首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Posttranslational modifications of proteins by small polypeptides including ubiquitination, neddylation (related to ubiquitin (RUB) conjugation), and sumoylation are implicated in plant growth and development, and they regulate protein degradation, location, and interaction with other proteins. Ubiquitination mediates the selective degradation of proteins by the ubiquitin (Ub)/proteasome pathway. The ubiquitin-like protein RUB is conjugated to cullins, which are part of a ubiquitin E3 ligase complex that is involved in auxin hormonal signaling. Sumoylation, by contrast, is known for its involvement in guiding protein interactions related to abiotic and biotic stresses and in the regulation of flowering time. ATG8/ATG12-mediated autophagy influences degradation and recycling of cellular components. Other ubiquitin-like modifiers (ULPs) such as homology to Ub-1, ubiquitin-fold modifier 1, and membrane-anchored Ub-fold are also found in Arabidopsis. ULPs share similar three-dimensional structures and a conjugation system, including E1 activating enzymes, E2 conjugation enzymes, and E3 ligases, as well as proteases for deconjugation and recycling of the tags. However, each of the ULP posttranslational modifications possesses its own specific enzymes and modifies its specific targets selectively. This review discusses recent findings on ubiquitination and ubiquitin-like modifier processes and their roles in the posttranslational modification of proteins in Arabidopsis.  相似文献   

2.
Cullin-RING ubiquitin-protein ligases such as the Skp1, cullin, F-box protein (SCF) have been implicated in many growth and developmental processes in plants. Normal SCF function requires that the CUL1 subunit be post-translationally modified by related to ubiquitin (RUB), a protein related to ubiquitin. This process is mediated by two enzymes: the RUB-activating and RUB-conjugating enzymes. In Arabidopsis, the RUB-activating enzyme is a heterodimer consisting of AXR1 and ECR1. Mutations in the AXR1 gene result in a pleiotropic phenotype that includes resistance to the plant hormone auxin. Here we report that the AXL (AXR1-like) gene also functions in the RUB conjugation pathway. Overexpression of AXL in the axr1-3 background complements the axr1-3 phenotype. Biochemical analysis indicates that AXL overexpression restores CUL1 modification to the wild-type level, indicating that AXR1 and AXL have the same biochemical activity. Although the axl mutant resembles wild-type plants, the majority of axr1 axl-1 double mutants are embryo or seedling lethal. Furthermore, the axl-1 mutation reveals novel RUB-dependent processes in embryo development. We conclude that AXR1 and AXL function redundantly in the RUB conjugating pathway.  相似文献   

3.
The ubiquitin-related protein RUB/Nedd8 is conjugated to members of the cullin family of proteins in plants, animals, and fungi. In Arabidopsis, the RUB conjugation pathway consists of a heterodimeric E1 (AXR1-ECR1) and a RUB-E2 called RCE1. The cullin CUL1 is a subunit in SCF-type ubiquitin protein ligases (E3s), including the SCF(TIR1) complex, which is required for response to the plant hormone auxin. Our previous studies showed that conjugation of RUB to CUL1 is required for normal SCF(TIR1) function. The RING-H2 finger protein RBX1 is a subunit of SCF complexes in fungi and animals. The function of RBX1 is to bind the ubiquitin-conjugating enzyme E2 and bring it into close proximity with the E3 substrate. We have identified two Arabidopsis genes encoding RING-H2 proteins related to human RBX1. Studies of one of these proteins indicate that, as in animals and fungi, Arabidopsis RBX1 is an SCF subunit. Reduced RBX1 levels result in severe defects in growth and development. Overexpression of RBX1 increases RUB modification of CUL1. This effect is associated with reduced auxin response and severe growth defects similar to those observed in axr1 mutants. As in the axr1 mutants, RBX1 overexpression stabilizes the SCF(TIR1) substrate AXR2/IAA7. The RBX1 protein is a component of SCF complexes in Arabidopsis. In addition to its direct role in SCF E3 ligase activity, RBX1 promotes the RUB modification of CUL1 and probably functions as an E3 ligase in the RUB pathway. Hypermodification of CUL1 disrupts SCF(TIR1) function, suggesting that cycles of RUB conjugation and removal are important for SCF activity.  相似文献   

