首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
Interactions of high density lipoproteins (HDL) with very low (VLDL) and low (LDL) density lipoproteins were investigated during in vitro lipolysis in the presence of limited free fatty acid acceptor. Previous studies had shown that lipid products accumulating on lipoproteins under these conditions promote the formation of physical complexes between apolipoprotein B-containing particles (Biochim. Biophys. Acta, 1987. 919: 97-110). The presence of increasing concentrations of HDL or delipidated HDL progressively diminished VLDL-LDL complex formation. At the same time, association of HDL-derived apolipoprotein (apo) A-I with both VLDL and LDL could be demonstrated by autoradiography of gradient gel electrophoretic blots, immunoblotting, and apolipoprotein analyses of reisolated lipoproteins. The LDL increased in buoyancy and particle diameter, and became enriched in glycerides relative to cholesterol. Both HDL2 and HDL3 increased in particle diameter, buoyancy, and relative glyceride content, and small amounts of apoA-I appeared in newly formed particles of less than 75 A diameter. Association of apoA-I with VLDL or LDL could be reproduced by addition of lipid extracts of lipolyzed VLDL or purified free fatty acids in the absence of lipolysis, and was progressively inhibited by the presence of increasing amounts of albumin. We conclude that lipolysis products promote multiple interactions at the surface of triglyceride-rich lipoproteins undergoing lipolysis, including physical complex formation with other lipoprotein particles and transfers of lipids and apolipoproteins. These processes may facilitate remodeling of lipoproteins in the course of their intravascular metabolism.  相似文献   

5.
6.
7.
8.
9.
We have studies the secondary structures of the protein moieties of very low density lipoproteins (VLDL) and intermediate density lipoproteins (IDL) of human serum by circular dichroism (CD). Two potential complications in the application of this technique to lipoproteins have been evaluated. First, using chronographic potentiometry in CD measurements of VLDL fractions of different mean particle diameters, we have analyzed statistically the CD signals in order to define the limits imposed by light scattering with respect to both particle diameter and wavelength. We found that CD measurements can be made to as low as 210 nm on particles of 520 A or smaller, and to 194 nm on particles of 450 A and below. Second, we have evaluated the CD contribution of lipid chromophores. Despite the high ratio of lipid to protein, the relative CD effect of the lipids is smaller than for low density lipoproteins (LDL). due to the extremely small ellipticity of natural VLDL triglycerides. Thus, CD measurements can be obtained with confidence on the preponderant bulk of normal VLDL. For the first time we report the CD spectra of human VLDL and IDL. In contrast with human LDL and the lipoproteins of the hypercholesterolemic rabbit, the entire CD SPECTRUM OF HUMAN VLDL shows increased ellipticity with decreasing temperature, which is completely reversible. We have found that the protein moieties of human VLDL and IDL contain substantially more helix (approximately 50%) than does that of human LDL.  相似文献   

10.
The surface area of very low density lipoproteins (VLDL) from the serum of 15 healthy donors and the surface area of artificial lipid particles have been estimated. The artificial particles were prepared as a mixture of egg phosphatidylcholine and triolein. Two fluorescent probes - energy donor and acceptor - were placed on the surface, and Forster's nonradiative energy transfer was measured; the transfer efficiency is a function of surface area. The fluorescent probe K-68 (4-[5-(phenyloxazolyl-2)-1-pentadecyl)pyridinium) was used as a donor, and DSP-12 (dimethylamino)styryl-N-dodecylpyridinium) was used as an acceptor. The specific surface area of the artificial lipid particles was estimated to be 0.585 +/- 0.015 nm2 per phosphatidylcholine molecule, which is 15% less than in lipid bilayers. The specific area of VLDL particles was 259 +/- 65 m2 per g of total VLDL. This value is close to the specific area of low density lipoproteins (LDL), and corresponds to the area of a spherical particle 10-12 nm in radius. However, VLDL are assumed to be much larger particles as compared with LDL. Therefore, the new data of the VLDL surface area raise a problem of revision of the existing VLDL models.  相似文献   

