首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Summary 3(2)-O-glycyl-adenosine-5-monophosphate is an intermediate in the conversion of N-[imidazolyl-(1)-carbonyl]-glycine to diketopiperazine in the presence of adenosine-5-monophosphate. The significance of these observations to prebiotic chemistry is discussed.Abbreviations AMP adenosine-5-monophosphate - A adenosine  相似文献   

2.
A convenient preparative synthesis of 2-amino-2-deoxyuridine was developed. Starting from 2-amino-2-deoxyuridine and 2-amino-2-deoxycytidine, monomers for the phosphoamidite oligonucleotide synthesis were obtained that carry a linker with methoxyoxalamide groups in position 2.  相似文献   

3.
We have determined the nucleotide sequence of a 7343 bp zein genomic clone (gZ22.8H3) from the maize inbred W64A. Computer-aided analysis of the DNA sequence revealed two contiguous 22 kDa -zein genes. The 5 gene (gZ22.8) encodes a complete polypeptide and contains putative regulatory sequences in both the 5 and 3 flanking regions that are typical of zein genes. In contrast, the 3 gene (gZ22.8) appears to be a pseudogene, because it contains numerous insertions and deletions that would prevent translation of the mRNA. Alignment of the 5 and 3 flanking sequences of both genes indicated that they resulted from a 3.3 kb DNA duplication event.  相似文献   

4.
Summary 2-Amino-2-deoxyuridine reacts efficiently with nucleoside 5-phosphorimidazolides in aqueous solution. The dinucleoside monophosphate analogues were obtained in yields exceeding 80% under conditions in which little reaction occurs with the natural nucleosides.In a similar way, the 5-phosphorimidazolide of 2-amino-2-deoxyuridine undergoes self-condensation in aqueous solution to give a complex mixture of oligomers.The phosphoramidate bond in the dinucleoside monophosphate analogues is stable for several days at room temperature and pH 7. The mechanisms of their hydrolysis under acidic and alkaline conditions are described.Abbreviations A adenosine - C cytidine - G guanosine - U uridine - T thymidine - UN 3 2-azido-2-deoxyuridine - UNH 2 2-amino-2-deoxyuridine - ImpA adenosine 5-phosphorimidazolide - ImpU uridine 5-phosphorimidazolide - ImpUN 3 2-azido-2-deoxyuridine 5-phosphorimidazolide - ImpUNH 2 2-amino-2-deoxyuridine 5-phosphorimidazolide - pA adenosine 5-phosphate - pU uridine 5-phosphate - pUN 3 2-azido-2-deoxyuridine 5-phosphate - pUNH 2 2-amino-2-deoxyuridine 5-phosphate - UpA uridylyl-[35]-adenosine - UpU uridylyl-[35]-uridine - UNpA adenylyl-[52]-2-amino-2-deoxy-uridine - UNpU uridylyl-[52]-2-amino-2-deoxyuridine (pUN)n n=2,3,4 [25]-linked oligomers of pUNH 2 poly(A) polyadenylic acid - Im imidazole - MeIm l-methylimidazole  相似文献   

5.
    
DNA polymerases II () and III() are the only nuclear DNA polymerases known to possess an intrinsic 3 5 exonuclease in Saccharomyces cerevisiae. We have investigated the spontaneous mutator phenotypes of DNA polymerase and 3 5 exonuclease-deficient mutants, pol3-01 and pol2-4, respectively. pol3-01 and pol2-4 increased spontaneous mutation rates by factors of the order of 102 and 101, respectively, measured as URA3 forward mutation and his7-2 reversion. Surprisingly, a double mutant pol2-4 pol3-01 haploid was inviable. This was probably due to accumulation of unedited errors, since a pol2-4/pol2-4 pol3-01/pol3-01 diploid was viable, with the spontaneous his7-2 reversion rate increased by about 2 × 103-fold. Analysis of mutation rates of double mutants indicated that the 3 5 exonucleases of DNA polymerases and can act competitively and that, like the 3 5 exonuclease of DNA polymerase the 3 5 exonuclease of DNA polymerase acts in series with the PMS1 mismatch correction system. Mutational spectra at a URA3 gene placed in both orientations near to a defined replication origin provided evidence that the 3 5 exonucleases of DNA polymerases and act on opposite DNA strands, but were in sufficient to distinguish conclusively between different models of DNA replication.  相似文献   