4.
Ubiquitin and ubiquitin-like proteins use unique E1, E2, and E3 enzymes for conjugation to their substrates. We and others have recently reported that increases in the relative concentration of the ubiquitin-like protein NEDD8 over ubiquitin lead to activation of NEDD8 by the ubiquitin E1 enzyme. We now show that this results in erroneous conjugation of NEDD8 to ubiquitin substrates, such as p53, Caspase 7, and Hif1α, demonstrating that overexpression of NEDD8 is not appropriate for identification of substrates of the NEDD8 pathway.  相似文献   

5.
RELATED TO UBIQUITIN (RUB) modification of CULLIN (CUL) subunits of the CUL-RING ubiquitin E3 ligase (CRL) superfamily regulates CRL ubiquitylation activity. RUB modification requires E1 and E2 enzymes that are analogous to, but distinct from, those activities required for UBIQUITIN (UBQ) attachment. Gene duplications are widespread in angiosperms, and in line with this observation, components of the RUB conjugation pathway are found in multiples in Arabidopsis. To further examine the extent of redundancy within the RUB pathway, we undertook biochemical and genetic characterizations of one such duplication event- the duplication of the genes encoding a subunit of the RUB E1 into AUXIN RESISTANT1 (AXR1) and AXR1-LIKE1 (AXL1). In vitro, the two proteins have similar abilities to function with E1 C-TERMINAL-RELATED1 (ECR1) in catalyzing RUB1 activation and RUB1-ECR1 thioester formation. Using mass spectrometry, endogenous AXR1 and AXL1 proteins were found in complex with 3HA-RUB1, suggesting that AXR1 and AXL1 exist in parallel RUB E1 complexes in Arabidopsis. In contrast, AXR1 and AXL1 differ in ability to correct phenotypic defects in axr1-30, a severe loss-of-function AXR1 mutant, when the respective coding sequences are expressed from the same promoter, suggesting differential in vivo functions. These results suggest that while both proteins function in the RUB pathway and are biochemically similar in RUB-ECR1 thioester formation, they are not functionally equivalent.  相似文献   

6.
The ubiquitin/26S proteasome pathway is a major route for degrading abnormal and important short-lived regulatory proteins in eukaryotes. Covalent attachment of ubiquitin, which triggers entry of target proteins into the pathway, is accomplished by an ATP-dependent reaction cascade involving the sequential action of three enzymes, E1s, E2s and E3s. Although much of the substrate specificity of the pathway is determined by E3s (or ubiquitin-protein ligases, UPLs), little is known about these enzymes in plants and how they choose appropriate targets for ubiquitination. Here, we describe two 405 kDa E3s (UPL1 and 2) from Arabidopsis thaliana related to the HECT-E3 family that is essential in yeast and animals. UPL1 and 2 are encoded by 13 kbp genes 26 cM apart on chromosome I, that are over 95% identical within both the introns and exons, suggesting that the two loci arose from a recent gene duplication. The C-terminal HECT domain of UPL1 is necessary and sufficient to conjugate ubiquitin in vitro in a reaction that requires the positionally conserved cysteine within the HECT domain, E1, and an E2 of the UBC8 family. Given that HECT E3s help define target specificity of the ubiquitin conjugation, a continued characterization of UPL1 and 2 should be instrumental in understanding the functions of ubiquitin-dependent protein turnover in plants and for identifying pathway substrates.  相似文献   

