首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Diabetes mellitus and its complications are associated with elevated oxidative stress, leading to much interest in antioxidant compounds as possible therapeutic agents. Two new classes of antioxidant compounds, the pyrrolopyrimidines and the 21-aminosteroids, are known to inhibit lipid peroxidation and other biomolecular oxidation. We hypothesized that in the presence of excess oxidants or the impaired antioxidant defense seen in diabetes mellitus, administration of antioxidants such as these may reverse the effects of diabetes on antioxidant parameters. This study measured the effects of subchronic (14 day) treatment with a pyrrolopyrimidine (PNU-104067F) or a 21-aminosteroid (PNU-74389G) in normal and diabetic Sprague-Dawley rats. Activity levels of superoxide dismutase, catalase, glutathione peroxidase, and glutathione reductase, concentrations of oxidized and reduced glutathione, and lipid peroxidation were used as measures of antioxidant defense in liver, kidney, heart, and brain tissue. In normal rats, the only effect was a 43% increase in cardiac lipid peroxidation after treatment with PNU-104067F. In diabetic rats, the only reversals of the effects of diabetes were a 30% decrease in hepatic glutathione peroxidase activity after PNU-74389G treatment and a 33% increase in cardiac glutathione disulfide concentration after PNU-104067F treatment. In contrast to these effects, increased cardiac glutathione peroxidase and catalase activities, increased brain glutathione peroxidase activity, increased hepatic lipid peroxidation, decreased hepatic glutathione content, and decreased hepatic catalase activity were seen in diabetic rats, reflecting an exacerbation of the effects of diabetes.  相似文献   

2.
Male rats (200 g) were rendered diabetic with one intraperitoneal injection of alloxan (150 mg/kg) or streptozotocin (60 mg/kg). In hyperglycemic animals within 3 hours after the injection, the binding of EGF to liver membranes decreased by 43-52%; the maximal drop was by 70% and persisted for the 20 days of the experiment. EGF receptors decreased in number with almost no changes in their affinity. Autophosphorylation of the receptors decreased parallel to the ligand binding. In animals that received lower doses and did not develop diabetes and in animals in whom diabetes was prevented by the injections of glucose (before alloxan) or nicotinamide (before streptozotocin) the binding of EGF to liver receptors remained normal. We conclude that the decreased expression of EGF receptors was caused by diabetes and not by the toxic effects of the diabetogenic compounds on the liver.  相似文献   

3.
The present study evaluates the combined effect of tetrahydrocurcumin and chlorogenic acid on oxidative stress in streptozotocin–nicotinamide-induced diabetic rats. Rats were rendered diabetic by a single intraperitoneal injection (i.p) of streptozotocin (45 mg/kg BW), 15 min after an i.p injection of nicotinamide (110 mg/kg BW). The levels of fasting plasma glucose and insulin were estimated. As an index of oxidative stress, the levels of enzymic antioxidants and lipid peroxidation products were analyzed in liver and kidney. Diabetic rats showed an increase in the levels of fasting plasma glucose, lipid peroxidative products such as thiobarbituric acid reactive substances and lipid hydroperoxides and a decrease in plasma insulin, and enzymic antioxidants viz., superoxide dismutase, catalase, glutathione peroxidase and glutathione-S-transferase. Combined administration of tetrahydrocurcumin (80 mg/kg BW) and chlorogenic acid (5 mg/kg BW) to diabetic rats for 45 days, reversed the biochemical changes to near normal. The above findings were supported by histological observations of the liver and kidney. Together the present study clearly reflects that combined dosage of tetrahydrocurcumin and chlorogenic acid augments enzymic antioxidants with a concomitant decrease in lipid peroxidation and protects against streptozotocin–nicotinamide-induced type 2 diabetes in experimental rats.  相似文献   

4.
It was established that acute poisoning of rats by 1,2-dichloroethane induced considerable changes in lipid peroxidation indices, glutathione content and activity of antioxidant enzymes--superoxidase, catalase, glutathione peroxidase in the brain tissue, erythrocytes and blood plasma. It was shown that nicotinamide in the dose of 200 mg/kg prevented considerable degree of the intoxication caused by 1,2-dichloroethane as well as activation of lipid peroxidation and inhibition of antioxidant defens enzyme activities in tissue of experimental animals.  相似文献   