6.
Purified myelin from fresh calf brain white matter was subfractionated in a discontinuous sucrose gradient; significant recovery of protein and 2,3-cyclic nucleotide 3-phosphohydrolase (CNP) and 5-nucleotidase (5N) activities occurred in all three obtained subfractions, the highest recovery being in the light subfraction; highest 5N and CNP specific activities were in medium myelin. Purified myelin was also subfractionated in a continuous sucrose gradient, with a similar localization of protein; CNP activity and 5N activity maxima suggest that myelin may be a predominant locus of 5N in bovine brain white matter. Freezing of brain white matter caused an increase in protein and in CNP and 5N total activity recoveries in denser myelin subfractions. Cytochemistry showed the reaction product of 5N in the whole myelin fraction to be associated with the innermost, outermost and medial compact myelin layers. Effects of non-ionic detergent (Lubrol WX) on 5N activity were studied, and the results also suggest the intrinsic nature of 5N as an ectoenzyme in myelin membranes. Lubrol WX was viewed as an advisable detergent for the stimulation of myelin 5N activity, but not for the solubilization of this enzyme.  相似文献   

7.
Spent brewer's yeast was autolysed and used as a raw material for the preparation of 5-GMP-rich yeast extracts. Malt rootlets were used as a source of 5-phosphodiesterase. The crude enzyme was extracted from malt rootlets and pretreated to inactivate 5-nucleotidase. The optimum pretreatment conditions were heating at 65 °C for 30 min or 70 °C for 7 min. The effects of autolysis time, phosphodiesterase concentration and incubation period on 5-GMP content were examined. The suitable autolysis time was 8 h. The preferable enzyme treatment period was in the range of 8–14 h. Longer autolysis and enzyme incubation periods caused a decrease in the 5-GMP content from 0.7–0.9% (w/w) to 0.2–0.4% (w/w). The 5-GMP content in extracts from debittered and non-debittered yeast was similar. The highest 5-GMP content in yeast extract was 0.93% (w/w), obtained with a phosphodiesterase concentration of 1.6unit/ml of yeast extract (5% solids content).  相似文献   

8.
Recently, two deoxyribose analogs of NAD+ (2-deoxy and 3-deoxyNAD+) have been synthesized and purified in this laboratory. Whereas 2-deoxyNAD+ was an efficient substrate for arg-specific mon(ADP-ribosyl) transferases, it was not a substrate for poly(ADP-ribose) polymerase (PARP). Instead, it was a non-competitive inhibitor of NAD+ in the ADP-ribose polymerization reaction catalyzed by PARP. Thus, 2-deoxyNAD+ has been utilized to distinguish between mono(ADP-ribose) and poly(ADP-ribose) acceptor proteins. 2-deoxyNAD+ has also been used to characterize the arg-specific mono(2-deoxyADP-ribosyl)ation reaction of PARP with cholera toxin or avian mono(ADP-ribosyl)transferase. By contrast, 3-deoxyNAD+ can effectively be utilized as a substrate by PARP. However, while the estimated Km and Kcat of polymerization with 3-deoxyNAD+ can were 20 M and 0.11 moles/sec, the Km and Kcat with NAD+ as a substrate were 59 M and 1.29 moles/sec, respectively. Determination of the average size of 3-deoxyADP-ribose polymers indicated that chains no larger than four residues are synthesized with this substrate. Thus, the utilization of 3-deoxyNAD+ has facilitated the electrophoretic identification of poly(ADP-ribose) acceptor proteins in mammalian chromatin.  相似文献   

9.
4-Methylumbelliferyl 6-O-benzyl--d-lactoside (6Bn-MU-Lac) and some related compounds were synthesizedvia different selective reactions including phase-transfer glycosylation. Their suitability as substrates for a fluorometric assay of ceramide glycanase (CGase) was evaluated. Among others, the 6Bn-MU-Lac, which is resistant to exogalactosidase, was found to be a suitable substrate for routine assay of the CGase activity. For American leech CGase, theK m value is 0.232 mM at pH 5. Abbreviations: CGase, ceramide glycanase; Gal, galactose; Glc, Glucose; Lac, lactose; MU, 4-methylumbelliferone; MU-Lac, 4-methylumbelliferyl -d-lactoside; bBn-Lac, 6-O-benzyl-lactose; 6Bn-MU-Lac, 4-methylumbelliferyl 6-Obenzyl--d-lactoside; 46Bd-MU-Lac, 4-methylumbelliferyl 4,6-O-benzylidene--d-lactoside; MU-Cel, 4-methylumbellifery -d-cellobioside; 46Bd-MU-Cel, 4-methylumbelliferyl 4,6-O-benzylidene--d-cellobioside; TLC, thin layer chromatography;1H-NMR, proton nuclear magnetic resonance; GSL, glycosphingolipids; CSA, 10-camphorsulfonic acid. See Scheme 1 for chemical structures.  相似文献   