7.
Identification of a substrate recognition site on Ubc9   总被引:1,自引:0,他引:1  
Human Ubc9 is homologous to ubiquitin-conjugating enzymes. However, instead of conjugating ubiquitin, it conjugates a ubiquitin homologue, small ubiquitin-like modifier 1 (SUMO-1), also known as UBL1, GMP1, SMTP3, PIC1, and sentrin. The SUMO-1 conjugation pathway is very similar to that of ubiquitin with regard to the primary sequences of the ubiquitin-activating enzymes (E1), the three-dimensional structures of the ubiquitin-conjugating enzymes (E2), and the chemistry of the overall conjugation pathway. The interaction of substrates with Ubc9 has been studied using NMR spectroscopy. Peptides with sequences that correspond to those of the SUMO-1 conjugation sites from p53 and c-Jun both bind to a surface adjacent to the active site Cys93 of human Ubc9, which has been previously shown to include residues that demonstrate the most significant dynamics on the microsecond to millisecond time scale. Mutations in this region, Q126A, Q130A, A131D, E132A, Y134A, and T135A, were constructed to evaluate the role of these residues in SUMO-1 conjugation. These alterations have significant effects on the conjugation of SUMO-1 with the target proteins p53, E1B, and promyelocytic leukemia protein and define a substrate binding site on Ubc9. Furthermore, the SUMO-1 conjugation site of p53 does not form any defined secondary structure when either free or bound to Ubc9. This suggests that a defined secondary structure at SUMO-1 conjugation sites in target proteins is not necessary for recognition and conjugation by the SUMO-1 pathway.  相似文献   

8.
Proteolysis of important regulatory proteins by the ubiquitin–proteosome pathway is a key aspect of cellular regulation in eukaryotes. Genetic studies in Arabidopsis indicate that response to auxin depends on the function of proteins in this pathway. The auxin transport inhibitor resistant 1 (TIR1) protein is part of a ubiquitin–protein–ligase complex (E3), known as SKP1 CDC53 F-boxTIR1 (SCFTIR1), that possibly directs ubiquitin-modification of protein regulators of the auxin response. In yeast, a similar E3 complex, SCFCDC4, is regulated by conjugation of the ubiquitin-related protein Rub1 to the Cdc53 protein. In Arabidopsis, the auxin-resistant1 (AXR1) gene encodes a subunit of the RUB1-activating enzyme, the first enzyme in the RUB-conjugation pathway. Loss of AXR1 results in loss of auxin response. These results suggest a model in which RUB1 modification regulates the activity of SCFTIR1, thereby directing the degradation of the repressors of the auxin response.  相似文献   

9.
In plants, the small protein related to ubiquitin (RUB) modifies cullin (CUL) proteins in ubiquitin E3 ligases to allow for efficient transfer of ubiquitin to substrate proteins for degradation by the 26S proteasome. At the molecular level, the conjugation of RUB to individual CUL proteins is transient in nature, which aids in the stability of the cullins and adaptor proteins. Many changes in cellular processes occur within the plant upon exposure to light, including well-documented changes in the stability of individual proteins. However, overall activity of E3 ligases between dark- and light-grown seedlings has not been assessed in plants. In order to understand more about the activity of the protein degradation pathway, overall levels of RUB-modified CULs were measured in Arabidopsis thaliana seedlings growing in different light conditions. We found that light influenced the global levels of RUBylation on CULs, but not uniformly. Blue light had little effect on both Cul1 and Cul3 RUBylation levels. However, red light directed the increase in Cul3 RUBylation levels, but not Cul1. This red-light regulation of Cul3 was at least partially dependent on the activation of the phytochrome B signaling pathway. The results indicate that the RUBylation levels on individual CULs change in response to different light conditions, which enable plants to fine-tune their growth and development to the various light environments.  相似文献   