5.
In light of evidence that some complications of diabetes mellitus may be caused or exacerbated by oxidative damage, we investigated the effects of subacute treatment with the antioxidant quercetin on tissue antioxidant defense systems in streptozotocin-induced diabetic Sprague-Dawley rats (30 days after streptozotocin induction). Quercetin, 2-(3,4-dihydroxyphenyl)-3,5,7-trihydroxy-4H-1-benzopyran-4-one, was administered at a dose of 10mg/kg/day, ip for 14 days, after which liver, kidney, brain, and heart were assayed for degree of lipid peroxidation, reduced and oxidized glutathione content, and activities of the free-radical detoxifying enzymes catalase, superoxide dismutase, glutathione peroxidase, and glutathione reductase. Treatment of normal rats with quercetin increased serum AST and increased hepatic concentration of oxidized glutathione. All tissues from diabetic animals exhibited disturbances in antioxidant defense when compared with normal controls. Quercetin treatment of diabetic rats reversed only the diabetic effects on brain oxidized glutathione concentration and on hepatic glutathione peroxidase activity. By contrast, a 20% increase in hepatic lipid peroxidation, a 40% decline in hepatic glutathione concentration, an increase in renal (23%) and cardiac (40%) glutathione peroxidase activities, and a 65% increase in cardiac catalase activity reflect intensified diabetic effects after treatment with quercetin. These results call into question the ability of therapy with the antioxidant quercetin to reverse diabetic oxidative stress in an overall sense.  相似文献   

6.
Chromium picolinate is advocated as an anti-diabetic agent for impaired glycemic control. It is a transition metal that exists in various oxidation states and may thereby act as a pro-oxidant. The present study has been designed to examine the effect of chromium picolinate supplementation on hyperglycemia-induced oxidative stress. Diabetes was induced in male Wistar rats by a single intraperitoneal injection of streptozotocin (50 mg/kg body weight) and chromium was administered orally as chromium picolinate (1 mg/kg body weight) daily for a period of four weeks after the induction of diabetes. As is characteristic of diabetic condition, hyperglycemia was associated with an increase in oxidative stress in liver in terms of increased lipid peroxidation and decreased glutathione levels. The activity of antioxidant enzymes like superoxide dismutase, catalase and glutathione reductase were significantly reduced in liver of diabetic animals. Levels of α-tocopherol and ascorbic acid were found to be considerably lower in plasma of diabetic rats. Chromium picolinate administration on the other hand was found to have beneficial effect in normalizing glucose levels, lipid peroxidation and antioxidant status. The results from the present study demonstrate potential of chromium picolinate to attenuate hyperglycemia-induced oxidative stress in experimental diabetes.  相似文献   

7.
The present study was aimed to investigate the effect of thymoquinone (TQ) on pancreatic insulin levels, tissue antioxidant and lipid peroxidation (LPO) status in streptozotocin (STZ) nicotinamide (NA) induced diabetic rats. Diabetes was induced in experimental rats by a single intraperitoneal (i.p) injection of STZ (45 mg/kg b.w) dissolved in 0.1 mol/L citrate buffer (pH 4.5), 15 min after the i.p administration of NA (110 mg/kg b.w). Diabetic rats exhibited increased blood glucose with significant decrease in plasma insulin levels. The activities of antioxidant enzymes catalase (CAT), glutathione peroxidase (GPx), glutathione-S-transferase (GST) and the levels of low-molecular weight antioxidants Vitamin C, Vitamin E and reduced glutathione (GSH) were decreased while increases in the levels of lipid peroxidation markers were observed in liver and kidney tissues of diabetic control rats as compared to control rats. In addition, diabetic rats showed an obvious decrease in pancreatic insulin levels. Administration of TQ (80 mg/kg b.w) to diabetic rats for 45 days significantly reversed the damage associated with diabetes. Biochemical findings were supported by histological studies. These results indicated that TQ exerts a protective action on pancreatic beta cell function and overcomes oxidative stress through its antioxidant properties.  相似文献   

8.
This study evaluated the protective effect of Montilla-Moriles appellation red wine (Cordoba, Spain) on oxidative stress, course and intensity of symptoms in experimental diabetes induced by the injection of streptozotocin in male Wistar rats. The rats were injected with a single dose of streptozotocin (60 mg/kg i.p.) and given water and red wine separately. After 4 weeks of treatment, blood samples were obtained to determine sugar and fructosamine concentrations in blood plasma, serum insulin concentration, and percentage of glycosylated hemoglobin in blood. The kidney, liver, and pancreas were removed to determine lipid peroxidation levels, reduced glutathione content, and antioxidative enzyme activity. A significant increase of glucose concentration in urine was found in the rats after injecting the streptozotocin. The administration of red wine before streptozotocin elevated reduced glutathione content and antioxidative enzyme activity, while lowering the lipid peroxidation level. Moreover, the red wine induced decreased levels of glycemia, plasma fructosamine and percentage of glycosylated hemoglobin, while increasing levels of insulin. These data suggest that red wine has a protective effect against oxidative stress and diabetes induced by streptozotocin.  相似文献   