10.
Summary When adenosine cyclic 2,3-phosphate is evaporated from solution in the presence of simple catalysts such as aliphatic diamines at alkaline pH, and maintained in a dry state at moderate temperatures (25-85°C), self-polymerization to give oligonucleotides of chainlength up to at least 6 is observed. The products contain an excess of [35]-linkages over [25]-linkages. The effects of different catalysts and reaction conditions on the efficiency of the reaction are described. The prebiological relevance of these reactions is discussed.  相似文献   

11.
The cleavage of adenosine-5-monophosphate (5-AMP) and guanosine-5-monophosphate (5-GMP) by Ce4+ and lanthanide complex of 2-carboxyethylgermanium sesquioxide (Ge-132) in acidic and near neutral conditions was investigated by NMR , HPLC and measuring the liberated inorganic phosphate at 37°C and 50°C. The results showed that 5-GMP and 5-AMP was converted to guanine (G), 5-monophosphate (depurination of 5-GMP), ribose (depurination and dephosphorylation of 5-GMP), phosphate and adenine (A), 5-monophosphate (depurination of 5-AMP), ribose (depurination and dephosphorylation of 5-AMP), phosphate respectively by Ce4+. In presence of lanthanide complexes, 5-GMP and 5-AMP were converted to guanosine (Guo) and phosphate and adenosine (Ado) and phosphate respectively. The mechanism of cleaving 5-GMP and 5-AMP is hydrolytic scission  相似文献   

12.
Summary The cohesive single-stranded termini of temperate Streptomyces phage R4 were found to be complementary 11 base single-stranded 3-extended DNAs with the sequence: 5-CGCCGTGTCTT-3 3-GCGGCACAGAA-5  相似文献   

13.
In the course of characterization of glycolipid sulfotransferase from human renal cancer cells, the manner of inhibition of sulfotransferase activity with pyridoxal 5-phosphate was investigated. Incubation of a partially purified sulfotransferase preparation with pyridoxal 5-phosphate followed by reduction with NaBH4 resulted in an irreversible inactivation of the enzyme. When adenosine 3-phosphate 5-phosphosulfate was co-incubated with pyridoxal 5-phosphate, the enzyme was protected against this inactivation. Furthermore, pyridoxal 5-phosphate was found to behave as a competitive inhibitor with respect to adenosine 3-phosphate 5-phosphosulfate with aK i value of 287 µm. These results suggest that pyridoxal 5-phosphate modified a lysine residue in the adenosine 3-phosphate 5-phosphosulfate-recognizing site of the sulfotransferase.  相似文献   

14.
Isopropylidenation of lactose with 2,2-dimethoxypropane in the presence ofp-toluenesulfonic acid gave two products, which were identified by1H- and13C-NMR as 2,35,63,4-tri-O-isopropylidenelactose dimethyl acetal (1) and its 6-O-(2-methoxy)-isopropyl derivative (2). These products were used for the synthesis of 2-O-methyllactose (7), 2,6-di-O-methyllactose (9) and 2-O-benzyllactose (13).  相似文献   

15.
We studied modulating influences of a core oligoadenylate, 2,5-ApApA, on the voltage-operated potassium channels; the agent was injected into cloned cells of the rat pheochromocytoma PC-12. Diffusion of 2,5-ApApA from a micropipette into the cell evoked clear changes in the current-voltage relationships of the integral potassium current; when positive shifts of the membrane potential reached about +20 mV, a saturation phenomenon was observed. The dependence of the probability for open state of the voltage-operated potassium channels on the membrane potential was calculated using normalization of the potassium conductance graphs; it satisfactorily fit Boltzmann's equation. Under the influence of 2,5-ApApA, activation of the potassium channels became more strongly dependent on the voltage. Within the first minutes of the action of core oligoadenylate, the potassium conductance changed by e times at a shift of the membrane potential by 12 mV, while after a stationary level of the 2,5-ApApA effect had been attained (approximately from the 25th min), the same change in the potassium conductance needed only an 8-mV shift. We conclude that 2,5-ApApA-evoked conformation modifications in the structure of the potassium channels in the cells of rat PC-12 pheochromocytoma can result from an increase in the sensitivity of voltage sensors in the above-mentioned channels to changes in the membrane potential.  相似文献   

