首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract Cells fixed during freezing or plasmolysis were used to study membrane alterations in hardened and non-hardened Brassica napus suspension-cultured cells and rye leaf mesophyll cells. The plasmalemma in non-hardened rye mesophyll cells formed multilamellar vesicles during lethal freezing at high subzero temperatures (–5°C). These vesicles became highly condensed at lower subzero temperatures (–10°C). Conversely, cold-hardened rye mesophyll cells did not undergo membrane alterations at these temperatures. The results from plasmolysis of B. napus and rye mesophyll cells hardened by ABA at 25 °C and low temperature (2°C), respectively, verify the cell response to lethal freezing. Again there was a continuum of responses with 1 kmol m?3 balanced salt causing multilamellar protrusions. Appression of the plasmalemma against the tonoplast to form multilamellar vesicles and the invagination of these vesicles into the tonoplast were also observed in rye cells undergoing lethal plasmolysis. Increasing the plasmolysing solution to 3 kmol m?3 occasionally caused the formation of multilamellar vesicles on the cell surface of hardened rye mesophyll cells.  相似文献   

2.
A plasmolytic cycle: The fate of cytoskeletal elements   总被引:4,自引:0,他引:4  
Summary In most plant cells, transfer to hypertonic solutions causes osmotic loss of water from the vacuole and detachment of the living protoplast from the cell wall (plasmolysis). This process is reversible and after removal of the plasmolytic solution, protoplasts can re-expand to their original size (deplasmolysis). We have investigated this phenomenon with special reference to cytoskeletal elements in onion inner epidermal cells. The main processes of plasmolysis seem to be membrane dependent because destabilization of cytoskeletal elements had only minor effects on plasmolysis speed and form. In most cells, the array of cortical microtubules is similar to that found in nonplasmolyzed states except that longitudinal patterns seen in some control cells were never observed in plasmolyzed protoplasts of onion inner epidermis. As soon as deplasmolysis starts, cortical microtubules become disrupted and only slowly regenerate to form an oblique array, similar to most nontreated cells. Actin microfilaments responded rapidly to the plasmolysis-induced deformation of the protoplast and adapted to its new form without marked changes in organization and structure. Both actin microfilaments and microtubules can be present in Hechtian strands, which, in plasmolyzed cells, connect the cell wall to the protoplast. Anticytoskeletal drugs did not affect the formation of Hechtian strands.Abbreviations DIC differential interference contrast - DiOC6(3) 3,3-dihexyloxacarbocyanine iodide Dedicated to Professor Walter Gustav Url on the occasion of his 70th birthday  相似文献   

3.
In order to distinguish between several possible mechanisms of frost hardening in winter wheat (Triticum aestivum L.) cells from two hardy and two tender cultivars were plasmolyzed in CaCl2 solution at room temperature and cell volumes estimated by microscopic examination. Analyses of Boyle-van't Hoff plots of these data reveal that all cells from cultivars progressively increase their intracellular solute concentration up to 20 days hardening. This increase, which we had predicted from published calorimetric data to be the sole mechanism of hardening explained less than half of the increase in hardening seen in the most hardy cultivar, Kharkov. Hardening also increased the osmotically inactive volume.At CaCl2 concentrations greater than 5%, plasmolyzed protoplasts departed further from the Boyle-van't Hoff prediction, remaining larger than expected until some higher concentration of CaCl2, where protoplast volume again sharply decreased. In all cultivars except hardened Kharkov, the concentration of CaCl2 producing this abrupt volume decrease had a freezing point corresponding to the killing temperature. If this concentration was exceeded during plasmolysis, then the protoplasts burst during deplasmolysis at some volume less than their original volume.We interpret these data to mean that, in addition to the often described hardening mechanism of increased cell solute and water binding, winter wheat shows a third mechanism, a mechanical resistance to protoplast shrinkage which produces volumes larger than those predicted during osmotic stress. The resisting element appears to be the plasma membrane itself. Shrinkage brings the membrane under compressive stress, developing tangential pressure within it. Cell injury occurs when the cell membrane area has been reduced to the point at which irreversible loss of membrane material is inevitable. Cell death occurs during deplasmolysis when the protoplast bursts because its membrane contains insufficient material to subtend the area of the cell wall.Of the cultivars tested, hardened Kharkov was unique in avoiding injury. Hardened Kharkov was injured only after the volume inflection had been greatly exceeded. Refractile droplets of lipid appeared in the cytoplasm of hardened Kharkov protoplasts during plasmolysis but disappeared during deplasmolysis suggesting that hardy Kharkov was able reversibly to store membrane lipids in cytoplasmic vesicles and return them to the membrane on deplasmolysis.  相似文献   