9.
We studied the effects of administration of beta-resorcylidene aminoguanidine (RAG) to Wistar strain rats with experimental diabetes mellitus (DM) induced by streptozotocin. The effects studied included antioxidant levels in plasma and the liver, oxidative damage of lipids represented by the formation of substances reacting with thiobarbituric acid (TBARP) and selected biochemical indicators. The administration of RAG did not significantly affect antioxidant status of diabetic rats or hemoglobin glycation and plasma concentration of fructosamine. In diabetic rats, application of RAG decreased formation of TBARP in plasma but not in the liver. Moderate steatosis of liver and increased plasma levels of triacylglycerols in diabetic rats were significantly improved by application of RAG.  相似文献   

10.
Concentration of lipid peroxidation products and antioxidant enzyme activities in rat brain and erythrocytes and the effects of nicotinamide and nicotinoyl-GABA administration on these parameters were estimated on 21st day of streptozotocin-induced diabetes. It was demonstrated more then two-fold diabetes-induced accumulation of conjugated dienes and malondialdehyde in tissues studied. Superoxide dismutase and glutathione reductase activities of both brain homogenate and erythrocytes as well as catalase and glutathione peroxidase activities of brain homogenate were shown to decrease significantly in diabetic rats, meanwhile, catalase activity of erythrocytes was increased and glutathione peroxidase unchanged. So the correlation between changes in enzymatic antioxidant system in brain and erythocytes failed to be found. Alterations observed were virtually prevented by the course of nicotinamide and nicotinoyl-GABA treatment. The results suggested that the suppression of antioxidant system could be primary biochemical disturbance in diabetic neuropathy progression. It was shown that the antioxidant efficacy of nicotinoyl-GABA is lower than that of nicotinamide. It was suggested that the mechanism of antioxidant action of nicotinamide and its structural analogue consists of both scavenging of lipid peroxides and NAD biosynthesis that leads to activation and normalization of altered energy and lipid metabolism.  相似文献   

11.
Lipid disorders and increased oxidative stress may exacerbate some complications of diabetes mellitus. Previous studies have implicated the beneficial effects of some antioxidants, omega-3 polyunsaturated fatty acids (PUFAs), eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) in the protection of cells from the destructive effect of increased lipids and lipid peroxidation products. This study, therefore, was designed to investigate the effects of cod liver oil (CLO, Lysi Ltd. Island), which comprises mainly vitamin A, PUFAs, EPA and DHA. Effects were monitored on plasma lipids, lipid peroxidation products (MDA) and the activities of antioxidant enzymes, glutathione peroxidase (GSHPx) and catalase in heart, liver, kidney and lung of non-diabetic control and streptozotocin (STZ)-induced-diabetic rats. Two days after STZ-injection (55 mg kg(-1) i.p.), non-diabetic control and diabetic rats were divided randomly into two groups as untreated or treated with CLO (0.5 ml kg(-1) rat per day) for 12 weeks. Plasma glucose, triacylglycerol and cholesterol concentrations were significantly elevated in 12-week untreated-diabetic animals; CLO treatment almost completely prevented these abnormalities in triacylglycerol and cholesterol, but hyperglycaemia was partially controlled. CLO also provided better weight gain in diabetic animals. In untreated diabetic rats, MDA markedly increased in aorta, heart and liver but was not significantly changed in kidney and lung. This was accompanied by a significant increase in both GSHPx and catalase enzyme activities in aorta, heart, and liver of diabetic rats. In kidney and lung, diabetes resulted in reduced catalase while GSHPx was significantly activated. In aorta, heart, and liver, diabetes-induced changes in MDA were entirely prevented by CLO treatment. In the tissues of CLO-treated diabetic animals, GSHPx activity paralleled those of control animals. CLO treatment also caused significant improvements in catalase activities in every tissue of diabetic rats, but failed to affect MDA and antioxidant activity in control animals. The current study suggests that the treatment of diabetic rats with CLO provides better control of glucose and lipid metabolism, allows recovery of normal growth rate, prevents oxidative/peroxidative stress and ameliorates endogenous antioxidant enzyme activities in various tissues. Because CLO contains a plethora of beneficial compounds together, its use for the management of diabetes-induced complications may provide important advantages.  相似文献   