16.
Transmannosylation from mannotriose (Man1-4Man1-4Man) to the 4-position at the nonreducing end N-acetylglucosaminyl residue ofN,N-diacetylchitobiose was regioselectively induced through the use of -d-mannanase fromAspergillus niger. The enzyme formed the trisaccharide Man1-4GlcNAc1-4GlcNAc (3.7% of the enzyme-catalysed net decrease ofN,N-diacetylchitobiose) from mannotriose as a donor andN,N-diacetylchitobiose as an acceptor. Mannobiose (Man1-4Man) was also shown to be useful as a donor substrate for the desired trisaccharide synthesis.Abbreviations Man d-mannose - (M n) (n=1–5) -linkedn-mer of mannose - GlcNAc2 2-acetamido-2-deoxy--d-glucopyranosyl-(1–4)-2-acetamido-2-deoxy-d-glucose  相似文献   

17.
Summary The DNA·DNA duplex ·d(GCGCAAAACGCG) (designated duplex III) containing a 3-thioformacetal (3-TFMA) linkage in the center of the sequence was characterized in detail by two- and three-dimensional homonuclear NMR spectroscopy. The NMR results were analyzed and compared with those of two duplexes of the same sequence: One is an unmodified reference sequence and the other contains a formacetal (OCH2O) linkage at the central T^T step (designated duplex I and duplex II, respectively). In general, the NMR spectra of duplex III closely resemble those of the analogous duplexes I and II, suggesting an overall B-type structure adopted by the 3-TFMA-modified duplex III. Nonetheless, the detection of several distinct spectral features originating from the protons at the modification site is indicative of a local conformation that is clearly different from the corresponding region in duplexes I and II. The 3-thioformacetal linker, in contrast to the formacetal (FMA) linkage, cannot be accommodated in a conformation usually found in natural nucleic acid duplexes. As a consequence, the 3-TFMA-modified T6 sugar adopts an O4-endo form (an intermediate structure between the usual C2-endo and C3-endo forms). This change is accompanied by a change in the (C4–C3–S3–CH2) dihedral angle and by subsequent adjustments of other torsion angles along the backbone. Notably, this conformational readjustment at the T6–T7 backbone linkage is localized; its collective result has negligible effect on base-base stacking of the T6 and T7 residues. A close examination of the COSY data in all three duplexes reveals a subtle variation in sugar geometry, with more S-type character adopted by the modified duplexes II and III. The results of this study illustrate that, although the difference between FMA and 3-TFMA linkages is merely in the substitution of the T6(O3) in the former by a sulfur atom in the latter, the stereoelectronic difference in a single atom can induce significant local structural distortion in an otherwise well-structured oligonucleotide duplex.Supplementary material available from the authors: One table containing J12, J12 and J34 of duplexes I, II and III.  相似文献   

18.
Females of the medfly, Ceratitis capitata, prefer sucrose solutions containing ribonucleotides to sucrose solutions without them. The order of preference for the nucleotides was: 5GMP>GTP>5CMP>5IMP >dGMP>5UMP>5AMP>5XMP=ATP=2 & 3GMP=RP>3AMP.2AMP, guanosine, inosine, adenine and 5TMP produced no significant stimulation. Females sterilized by irradiation showed reduced attraction to 5GMP as compared to non-irradiated females.Optimal molecular configuration for phagostimulation includes: phosphorylation at the 5 position of the ribose, free hydroxyl groups at 2 and 3 on the ribose, and an NH2 group at the 2 position of the aromatic ring of purine.It is proposed that the 5GMP in yeast hydrolyzate can be used as a measure of the suitability of the hydrolyzate as a bait.
Résumé La femelle de la mouche méditerranéenne des fruits, Ceratitis capitata, préfère les solutions de sucrose contenant des ribonucléotides aux simples solutions de sucrose. Lórdre de préférence pour les nucléotides est le suivant: 5GMP>GTP>5CMP>5IMP >dGMP>5UMP>5AMP>5XMP=ATP =2 & 3GMP=RP>3AMP.Le 2AMP, la guanosine, l'inosine, l'adénine et le 5TMP provoquent une stimulation significative. Les femelles montrent aprés stérilisation par irradiation une attirance réduite pour le 5GMP par comparaison avec les femelles non-irradiées.La configuration moléculaire optimale pour la phagostimulation comprend: la phosphorylation en position 5 du ribose; des groupes hydroxyles libres en 2 et 3 sur le ribose; et un groupe NH2 en position 2 sur le noyau aromatique.Nous proposons que le 5GMP dans l'hydrolysat de levure puisse être utilisé pour mesurer la capacité de l'hydrolysat comme appât.