4.
A transient plasmolysis/deplasmolysis (plasmolytic cycle) of onion epidermal cells has been shown to induce the formation of fluid-phase endocytic vesicles. Plasmolysis in the presence of the membrane-impermeant fluorescent probes Lucifer Yellow CH (LYCH) and Cascade Blue hydrazide resulted in the uptake of these probes by fluid-phase endocytosis. Following deplasmolysis, many of the dye-containing vesicles left their parietal positions within the cell and underwent vigorous streaming in the cytoplasm. Vesicles were observed to move within transvacuolar strands and their movements were recorded over several hours by video-microscopy. Within 2 h of deplasmolysis several of the larger endocytic vesicles had clustered around the nuclear membrane, apparently lodged in the narrow zone of cytoplams surrounding the nucleus. In further experiments LYCH was endocytically loaded into the cells during the first plasmolytic cycle and Cascade Blue subsequently loaded during a second plasmolytic cycle. This resulted in the introduction of two populations of endocytic vesicles into the cells, each containing a different probe. Both sets of vesicles underwent cytoplasmic streaming. The data are discussed in the light of previous observations of fluid-phase endocytosis in plant cells.  相似文献   

5.
Wall-to-membrane linkers in onion epidermis: some hypotheses   总被引:6,自引:1,他引:5  
Wall-to-wall linkage may help maintain cell integrity and polarity, and focus mechanical stress from wall to mech-anotransductive ion channels within the plasm a lemma. When cells of onion bulb scale epidermis shrink during plasmolysis with CaCl2, the plasmalemma remains attached to the cell wall by Hechtian strands which we hypothesize might possibly be drawn out from linkages fulfilling the above functions. We show that at least many of the attachment loci are independent of the plasmodesmata. A priori, wall glycoproteins seem good candidates for the wall-to-membrane linkers; therefore, we investigated the distribution in wall and plasmalemma of antigen recognized by antibody to hydroxyproline-rich glycoprotein (HRGP). Using fluorescent secondary antibodies, we showed that polyclonal antibodies prepared against wall HRGP from soybean bind to the onion walls (following mild depectination), but also bind to the plasmalemma after the wall is enzymatically digested. The distribution of the antibodies is punctate. On the plasmalemma, the points tend to be scattered more or less uniformly, but can cluster at termini of large streaming strands (which rarely form in wall-constrained cells.) These streaming strands can be seen to exert tension on the membrane. We hypothesize that (1) the antigen on the surface of the protoplast may correspond to the antigen in the walls, (2) such antigen may be responsible for adhesion of membrane to wall at the linkage sites visualized by CaCl2 plasmolysis, and (3) the linkage sites may be transmembrane proteins to which cytoskeleton can attach at the inner surface.  相似文献   

6.
Closterium acerosum Ehrenberg (Chlorophyta) produced a distinct network of thin cytoplasmic strands, or Hechtian strands, upon controlled plasmolysis in a sucrose solution. The strands persisted for 30 min or longer and could be visualized with both LM and EM. Near the plasma membrane of the polar zones of plasmolyzing protoplasts, the strands formed a “lattice”‐like arrangement with interstrand spacing of 120–130 nm. The strands terminated at the fibrous zone of the inner cell wall stratum. Although actin cables could be found attached to the plasma membrane upon rhodamine phalloidin labeling of membrane ghosts, neither microfilaments nor microtubules were found in Hechtian strands at any stage of development. The formation of strands was not disrupted by centrifugation at 8000 g or by repeated cycles of plasmolysis‐deplasmolysis. Application of microtubule‐ or microfilament‐affecting agents or various proteolytic/polysaccharide‐degrading enzymes did not disrupt the formation of strands. Cold treatment of cells resulted in the formation of Hechtian strands.  相似文献   