12.
The intraperitoneal or oral administration of pyrazinamide and pyrazinoic acid (pyrazine 2-carboxylic acid) resulted in a marked increase of the NAD content in rat liver. The injections of pyrazine and pyrazine 2,3-dicarboxylic acid exhibited no significant effect on the hepatic NAD content. The boiled extract obtained from liver and kidney of rat injected with either pyrazinamide or pyrazinoic acid exhibited a potent inhibitory effect on the aminocarboxymuconate-semialdehyde decarboxylase (EC 4.1.1.45) activity in either lier or kidney, although pyrazinamide or pyrazinoic acid per se did not inhibit the enzyme activity. The unknown inhibitor of aminocarboxymuconate-semialdehyde decarboxylase was dialysable and heat-stable, and mostly excreted in urine by 6 and 12 h after injected of pyrazinoic acid and pyrazinamide, respectively. Pyrazine 2,3-dicarboxylic acid, pyrazine, nicotinamide, nicotinic acid, tryptophan, anthranilic acid, 5-hydroxyanthranilic acid and quinolinic acid exhibited no significant effect on the aminocarboxymuconate-semialdehyde decarboxylase activity in liver and kidney at the concentration of 1 mM in the reaction mixture. The expired 14CO2 from L-[benzen ring-U-14C]tryptophan was markedly decreased by the pyrazinamide injection, while the urinary excretion of 14C-labeled metabolites from L-tryptophan, mainly quinolinic acid, was markedly increased. These results suggest that the glutarate pathway of L-tryptophan was strongly inhibited by the inhibitor produced after the administration of pyrazinoic acid and pyrazinamide. Pyrazinamide but not pyrazinoic acid also exhibited a significant inhibition of the nuclear enzyme poly(ADP-ribose) synthetase in rat liver.  相似文献   

13.
The effect of acrylonitrile (VCN) on erythrocyte lipid metabolism was investigated in vitro in metabolically active red cells from male Sprague-Dawley rats containing three types of hemoglobins: oxyhemoglobin, methemoglobin, and carbon monoxyhemoglobin. VCN at the concentration of 10 mM rapidly depleted erythrocyte glutathione (GSH) (75% of control) and induced lipid peroxidation (274% of control). Degradation of oxy- and methemoglobin was directly proportional to the extent of lipid peroxidation (r = 0.89). Addition of glucose to the incubation medium decreased hemoglobin degradation while it slightly increased VCN-induced lipid peroxidation. The highest amount of lipid peroxidation occurred in erythrocytes containing carbon monoxyhemoglobin and glucose. In the isolated red cell membranes incubated with 10 mM VCN, the lipid peroxidation was 400% of controls. VCN (25 mM) noncompetitively inhibited erythrocyte membrane Na+/K(+)-ATPase activity and the degree of inhibition was inversely proportional to the reaction temperature (r = -0.88). These findings indicate that the VCN induced hemoglobin degradation and lipid peroxidation are two extremes of a spectrum of oxidative damage in red cells leading to a change in physical state of membrane structure causing inhibition of adenosine triphosphate (ATPase) activity.  相似文献   

14.
Two possible reasons for the structural alterations of cell membranes caused by free radicals are lipid peroxidation and an increase in the intracellular calcium ion concentration. To characterize the alterations in membrane molecular dynamics caused by oxygen-derived free radicals and calcium, human erythrocytes were spin-labeled with 5-doxyl stearic acid, and alterations in membrane fluidity were quantified by electron spin resonance oxidase (0.07 U/mL) decreased membrane fluidity, and the addition of superoxide dismutase and catalase inhibited the effect on membrane fluidity of the hypoxanthine-xanthine oxidase system. Hydrogen peroxide (0.1 and 1 nM) also decreased membrane fluidity and caused alterations to erythrocyte morphology. In addition, a decrease in membrane fluidity was observed in erythrocytes incubated with 2.8 mM CaCl2. On the other hand, incubation of erythrocytes with calcium-free solution decreased the changes in membrane fluidity caused by hydrogen peroxide.