10.
Related to Ubiquitin (RUB)/Nedd8 is a ubiquitin-like protein that covalently attaches to cullins, a subunit of the SCF (for Skp, Cdc53p/Cul1, and F-box protein) complex, an E3 ubiquitin ligase, and has been shown to be required for robust function of the complex. The effects of reducing protein levels for two Rub proteins, RUB1 and RUB2, were characterized in Arabidopsis thaliana. T-DNA insertional null lines homozygous at a single RUB-encoding locus were analyzed and found to have a wild-type phenotype. A double mutant was never recovered. More than one-quarter of the progeny from the self-fertilization of plants with a single functional RUB-encoding gene died as embryos at the two-cell stage. Outcrosses demonstrated reduced inheritance of the null allele from both the male and female parent. Hemigglutinin-tagged forms of RUB1 and RUB2 conjugate to the same cullin protein, CUL1, and produce the same conjugation pattern. To further understand the function of the RUB proteins, a construct designed to produce a double-stranded RUB1 mRNA was introduced into plants, and three lines with reduced levels of RUB1- and RUB2-encoding mRNA and RUB1/2 protein content were analyzed in detail. Mature plants were severely dwarfed, seedlings were insensitive to auxin in root assays, and dark-grown seedlings had a partial triple-response phenotype that was suppressed when seedlings were grown on ethylene perception or synthesis inhibitors. The dsrub lines produced threefold to fivefold more ethylene than the wild type. This study illustrates that RUB1 and RUB2 are genetically and biochemically redundant and demonstrates that RUB1/2 proteins are essential for early embryonic cell divisions and that they regulate diverse processes.  相似文献   

11.
In the multienzyme ubiquitin-dependent proteolytic pathway, conjugation of ubiquitin to target proteins serves as a signal for protein degradation. Rabbit reticulocytes possess a family of proteins, known as E2's, that form labile ubiquitin adducts by undergoing transthiolation with the ubiquitin thiol ester form of ubiquitin activating enzyme (E1). Only one E2 appears to function in ubiquitin-dependent protein degradation. The others have been postulated to function in regulatory ubiquitin conjugation. We have purified and characterized a previously undescribed E2 from rabbit reticulocytes. E2(230K) is an apparent monomer with a molecular mass of 230 kDa. The enzyme forms a labile ubiquitin adduct in the presence of E1, ubiquitin, and MgATP and catalyzes conjugation of ubiquitin to protein substrates. Exogenous protein substrates included yeast cytochrome c(Km = 125 mu M; kcat approximately 0.37 min-1) and histone H3 (Km less than 1.3 mu M; kcat approximately 0.18 min-1) as well as lysozyme, alpha-lactalbumin, and alpha-casein. E2(230K) did not efficiently reconstitute Ub-dependent degradation of substrates that it conjugated, either in the absence or in the presence of the ubiquitin-protein ligase that is involved in degradation. E2(230K) may thus be an enzyme that functions in regulatory Ub conjugation. Relative to other E2's, which are very iodoacetamide sensitive, E2(230K) was more slowly inactivated by iodoacetamide (k(obs) = 0.037 min-1 at 1.5 mM iodoacetamide; pH 7.0, 37 degrees C). E2(230K) was also unique among E2's in being subject to inactivation by inorganic arsenite (k(i)max = 0.12 min-1; K(0.5) = 3.3 mM; pH 7.0, 37 degrees C). Arsenite is considered to be a reagent specific for vicinal sulfhydryl sites in proteins, and inhibition is usually rapidly reversed upon addition of competitive dithiol compounds. Inactivation of E2(230K) by arsenite was not reversed within 10 min after addition of dithiothreitol at a concentration that blocked inactivation if it was premixed with arsenite; inactivation is therefore irreversible or very slowly reversible. We postulate that a conformation change of E2(230K) may be rate-limiting for interaction of enzyme thiol groups with arsenite.  相似文献   

12.
The plant hormone cytokinin plays essential roles in many aspects of growth and development. The cytokinin signal is transmitted by a multi‐step phosphorelay to the members of two functionally antagonistic classes of Arabidopsis response regulators (ARRs): type B ARRs (response activators) and type A ARRs (negative‐feedback regulators). Previous studies have shown that mutations in AXR1, encoding a subunit of the E1 enzyme in the RUB (related to ubiquitin) modification pathway, lead to decreased cytokinin sensitivity. Here we show that the cytokinin resistance of axr1 seedlings is suppressed by loss of function of the type A ARR family member ARR5. Based on the established role of the RUB pathway in ubiquitin‐dependent proteolysis, these data suggest that AXR1 promotes the cytokinin response by facilitating type A ARR degradation. Indeed, both genetic (axr1 mutants) and chemical (MLN4924) suppression of RUB E1 increased ARR5 stability, suggesting that the ubiquitin ligase that promotes ARR5 proteolysis requires RUB modification for optimal activity.  相似文献   