Abbreviations 5AMP Adenosine 5-monophosphate - 3AMP Adenosine 3-monophosphate - 2AMP Adenosine 2-monophosphate - dAMP 2-deoxyadenosine 5-monophosphate - ADP Adenosine 5-diphosphate - ATP Adenosine 5-triphosphate - 5GMP Guanosine 5-monophosphate - 2GMP Guanosine 2-monophosphate - 3GMP Guanosine 3-monophosphate - dGMP 2-deoxyguanosine 5-monophosphate - GDP Guanosine 5-diphosphate - GTP Guanosine 5-triphosphate - 5IMP Inosine 5-monophosphate - IDP Inosine 5-diphosphate - ITP Inosine 5-triphosphate - 5XMP Xanthosine 5-monophosphate - 5CMP Cytidine 5-monophosphate - dCMP 2 deoxycytidine 5-monophosphate - CTP Cytidine 5-triphosphate - 5UMP Uridine 5-monophosphate - 5TMP Thymidine 5-monophosphate - RP Ribose 5 monophosphate  相似文献   

19.
Crude extracts of Rhodospirillum rubrum catalyzed the formation of acid-volatile radioactivity from (35S) sulfate, (35S) adenosine-5-phosphosulfate, and (35S) 3-phosphoadenosine-5-phosphosulfate. An enzyme fraction similar to APS-sulfotransferases from plant sources was purified 228-fold from Rhodospirillum rubrum. It is suggested here that this enzyme is specific for adenosine-5-phosphosulfate, because the purified enzyme fraction metabolized adenosine-5-phosphosulfate, however, only at a rate of 1/10 of that with adenosine-5-phosphosulfate. Further, the reaction with 3-phosphoadenosine-5-phosphosulfate was inhibited with 3-phosphoadenosine-5-phosphate whereas this nucleotide had no effect on the reaction with adenosine-5-phosphosulfate. For this activity with adenosine-5-phosphosulfate the name APS-sulfotransferase is suggested. This APS-sulfotransferase needs thiols for activity; good rates were obtained with either dithioerythritol or reduced glutathione; other thiols like cysteine, 2-3-dimercaptopropanol or mercaptoethanol are less effective. The electron donor methylviologen did not catalyze this reaction. The pH-optimum was about 9.0; the apparent K m for adenosine-5-phosphosulfate was determined to be 0.05 mM with this so far purified enzyme fraction. Enzyme activity was increased with K2SO4 and Na2SO4 and was inhibited by 5-AMP. These properties are similar to assimilatory APS-sulfotransferases from spinach and Chlorella.Abbreviations APS adenosine-5-phosphosulfate - PAPS 3-phosphoadenosine-5-phosphosulfate - 5-AMP adenosine-5-monophosphate - 3-AMP adenosine-3-monophosphate - 3-5-ADP 3-phosphoadenosine-5-phosphate (PAP) - DTE dithiorythritol - GSH reduced glutathione - BAL 2-3-dimercaptopropanol  相似文献   

20.
Summary We have studied the reactions between adenosine 5-phosphorimidazolide and 9-(2-amino-2-deoxyxylofuranosyl) adenine (I) or 3-methylamino-3-deoxyadenosine (II), both with and without a poly (U) template. We find that both amino compounds react much more rapidly than does adenosine, in the absence of a template. The rate of reaction is greatly enhanced by a poly (U) template in the case of I, but the enhancement is slight in the case of II.Abbreviations A adenosine - xylo ANH2 9-(2-amino-2-deoxy--D-xylofuranosyl) adenine - ANHMe 3-methylamino-3-deoxyadenosine - ImpA adenosine 5-phosphorimidazolide - A3 pA adenylyl-[35]-adenosine - A2 pA adenylyl-[25]-adenosine - UNPA adenylyl-[52]-2-amino-2-deoxyuridine - xylo ANPA 9-[adenylyl-(52)-2-amino-2-deoxy--D-xylofuranosyl]adenine - A(NMe)pA adenylyl-[53]-3-methylamino-3-deoxyadenosine - pA adenosine 5phosphate - AppA P1, P2-diadenosine 5pyrophosphate - (pA)n n = 2, 3 [2-5]-linked oligomers of pA - A2 pA2 pA [2-5]-linked trinucleoside diphosphate of A - poly (U) polyuridylic acid  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号