and differentiation. This is consistent with a role for Wnt-Fz signaling during both embryonic and postnatal lens development.  相似文献   

8.
9.
The murine vasorin (Vasn) gene, initially known as Slit-like 2, encodes a transmembrane protein that shares structural similarities with the eponymous Slit proteins. However, whether it also shares functional similarities with these large secreted proteins remains to be elucidated. Here, we report expression of Vasn during embryonic and fetal development of the mouse using whole-mount in situ hybridization (WISH) and histochemical detection of β-galactosidase expressed from a targeted Vasn(lacZ) knock-in allele. Comparison of whole-mount staining patterns of both approaches showed identical expression domains, confirming that Vasn promoter-driven β-galactosidase expression faithfully reflects endogenous Vasn expression. Vasn is highly expressed in vascular smooth muscle cells (hence the name), a finding consistent with a previous report on its human homolog VASN, whose extracellular domain was shown to function as a TGF-β trap (Ikeda et al., 2004). Most striking, however, is Vasn's prominent expression in the developing skeletal system, starting as early as the first mesenchymal condensations appear. Moreover, distinct expression domains outside the bones, e.g., in the developing kidneys and lungs, suggest further roles for this gene in the mouse. Recently, it was shown that mitochondria-localized Vasn protects cells from TNFα- and hypoxia-induced apoptosis, and partial deletion of the Vasn coding sequence leads to increased sensitivity of hepatocytes to TNFα-induced apoptosis (Choksi et al., 2011). By providing a first comprehensive analysis of the Vasn expression pattern during mouse embryonic development, our study will help to further elucidate its biological functions.  相似文献   

10.
To begin to understand pancreas development and the control of endocrine lineage formation in zebrafish, we have examined the expression pattern of several genes shown to act in vertebrate pancreatic development: pdx-1, insulin (W. M. Milewski et al., 1998, Endocrinology 139, 1440-1449), glucagon, somatostatin (F. Argenton et al., 1999, Mech. Dev. 87, 217-221), islet-1 (Korzh et al., 1993, Development 118, 417-425), nkx2.2 (Barth and Wilson, 1995, Development 121, 1755-1768), and pax6.2 (Nornes et al., 1998, Mech. Dev. 77, 185-196). To determine the spatial relationship between the exocrine and the endocrine compartments, we have cloned the zebrafish trypsin gene, a digestive enzyme expressed in differentiated pancreatic exocrine cells. We found expression of all these genes in the developing pancreas throughout organogenesis. Endocrine cells first appear in a scattered fashion in two bilateral rows close to the midline during mid-somitogenesis and converge during late-somitogenesis to form a single islet dorsal to the nascent duodenum. We have examined development of the endocrine lineage in a number of previously described zebrafish mutations. Deletion of chordamesoderm in floating head (Xnot homolog) mutants reduces islet formation to small remnants, but does not delete the pancreas, indicating that notochord is involved in proper pancreas development, but not required for differentiation of pancreatic cell fates. In the absence of knypek gene function, which is involved in convergence movements, the bilateral endocrine primordia do not merge. Presence of trunk paraxial mesoderm also appears to be instrumental for convergence since the bilateral endocrine primordia do not merge in spadetail mutants. We discuss our findings on zebrafish pancreatogenesis in the light of evolution of the pancreas in chordates.  相似文献   

11.
12.
Epithelial-mesenchymal transitions: twist in development and metastasis   总被引:43,自引:0,他引:43  
Kang Y  Massagué J 《Cell》2004,118(3):277-279
  相似文献   

13.
14.
Pitx2 is a paired-related homeobox gene that is expressed in muscle progenitors during myogenesis. We have previously demonstrated that overexpression of Pitx2c isoform in myoblasts maintained these cells with a high proliferative capacity and completely blocked terminal differentiation by inducing high Pax3 expression levels (Martinez et al., 2006). We now report that Pitx2c-mediated proliferation vs. differentiation effect is maintained during in vivo myogenesis. In vivo Pitx2c loss of function leads to a decrease in Pax3+/Pax7− cell population in the embryo accompanied by an increase of Pax3+/Pax7+ cells. Pitx2c transient-transfection experiments further supported the notion that Pitx2c can modulate Pax3/Pax7 expression. Pitx2c but not Pitx3 controls Pax3/Pax7 expression, although redundant roles are elicited at the terminal myoblast differentiation. Contrary to Pitx2c, Pitx3 does not regulate cell proliferation or Pax3 expression, demonstrating the specificity of Pitx2c mediating these actions in myoblasts. Furthermore we demonstrated that Pitx2c modulates Pax3 by repressing miR27 expression and that Pax3-miR-27 modulation mediated by Pitx2c is independent of Pitx2c effects on cell proliferation. Therefore, this study sheds light on previously unknown function of Pitx2c balancing the different myogenic progenitor populations during myogenesis.  相似文献   