13.
Polyubiquitin (Ub) chains linked through Lys-48-Gly-76 isopeptide bonds represent the principal signal by which substrates of the Ub-dependent protein degradation pathway are targeted to the 26 S proteasome, but the mechanism(s) whereby these chains are assembled on substrate proteins is poorly understood. Nor have assembly mechanisms or definitive functions been assigned to polyubiquitin chains linked through several other lysine residues of ubiquitin. We show that rabbit reticulocyte lysate harbors enzymatic components that catalyze the assembly of unanchored Lys-29-linked polyubiquitin chains. This reaction can be reconstituted using the ubiquitin-conjugating enzyme (E2) known as UbcH5A, a 120-kDa protein(s) that behaves as a ubiquitin-protein ligase (E3), and ubiquitin-activating enzyme (E1). The same partially purified E3 preparation also catalyzes the assembly of unanchored chains linked through Lys-48. Kinetic studies revealed a K(m) of approximately 9 microM for the acceptor ubiquitin in the synthesis of diubiquitin; this value is similar to the concentration of free ubiquitin in most cells. Similar kinetic behavior was observed for conjugation to Lys-48 versus Lys-29 and for conjugation to tetraubiquitin versus monoubiquitin. The properties of these enzymes suggest that there may be distinct pathways for ubiquitin-ubiquitin ligation versus substrate-ubiquitin ligation in vivo.  相似文献   

14.
Mdm2-mediated NEDD8 conjugation of p53 inhibits its transcriptional activity   总被引:12,自引:0,他引:12  
  相似文献   

15.
The related-to-ubiquitin (RUB) protein is post-translationally conjugated to the cullin subunit of the SCF (SKP1, Cullin, F-box) class of ubiquitin protein ligases. Although the precise biochemical function of RUB modification is unclear, studies indicate that the modification is important for SCF function. In Arabidopsis, RUB modification of CUL1 is required for normal function of SCF(TIR1), an E3 required for response to the plant hormone auxin. In this report we show that an Arabidopsis protein called RCE1 functions as a RUB-conjugating enzyme in vivo. A mutation in the RCE1 gene results in a phenotype like that of the axr1 mutant. Most strikingly, plants deficient in both RCE1 and AXR1 have an embryonic phenotype similar to mp and bdl mutants, previously shown to be deficient in auxin signaling. Based on these results, we suggest that the RUB-conjugation pathway is required for auxin-dependent pattern formation in the developing embryo. In addition, we show that RCE1 interacts directly with the RING protein RBX1 and is present in a stable complex with SCF. We propose that RBX1 functions as an E3 for RUB modification of CUL1.  相似文献   

16.
Ubiquitin and UBL (ubiquitin-like) modifiers are small proteins that covalently modify other proteins to alter their properties or behaviours. Ubiquitin modification (ubiquitylation) targets many substrates, often leading to their proteasomal degradation. NEDD8 (neural-precursor-cell-expressed developmentally down-regulated 8) is the UBL most closely related to ubiquitin, and its best-studied role is the activation of CRLs (cullin-RING ubiquitin ligases) by its conjugation to a conserved C-terminal lysine residue on cullin proteins. The attachment of UBLs requires three UBL-specific enzymes, termed E1, E2 and E3, which are usually well insulated from parallel UBL pathways. In the present study, we report a new mode of NEDD8 conjugation (NEDDylation) whereby the UBL NEDD8 is linked to proteins by ubiquitin enzymes in vivo. We found that this atypical NEDDylation is independent of classical NEDD8 enzymes, conserved from yeast to mammals, and triggered by an increase in the NEDD8 to ubiquitin ratio. In cells, NEDD8 overexpression leads to this type of NEDDylation by increasing the concentration of NEDD8, whereas proteasome inhibition has the same effect by depleting free ubiquitin. We show that bortezomib, a proteasome inhibitor used in cancer therapy, triggers atypical NEDDylation in tissue culture, which suggests that a similar process may occur in patients receiving this treatment.  相似文献   