These results suggest that changes in membrane fluidity are directly due to lipid peroxidation and are indirectly the result of increased intracellular calcium concentration. We support the hypothesis that alterations of the biophysical properties of membranes caused by free radicals play an important role in cell injury, and that the accumulation of calcium amplifies the damge to membranes weakened by free radicals.  相似文献   


15.
1. Glutaric acidemia type I (GA I) is a neurometabolic disorder caused by deficiency of glutaryl-CoA dehydrogenase, which leads to tissue accumulation of predominantly glutaric acid (GA) and also 3-hydroxyglutaric acid to a lesser amount. Affected patients usually present progressive cortical atrophy and acute striatal degeneration attributed to the toxic accumulating metabolites. 2. In the present study, we determined a number of oxidative stress parameters, namely chemiluminescence, thiobarbituric acid-reactive substances (TBA-RS), total antioxidant reactivity (TAR), glutathione (GSH) levels, and the activities of catalase and glutathione peroxidase (GPx), in various tissues from rats chronically exposed to GA or to saline (controls). High GA concentrations, similar to those found in glutaric aciduria type I, were induced in the brain by three daily subcutaneous injections of saline-buffered GA (5 μmol/g body weight) to Wistar rats of 5–22 days of life. The parameters were assessed 12 h after the last GA administration in different brain structures, skeletal muscle, heart, liver, erythrocytes, and plasma. The lipid peroxidation parameters chemiluminescence and/or TBA-RS measurements were found significantly increased in midbrain, liver, and erythrocytes of GA-injected rats. The activity of GPx was significantly reduced in midbrain and markedly increased in liver. TAR measurement was significantly reduced in midbrain and liver. Furthermore, GSH levels were reduced in liver and heart. We also investigated the acute in vivo effect of GA administration on the same oxidative stress parameters in cerebral structures and erythrocytes from 22-day-old rats. We found that TBA-RS values were significantly increased in erythrocytes, TAR levels were markedly decreased in midbrain and cerebellum, and GPx activity mildly reduced in the midbrain. 3. These data showing an imbalance between antioxidant defences and oxidative damage, particularly in midbrain, liver, and erythrocytes from GA-injected rats, indicate that oxidative stress might be involved in GA toxicity and that the midbrain, where the striatum is located, is the brain structure more susceptible to GA chronic and acute exposition.  相似文献   

16.
Diabetes mellitus is a serious worldwide metabolic disease, which is accompanied by hyperglycaemia and affects all organs and body system. Zinc (Zn) is a basic cofactor for many enzymes, which also plays an important role in stabilising the structure of insulin. Liver is the most important target organ after pancreas in diabetic complications. In this study, we aimed to investigate the protective role of Zn in liver damage in streptozotocin (STZ)‐induced diabetes mellitus. There are four experimental groups of female Swiss albino rats: group I: control; group II: control + ZnSO4; group III: STZ‐induced diabetic animals and group IV: STZ‐diabetic + ZnSO4. To induce diabetes, STZ was injected intraperitoneally (65 mg/kg). ZnSO4 (100 mg/kg) was given daily to groups II and IV by gavage for 60 days. At the end of the experiment, rats were killed under anaesthesia and liver tissues were collected. In the diabetic group, hexose, hexosamine, fucose, sialic acid levels, arginase, adenosine deaminase, tissue factor activities and protein carbonyl levels increased, whereas catalase, superoxide dismutase, glutathione‐S‐transferase, glutathione peroxidase, glutathione reductase and Na+/K+‐ATPase activities decreased. The administration of Zn to the diabetic group reversed all the negative effects/activities. According to these results, we can suggest that Zn has a protective role against STZ‐induced diabetic liver damage.  相似文献   

17.
The intraperitoneal or oral administration of pyrazinamide and pyrazinoic acid (pyrazine 2-carboxylic acid) resulted in a marked increase of the NAD content in rat liver. The injections of pyrazine and pyrazine 2,3-dicarboxylic acid exhibited no significant effect on the hepatic NAD content. The boiled extract obtained from liver and kidney of rat injected with either pyrazinamide or pyrazinoic acid exhibited a potent inhibitory effect on the aminocarboxymuconate-semialdehyde decarboxylase (EC 4.1.1.45) activity in either liver or kidney, although pyrazinamide or pyrazinoic acid per se did not inhibit the enzyme activity. The unknown inhibitor of aminocarboxymuconate-semialdehyde decarboxylase was dialysable and heat-stable, and mostly excreted in urine by 6 and 12 h after injection of pyrazinoic acid and pyrazinamide, respectively. Pyrazine 2,3-dicarboxylic acid, pyrazine, nicotinamide, nicotinic acid, tryptophan, anthranilic acid, 5-hydroxyanthranilic acid and quinolinic acid exhibited no significant effect on the aminocarboxymuconate-semialdehyde decarboxylase activity in liver and kidney at the concentration of 1 mM in the reaction mixture. The expired 14CO2 from l-[benzen ring-U-14C]tryptophan was markedly decreased by the pyrazinamide injection, while the urinary excretion of 14C-labeled metabolites from l-tryptophan, mainly quinolinic acid, was markedly increased. These results suggest that the glutarate pathway of l-tryptophan was strongly inhibited by the inhibitor produced after the administration of pyrazinoic acid and pyrazinamide. Pyrazinamide but not pyrazinoic acid also exhibited a significant inhibition of the nuclear enzyme poly(ADP-ribose) synthetase in rat liver.  相似文献   