7.
Summary The main purpose of this investigation was to determine the primary site of resistance to the penetration of water in the protoplasm of inner epidermal cells of theAllium cepa bulb scale. Since it is known that the tonoplast has a very high water permeability, it was left to decide whether the mesoplasm and/or the plasmalemma is the main barrier. According to a theory ofHöfler, the mesoplasm is the main barrier. Because it is not possible to isolate the plasmalemma, the influence of the mesoplasm was removed by causing rosette systrophy. In rosette systrophy, almost all of the mesoplasm is collected arround the nucleus and the tonoplast and plasmalemma lie adjacent in the greater part of the protoplast.Cells with and without systrophy are found in the same preparation but show no great difference in water permeability. The systrophied cells have even a lower water permeability constant than the non-systrophied cells. This indicates clearly that the mesoplasm is of no significant importance for water permeability, and that the primary site of penetration resistance to water is the plasmalemma.It was possible to measure the water permeability constants of tonoplasts. While the 2 Kwo values for protoplasts are approximately 6–8×10–4 cm/sec, those for tonoplasts are about 100 times higher.The water permeability constants found with glucose solutions were essentially the same as those found in solutions of KCl + CaCl2. Other less inert substances, such as EDTA, give different (higher) values.Using the method of partial deplasmolysis and plasmolysis, it was possible to change the protoplast volume several times, once until the eight time in K-Ca solutions and until the fifth time in glucose solutions.The water permeability constants do not change appreciably, neither in the sequential plasmolysis steps nor between deplasmolysis and plasmolysis. Yet there is a small but significant difference between deplasmolysis and plasmolysis values. The deplasmolysis values are slightly higher.In the K-Ca solutions the tonoplasts which were formed showed a linear expansion which indicates ion permeability. Permeability constants are 0.003–0.006×10–4 cm/sec, about in the same range as those of moderate anelectrolyte permeability.  相似文献   

8.
During plasmolysis of onion epidermal cells, the contracting protoplast remains connected to the cell wall by an intricate, branched system of plasma membrane (PM) ‘Hechtian strands’ which stain strongly with the fluorescent probe DiOC6. In addition, extensive regions of the cortical endoplasmic reticulum (ER) network remain anchored to the cell wall during plasmolysis and do not become incorporated into the contracting protoplast with the other cell organelles. These ER profiles become tightly encased by the PM as the latter contracts towards the centre of the cell. Thus, although the cortical ER is left outside the main protoplast body, it is nonetheless still bound by the PM of the cell. As well as being anchored to the wall, the cortical ER remains intimately linked with plasmodesmata and retains continuity between cells via the central desmotubules which become distended during plasmolysis. The PM also remains in close contact with the plasmodesmatal pore following plasmolysis. It is suggested that plasmodesmata, although sealed, may not be broken during plasmolysis, their substructure being preserved by continuity of both ER and PM through the plasmodesmatal pore. A structural model is presented which links the behaviour of PM, ER and plasmodesmata during plasmolysis.  相似文献   

9.
Lang I  Barton DA  Overall RL 《Protoplasma》2004,224(3-4):231-243
Summary. Field emission scanning electron microscopy of plasmolysed Tradescantia virginiana leaf epidermal cells gave novel insights into the three-dimensional architecture of Hechtian strands, Hechtian reticulum, and the inner surface of the cell wall without the need for extraction. At high magnification, we observed fibres that pin the plasma membrane to the cell wall after plasmolysis. Treatment with cellulase caused these connecting fibres to be lost and the pinned out plasma membrane of the Hechtian reticulum to disintegrate into vesicles with diameters of 100–250nm. This suggests that the fibres may be cellulose. After 4h of plasmolysis, a fibrous meshwork that labelled with anti-callose antibodies was observed within the space between the plasmolysed protoplast and the cell wall by field emission scanning electron microscopy. Interestingly, macerase-pectinase treatment resulted in the loss of this meshwork, suggesting that it was stabilised by pectins. We suggest that cellulose microfibrils extending from strands of the Hechtian reticulum and entwining into the cell wall matrix act as anchors for the plasma membrane as it moves away from the wall during plasmolysis.Correspondence and reprints: Institute of Ecology and Conservation Biology, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria.  相似文献   

10.
The overall washing out of ions, especially86Rb+ (as the tracer for K+), from hypocotyl segments of pumpkin (Cucurbita pepo L.) into distilled water or a CaCl2 solution was studied, during plasmolysis with a saccharose solution and during deplasmolysis. Compartimental analysis was used to evaluate the86Rb+ washing out kinetics. During plasmolysis, the washing out of86Rb+ increases, due to two processes whose half-times are lower than those during washing out into the CaCl2 solution. During deplasmolysis, the permeability of plasmalemma and tonoplast is substantially descreased, leading to washing out of most86Rb+ from the cells. Plasmolysis differs from a mere decrease in the turgor pressure in the fact that after exchange for a hypotonic solution the membranes are irreversibly damaged. The aim of this work was to monitor the changes in the cell membrane permeability due to a change in the water potential of the cells, especially during plasmolysis and deplasmolysis.  相似文献   