11.
We tested the hypothesis that apolipoproteins, the protein constituents of plasma lipoproteins, are secreted into bile. We examined human gallbladder bile obtained at surgery (N = 54) from subjects with (N = 44) and without (N = 10) gallstones and hepatic bile collected by T-tube drainage (N = 9) after cholecystectomy. Using specific radioimmunoassays for human apolipoproteins A-I and A-II, the major apoproteins of high density lipoproteins, for apolipoproteins C-II and C-III, major apoproteins of very low density lipoproteins, and for apolipoprotein B, the major apoprotein of low density lipoproteins, we found immunoreactivity for these five apolipoproteins in every bile sample studied in concentrations up to 10% of their plasma values. Using double immunodiffusion, we observed complete lines of identity between bile samples and purified apolipoproteins A-I, A-II, or C-II. Using molecular sieve chromatography, we found identical elution profiles for biliary apolipoproteins A-I, A-II and B and these same apolipoproteins purified from human plasma. When we added high density lipoproteins purified from human plasma to lipoprotein-free solutions perfusing isolated rat livers, we detected apolipoproteins A-I and A-II in bile. Similarly, when we added low density lipoproteins purified from human plasma to lipoprotein-free solutions perfusing isolated livers of rats treated with ethinyl estradiol in order to enhance hepatic uptake of low-density lipoproteins, we found apolipoprotein B in bile. These data indicate that apolipoproteins can be transported across the hepatocyte and secreted into bile.  相似文献   

12.
An exponential gradient gel with 0-10% acrylamide and 0.5% agarose was developed for electrophoresis of intact high molecular weight lipoproteins. This system resolves very low density lipoproteins, intermediate density lipoproteins, lipoprotein a, and low density lipoproteins in a size-dependent fashion. The characteristic relative mobility of these species can be determined in relation to protein and colloidal gold reference materials. Electron microscopy of selected lipoprotein fractions confirmed that relative mobility was related to apparent lipoprotein diameter. The composite gel medium can be used with prestained lipoproteins and permits immunoelectroblotting for qualitative analysis of apolipoprotein constituents.  相似文献   

13.
14.
15.
The chicken oocyte receptor for low and very low density lipoproteins has been identified and characterized. Receptor activity present in octyl-beta-D-glucoside extracts of oocyte membranes was measured by a solid phase filtration assay, and the receptor was visualized by ligand blotting. The protein had an apparent Mr of 95,000 in sodium dodecyl sulfate-polyacrylamide gels under nonreducing conditions and exhibited high affinity for apolipoprotein B-containing lipoproteins, but not for high density lipoproteins or lipoproteins in which lysine residues had been reductively methylated. Binding of lipoproteins was sensitive to EDTA, suramin, and treatment with Pronase. In these aspects, the avian oocyte system was analogous to the mammalian low density lipoprotein receptor in somatic cells. Furthermore, a structural relationship between the mammalian and avian receptors was revealed by immunoblotting: polyclonal antibodies directed against the purified bovine low density lipoprotein receptor reacted selectively with the 95-kDa chicken receptor present in crude oocyte membrane extracts.  相似文献   

16.
Very low density lipoproteins were separated by gel filtration on Sepharose 4B. A decrease in mean particle diameter and flotation rate was seen with increasing elution volumes. The smaller lipoproteins had relatively more protein and phospholipid and less triglyceride than the larger ones. No differences were noted in the relative contents of the various phospholipids or partial glycerides between small and large lipoproteins. Fatty acid patterns of triglycerides and cholesteryl esters were also similar for the various lipoproteins. Relatively more lecithin containing linoleoyl acyl groups was found in smaller lipoproteins of some subjects. More of the protein of smaller lipoproteins was apo-LDL protein. Apo-HDL peptide was lost from the very low density lipoprotein as a consequence of the gel filtration.  相似文献   

17.
18.
In two subjects the specific activity of esterified cholesterol in plasma lipoprotein subfractions was measured for up to 9 hr after an intravenous injection of [(3)H]mevalonic acid. It was found to be consistently higher in larger (S(f) > 100) than in smaller (S(f) 20-100) very low density lipoproteins (VLDL). Four subjects were given an intravenous injection of heparin so that the VLDL could be studied as its concentration fell and subsequently rose again. During the first hour the relative reduction was greatest for triglyceride, intermediate for free cholesterol, and least for esterified cholesterol. Between 1 and 7 hr postheparin, the VLDL pool was restored, but the pattern of increase of individual lipids was not parallel. The triglyceride increment was much greater during the 1-4-hr period than during the 4-7-hr period; in three of the subjects the free cholesterol increment was also greater during the earlier period. The increase in esterified cholesterol, however, was consistently greater during the 4-7-hr period. In six other subjects the specific activity of VLDL esterified cholesterol was related to that of its possible plasma precursors in samples collected at 1-hr intervals for 8 hr after the injection of [(3)H]mevalonic acid. Free cholesterol emerged as the most likely immediate precursor with the possibility of a hepatic as well as an intraplasma origin. The results did not support a major in vivo transfer of esterified cholesterol from high density lipoproteins to VLDL.  相似文献   