18.
Lipid peroxidation and activity of antioxidant enzymes in diabetic rats   总被引:10,自引:0,他引:10  
We hypothesized that oxygen free radicals (OFRs) may be involved in pathogenesis of diabetic complications. We therefore investigated the levels of lipid peroxidation by measuring thiobarbituric acid reactive substances (TBARS) and activity of antioxidant enzymes [superoxide dismutase (SOD), glutathione peroxidase (GSH-Px) and catalase (CAT)] in tissues and blood of streptozotocin (STZ)-induced diabetic rats. The animals were divided into two groups: control and diabetic. After 10 weeks (wks) of diabetes the animals were sacrificed and liver, heart, pancreas, kidney and blood were collected for measurement of various biochemical parameters. Diabetes was associated with a significant increase in TBARS in pancreas, heart and blood. The activity of CAT increased in liver, heart and blood but decreased in kidney. GSH-Px activity increased in pancreas and kidney while SOD activity increased in liver, heart and pancreas. Our findings suggest that oxidative stress occurs in diabetic state and that oxidative damage to tissues may be a contributory factor in complications associated with diabetes.  相似文献   

19.
The effect of acrylonitrile (VCN) on erythrocyte lipid metabolism was investigated in vitro in metabolically active red cells from male Sprague-Dawley rats containing three types of hemoglobins: oxyhemoglobin, methemoglobin, and carbon monoxyhemoglobin. VCN at the concentration of 10 mM rapidly depleted erythrocyte glutathione (GSH) (75% of control) and induced lipid peroxidation (274% of control). Degradation of oxy- and methemoglobin was directly proportional to the extent of lipid peroxidation (r = 0.89). Addition of glucose to the incubation medium decreased hemoglobin degradation while it slightly increased VCN-induced lipid peroxidation. The highest amount of lipid peroxidation occurred in erythrocytes containing carbon monoxyhemoglobin and glucose. In the isolated red cell membranes incubated with 10 mM VCN, the lipid peroxidation was 400% of controls. VCN (25 mM) noncompetitively inhibited erythrocyte membrane Na+/K+-ATPase activity and the degree of inhibition was inversely proportional to the reaction temperature (r = ?0.88). These findings indicate that the VCN induced hemoglobin degradation and lipid peroxidation are two extremes of a spectrum of oxidative damage in red cells leading to a change in physical state of membrane structure causing inhibition of adenosine triphosphatase (ATPase) activity.  相似文献   

20.
To evaluate the roles of MEOS (microsomal ethanol oxidizing system) and catalase in non-alcohol dehydrogenase (ADH) ethanol metabolism, MEOS and catalase activities in vitro and ethanol oxidation rates in hepatocytes from ADH-negative deermice were measured after treatment with catalase inhibitors and/or a stimulator of H2O2 generation. Inhibition of ethanol peroxidation by 3-amino-1,2,4-triazole (aminotriazole) was found to be greater than 85% up to 3 h and 80% at 6 h in liver homogenates. Urate (1 mM) which stimulates H2O2 production in living systems, increased ethanol oxidation fourfold in control but not in cells from aminotriazole-treated animals, documenting effective inhibition of catalase-mediated ethanol peroxidation by aminotriazole. While aminotriazole slightly depressed (15%) basal ethanol oxidation in hepatocytes, in vitro experiments showed a similar decrease in MEOS activity after aminotriazole pretreatment. Azide (0.1 mM), a potent inhibitor of catalase in vitro, also did not affect ethanol oxidation in control cells. By contrast, 1-butanol, a competitive inhibitor of MEOS, but neither a substrate nor an inhibitor of catalase, decreased ethanol oxidation rates in a dose-dependent manner. These results show that, in deermice lacking ADH, catalase plays little if any role in hepatic ethanol oxidation, and that MEOS mediates non-ADH metabolism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号