11.
MLO containing invaginations were found in protoplasts of phloem parenchyma cells in symptomless young leaves ofRibes houghtonianum Jancz. infected with a yellows disease. The invaginations originate between the cell wall and plasmalemma, usually at plasmodesmata, and change apparently into superficial vesicles in the protoplast; they are entirely or partially limited by host plasmalemma. The formations mentioned occur in parenchyma cells which contain normal organelles. Sometimes they are divided by a smooth membrane system enclosing MLO. Besides MLO the invaginations contain in some cases slimy fibrils resembling the P-protein in sieve tubes. The MLO bodies seen in invaginations have usually a diameter of 50–250 nm and their plasmalemma (unit membrane) is identical with the plasmalemma of MLO bodies occurring in sieve tubes. However, only few MLO bodies in invaginations are electron dense, so that they resemble naturally degenerated forms of MLO. Similar MLO containing invaginations were formerly described from some leafhoppers transmitting MLO.  相似文献   

12.
The hyphae of Armillaria mellea Fr. invade the large ceils of Gastrodia elata BI. Through the wall pits of cortical cells. During early stage the plasmalemma of large cell invaginates and the cell wall forms papillary thickenings to restrain the hyphae from invading. When a hypha enters a large cell, it is encircled tightly by the invaginated plasmalemma which is surrounded by a large number of vesicles coated by a unit membrane. As these vesicles fusing with their membranes to the plasmalemma and discharging their contents into the space around the hypha, the space lined by the invaginated plasmalemma enlarges gradually and becomes a digestive vacuole in which a hypha is completely digested. Reaction product form acid phosphatase activities in the vesicles and digestive vacuoles testifies that the vesicles and digestive vacuoles are identical with primary and secondary lysosomes of plant lysosomal system respectively.  相似文献   

13.
Actin filament (AF) organization was studied during the plasmolytic cycle in leaf cells of Chlorophyton comosum Thunb. In most cells the hyperosmotic treatment induced convex or concave plasmolysis and intense reorganization of the AF cytoskeleton. Thin cortical AFs disappeared and numerous cortical, subcortical and endoplasmic AFs arranged in thick and well-organized bundles were formed. Plasmolysed cells displayed a significant increase in the overall AF content compared with the control cells. Cortical AF bundles were preferentially localized in the shrunken protoplast areas, lining the detached plasmalemma regions. The endoplasmic AF bundles were mainly found in the perinuclear cytoplasm and on the tonoplast surface. AFs also traversed some of the Hechtian strands. AF disorganization after cytochalasin B (CB) treatment induced dramatic changes in the pattern of plasmolysis, which lasted for a longer time and led to a greater decrease of the protoplast volume compared to the untreated cells. In many of the above cells the protoplasts assumed an 'amoeboid' form and were often subdivided into sub-protoplasts. Soon after the removal of the plasmolytic solution both CB-treated and untreated cells were deplasmolysed, while the AF cytoskeleton gradually reassumed the organization observed in the control cells. The findings of this study revealed for the first time in angiosperm cells that plasmolysis triggers an extensive reorganization of the AF cytoskeleton, which is involved in the regulation of protoplast shape and volume. The probable mechanism(s) leading to AF reorganization as well as the function(s) of the atypical AF arrays in plasmolysed cells are discussed.  相似文献   

14.
Abstract. The osmotic behaviour of vacuolated plant cells (adaxial epidermal cells of Allium cepa bulb scales, and epidermal as well as chloroplast containing subepidermal stem base cells of Pisum sativum) was studied over a wide range of CaCl2 concentrations. The following results were obtained.
  • a. Allium cepa and Pisum sativum plant cells behave as an ideal osmometer as far as plasmolytic contraction of the protoplast is concerned.
  • b. The protoplasts of these cells could be plasmolysed to 15–45% of their original volume without the loss of membrane semi-permeability.
  • c. Cells plasmolysed in 1.0 kmol m?3 CaCl2 could be completely deplasmolysed and upon deplasmolysis the cells resumed protoplasmic streaming.
  • d. The above findings (a-c) indicate that during gradual plasmolysis and deplasmolysis membrane semi-permeability is maintained.
  • e. At very high plasmolysing concentrations vacuoles covered with the tonoplast separated from the rest of the protoplasm in some cells whereas others showed systrophy. Extruded vacuoles were able to respond to osmotic shrinkage.
  • f. The non-solvent space in Allium cells of about 3% also corresponded to the protoplasm volume calculated from the protoplast geometry (mean from results of direct measurement method and subtraction method).
  • g. Subepidermal stem base cells of water-stress-tolerant Pisum plants had a 75% greater non-solvent space than the control cells indicating that a water-stress-tolerant cell may contain a larger amount of protoplasm and/or a vacuole with a higher content of colloidal material in the vacuole.
  • h. Water-stress-tolerant cells showed greater tolerance to osmotic dehydration (volume reduction) than control cells.
  相似文献   