15.
16.
17.
贵州下寒武统牛蹄塘生物群中海绵新材料   总被引:5,自引:1,他引:4  
描述了贵州下寒武统牛蹄塘生物群中海绵化石1新属(Zunyispongiagen.nov.),2新种(Zunyispongiatriangulariagen.etsp.nov.,Choiafanensis.sp.nov.),通过对其形态功能的分析和讨论证实了寒武纪早期海绵动物的骨骼是由细小骨针向粗大骨针演变,骨架结构从不稳定型向稳定型发展。  相似文献   

18.
We used an antisense oligonucleotide (ODN) to inhibit laminin (LM) beta1 chain synthesis in mouse embryonic lung explants and cell cultures. The ODN spanned 17 bases located 13 bases downstream the initiation codon and contained phosphorothioate and C-5 propynyl pyrimidine modifications. Penetration of the ODN into the lung explants was confirmed by fluorescein isothiocyanate (FITC) tagging. 50 microM of antisense ODN decreased LM beta1 chain synthesis by 82+/-6.9% with no significant changes in the synthesis of other LM chains. The same antisense probe but without C-5 propynyl pyrimidine modification, another 17-mer ODN complementary to the LM beta1 initiation codon, and a 17-mer ODN complementary to the LM alpha1 initiation codon had no antisense activity. Lung explants exposed to the active LM beta1 antisense ODN showed decreased LM-1 and collagen type IV deposition at the epithelial-mesenchymal interface and an arrest in bronchial smooth muscle (SM) development. Histological examination and cell motility assays suggested that this arrest was due to impaired spreading and migration of SM cell precursors over the defective basement membrane (BM). Our studies indicate that beta1-chain containing LMs play a role in bronchial myogenesis.  相似文献   

19.
Transformation of endocardial endothelial cells into invasive mesenchyme is a critical antecedent of cardiac cushion tissue formation. The message for bone morphogenetic protein (BMP)-2 is known to be expressed in myocardial cells in a manner consistent with the segmental pattern of cushion formation [Development 109(1990) 833]. In the present work, we localized BMP-2 protein in atrioventricular (AV) myocardium in mice at embryonic day (ED) 8.5 (12 somite stage) before the onset of AV mesenchymal cell formation at ED 9.5. BMP-2 protein expression was absent from ventricular myocardium throughout the stages examined. After cellularization of the AV cushion at ED 10.5, myocardial BMP-2 protein expression was diminished in AV myocardium, whereas cushion mesenchymal cells started expressing BMP protein. Expression of BMP-2 in cushion mesenchyme persisted during later stages of development, ED 13.5-16, during valuvulogenesis. Intense expression of BMP-2 persisted in the valve tissue in adult mice. Based on the expression pattern, we performed a series of experiments to test the hypothesis that BMP-2 mediates myocardial regulation of cardiac cushion tissue formation in mice. When BMP-2 protein was added to the 16-18 somite stage (ED 9.25) AV endocardial endothelium in culture, cushion mesenchymal cells were formed in the absence of AV myocardium, which invaded into collagen gels and expressed the mesenchymal marker, smooth muscle (SM) alpha-actin; whereas the endothelial marker, PECAM-1, was lost from the invaded cells. In contrast, when noggin, a specific antagonist to BMPs, was applied together with BMP-2 to the culture medium, AV endothelial cells remained as an epithelial monolayer with little expression of SM alpha-actin, and expression of PECAM-1 was retained in the endocardial cells. When noggin was added to AV endothelial cells cocultured with associated myocardium, it blocked endothelial transformation to mesenchyme. AV endothelium treated with BMP-2 expressed elevated levels of TGFbeta-2 in the absence of myocardium, as observed in the endothelium cocultured with myocardium. BMP-2-supported elevation of TGFbeta-2 expression in endocardial cells was abolished by noggin treatment. These data indicated that BMP signaling is required in and BMP-2 is sufficient for myocardial segmental regulation of AV endocardial cushion mesenchymal cell formation in mice.  相似文献   

20.
The hippocampus develops from the medial wall of the forming cerebral cortex during embryonic life. Morphogenic signals from the Wnt pathway regulate several events during hippocampal development (Galceran et al.: Development 127:469-482, 2000; Lee et al.: Development 127:457-467, 2000; Zhou et al.: J Neurosci 24:121-126, 2004) and we have previously shown that Wnt receptors from the Frizzled (Fzd) family are expressed in discreet cortical domains during development (Kim et al.: Mech Dev 103:167-172, 2001). We generated transgenic mice using the putative control elements of the Fzd9 gene, normally selectively expressed in the developing and adult hippocampus, driving expression of a marker gene. These mice express LacZ in the brain in the same developmental distribution as endogenous Fzd protein. Postnatally, expression remains strong in the dendritic fields of hippocampal principal cells as well as hippocampal efferent axons. These mice provide a genetic and anatomic tool for analyzing development and reorganization in the hippocampus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号