17.
Koegl M  Hoppe T  Schlenker S  Ulrich HD  Mayer TU  Jentsch S 《Cell》1999,96(5):635-644
Proteins modified by multiubiquitin chains are the preferred substrates of the proteasome. Ubiquitination involves a ubiquitin-activating enzyme, E1, a ubiquitin-conjugating enzyme, E2, and often a substrate-specific ubiquitin-protein ligase, E3. Here we show that efficient multiubiquitination needed for proteasomal targeting of a model substrate requires an additional conjugation factor, named E4. This protein, previously known as UFD2 in yeast, binds to the ubiquitin moieties of preformed conjugates and catalyzes ubiquitin chain assembly in conjunction with E1, E2, and E3. Intriguingly, E4 defines a novel protein family that includes two human members and the regulatory protein NOSA from Dictyostelium required for fruiting body development. In yeast, E4 activity is linked to cell survival under stress conditions, indicating that eukaryotes utilize E4-dependent proteolysis pathways for multiple cellular functions.  相似文献   

18.
The expression of the ubiquitin related protein Nedd8/RUB is essential for growth in most organisms. Nedd8/RUB has been shown to modify the cullin subunit of culling-based ubiquitin protein ligases (E3). Neddylation acts to regulate the function of these E3s and organisms with lesions in the neddylation process exhibit severe growth defects. In this review we describe the proteins that participate in neddylation and discuss a model for Nedd8/RUB regulation of ubiquitin ligase function.  相似文献   

19.
The recombinant yeast RAD6 and CDC34 gene products were expressed in Escherichia coli extracts and purified to apparent homogeneity. The physical and catalytic properties of RAD6 and CDC34 were similar but distinct from their putative rabbit reticulocyte homologs, E2(20k) and E2(32k), respectively. Like their reticulocyte counterparts, RAD6 and CDC34 are bifunctional enzymes competent in both ubiquitin:protein ligase (E3)-independent and E3-dependent conjugation reactions. RAD6 and E2(20k) exhibit marked specificity for the conjugation of core histones and catalyze the processive ligation of up to three ubiquitin moieties directly to such model substrates. RAD6 differed from its putative E2(20k) homolog in exhibiting simple saturation behavior in the kinetics of histone conjugation and in being unable to distinguish kinetically between core histones H2A and H2B, yielding identical values of kcat (1.9 min-1) and Km (20 microM). A slow rate of multiubiquitination involving formation of extended ubiquitin homopolymers on the histones was also observed with RAD6 and E2(20k). Comparison of conjugate patterns among native, reductively methylated, and K48R ubiquitin variants demonstrated that the linkage between ubiquitin moieties formed by E2(20k) and RAD6 was not through Lys-48 of ubiquitin, the site previously demonstrated as a strong signal for degradation of the target protein. In contrast, CDC34 differs from its putative homolog, E2(32k), in showing a specificity for conjugation to bovine serum albumin rather than to core histones. Both CDC34 and E2(32k) exhibit a marked kinetic selectivity for processive multiubiquitination via Lys-48 of ubiquitin. Calculations based on a model ubiquitin conjugation reaction indicated that E2(32k) and CDC34 preferentially catalyzed multiubiquitination over ligation of the polypeptide directly to target proteins. Formation of such multiubiquitin homopolymers by E2(32k) and CDC34 suggests these enzymes may commit their respective target proteins to degradation via an E3-independent pathway.  相似文献   

20.
The ubiqutin-proteasome system is the major pathway by which cells target proteins for degradation in a specific manner. The E3 ubiquitin ligase, which brings targeted proteins (substrates) and activated ubiquitin in close proximity, enabling covalent conjugation of ubiquitin to the substrate, is an essential component of this system. Of the E3 ligases, the cullin (CUL) ligases are of high interest because of their capacity to form multiple distinct E3 complexes to ubiquitinate a potentially large number of substrates. Of the six closely related cullins, very little is known about how specific substrates are recruited to CUL4-dependent ligases. A recent paper in Nature Cell Biology may shed some light on this issue as well as on the function of DDB1, a damaged-DNA binding protein that has long been associated with DNA repair.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号