19.
We have found that in vitro lipolysis of human very low density lipoproteins (VLDL) by purified bovine milk lipoprotein lipase (LpL) promotes degradation of the apolipoprotein (apo) B moiety of VLDL. Analysis by sodium dodecyl sulfate-polyacrylamide gradient gel electrophoresis showed that lipolysis of VLDL by purified LpL for 1 h at 37 degrees C induced the selective degradation of the high Mr apo-B (apo-B-100) from most hypertriglyceridemic VLDL and from a few normolipidemic VLDL into several small fragments with molecular weights ranging from 90,000-490,000. No detectable degradation of apo-B occurred in control VLDL when incubated without LpL. The apo-E moiety of VLDL from certain individuals was also degraded following lipolysis of VLDL, and the extent of degradation of apo-B and -E in VLDL was varied among the individual VLDL. The major degradation products of apo-E, identified from the gel, were 31,000- and/or 28,000-Da species. In contrast to the apo-E moiety of VLDL, purified apo-E was not degraded when incubated with LpL. Incubation of low density lipoproteins (LDL) with LpL showed only a minimal effect on the apoproteins of LDL. When high density lipoprotein (HDL) was included in the lipolysis mixture as an acceptor of lipolytic surface remnants, the apoproteins of HDL remained unaltered, while the apo-B moiety of VLDL remnants in the mixture was degraded. Inclusion of protease inhibitors in the lipolysis mixture prevented the degradation of apo-B, but the hydrolysis of VLDL-triglyceride was minimally affected. A selective degradation of apo-B in VLDL also occurred during lipolysis of VLDL when VLDL was perfused through rat hearts. These results suggest that conformational changes in apo-B and apo-E caused by VLDL lipolysis may increase the susceptibility of apo-B and apo-E to degradation by the proteases co-isolated with VLDL. The consequences of the lipolysis-induced degradation of apo-B and apo-E on changes in metabolic properties of VLDL remnants remain to be determined.  相似文献   

20.
Our previous studies showed that very low density lipoproteins, Sf 60-400 (VLDL), from hypertriglyceridemia subjects, but not VLDL from normolipemic subjects, suppress HMG-CoA reductase activity in normal human fibroblasts. To determine if this functional abnormality of hypertriglyceridemic VLDL resulted from differences in uptake of the VLDL by the low density lipoprotein (LDL) receptor pathway, we isolated VLDL subclasses from the d less than 1.006 g/ml fraction of normal and hypertriglyceridemic plasma by flotation through a discontinuous salt gradient for direct and competitive binding studies in cultured human fibroblasts. VLDL from the plasma of subjects with hypertriglyceridemia types 4 and 5 were at least as effective as normal LDL in competing for 125I-labeled LDL binding, uptake, and degradation when compared either on the basis of protein content or on a particle basis. By contrast, normolipemic Sf 60-400 VLDL were ineffective in competing with the degradation of 125I-labeled LDL, and Sf 20-60 VLDL (VLDL3) were less effective in reducing specific 125I-labeled LDL degradation than were LDL, consistent with their effects on HMG-CoA reductase activity. In direct binding studies, radiolabeled VLDL from hypertriglyceridemic but not normolipemic subjects were bound, internalized, and degraded with high affinity and specificity by normal fibroblasts. Uptake and degradation of iodinated hypertriglyceridemic VLDL Sf 100-400 showed a saturable dependence on VLDL concentration. Specific degradation plateaued at approximately 25 micrograms VLDL protein/ml, with a half maximal value at 6 micrograms/ml. The most effective competitor of hypertriglyceridemic VLDL uptake and degradation was hypertriglyceridemic VLDL itself. LDL were effective only at high concentrations. Uptake of normal VLDL by normal cells was a linear rather than saturable function of VLDL concentration. By contrast, cellular uptake of the smaller normal VLDL3 was greater than uptake of larger VLDL and showed saturation dependence. After incubation of normal VLDL with 125I-labeled apoprotein E, reisolated 125I-E-VLDL were as effective as LDL in suppression of HMG-CoA reductase activity, suggesting that apoE is involved in receptor-mediated uptake of large suppressive VLDL. We conclude that 1) hypertriglyceridemic VLDL Sf 60-400 are bound, internalized, and degraded by normal fibroblasts primarily by the high affinity LDL receptor-mediated pathway; 2) by contrast, normal VLDL, Sf 60-400 are bound, internalized, and degraded by normal fibroblasts primarily by nonspecific, nonsaturable routes; and 3) of the normal VLDL subclasses, only the smallest Sf 20-60 fraction is bound and internalized via the LDL pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号