15.
The protoplast of maturing axial tracheids in the secondary xylem of shortleaf pine (Pinus echinata Mill.) was studied by transmission and scanning electron microscopy. The mature protoplast is differentiated into two interconnected components: (1) the commonly observed peripheral layer lining the secondary cell wall, and (2) an elaborate reticulum of cytoplasmic filaments and placoids within the central vacuole. The reticulum provides an extensive surface area of vacuolar membranes for rapid exchange of nutrients and metabolites with the vacuolar sap, which is envisaged to function as a vital medium during the period of secondary cell wall synthesis. The breakdown of the protoplast which terminates tracheid maturation is associated with poorly defined alterations of the vacuolar membranes. This is indicated by increased formation of cytoplasmic spherules and membraneous vesicles which may be portions of separated vacuolar membrane during early stages of degradation. Autolysis is supposed to occur when the cytoplasm is exposed to the vacuolar sap after rupture and separation of the vacuolar membranes. The Gomori acid phosphatase technique as combined with electron microscopy produced no evidence of autolysosomal segresomes in strands of intravacuolar reticulum of the cytoplasm.  相似文献   

16.
猕猴桃茎尖超低温保存过程中超微结构观察   总被引:3,自引:0,他引:3  
应用透射电镜观察了猕猴桃组培苗茎尖细胞在玻璃化法超低温保存过程中的超微结构变化.研究发现:在预培养、PVS2脱水处理过程中,茎尖细胞内液泡逐渐变多、变小,质壁分离愈加显著,表明细胞的抗冻力增强;在随后的冷冻和解冻过程中,部分细胞的质壁分离更加严重,细胞壁与细胞膜之间出现液腔,细胞器变得模糊,有些细胞的细胞膜、甚至细胞壁撕裂,细胞腔内留下破碎的细胞膜和细胞残片,细胞结构破坏严重,这可能是导致材料在恢复培养中死亡的原因之一;部分细胞经过7d的恢复培养后,细胞器清晰,细胞膜完好并紧贴细胞壁,细胞中央出现较大的液胞,具有与对照相似的结构特征,最终存活下来并能够再生植株.  相似文献   

17.
Summary A range of drugs was applied to developing pea seed cotyledons in an attempt to perturb the intracellular transport of newly synthesized vicilin through the endoplasmic reticulum and Golgi vesicles to its site of storage, the vacuole. The most pronounced effects, produced by the ionophores monensin and nigericin, were on Golgi-mediated transport. Unlike the situation in most other tissues that have been studied the number of Golgi vesicles did not increase, suggesting that their movement is not slowed or stopped. However, the Golgi-mediated transport of vicilin was redirected from the vacuole tonoplast to the plasmalemma and the newly synthesized vicilin was released from the cotyledon cells to accumulate between the plasmalemma and the cell wall.  相似文献   

18.
In order to analyze the distribution of lead between cell walls and plasmalemma, two-day-old maize seedlings (Zea mays L.) were incubated for 24 h on a solution of lead nitrate at a concentration causing 50% inhibition of root growth (10–5 M). Using the histochemical technique (precipitation of lead dithizonate), the distribution of lead in plasmolyzed and nonplasmolyzed cells of the root cortex was compared. This allowed us to separate the lead bound by cell walls from the lead located on the protoplast surface and in the periplasmic space. The plasmolysis was conducted prior to histochemical reaction by the incubation of seedling roots in 0.6 M sucrose solution for 30 min. The lead precipitates were located in cell walls and on the surface of protoplast. A small amount of lead was found in periplasmic space of some cells in root cortex. It is suggested that the lead is bound not only to the cell wall matrix but also to the plasmalemma.  相似文献   

19.
FLETCHER  J. 《Annals of botany》1973,37(5):963-971
Fully formed pre-cleavage sporangia and sporangiola of Thamnidiumelegans Link were bounded by a primary wall plus a thick, internalsecondary wall layer. In sporangia in late pre-cleavage, Golgi-likecisternae were associated with groups of cytoplasmic vesiclesof characteristic size and appearance which were not found insporangia containing large cleavage vesicles. In both sporangia and sporangiola, protoplast cleavage was effectedby enlargement of endogenous cleavage vesicles each containinga lining layer of variable appearance, mutual fusion of cleavagevesicle membranes and fusion of cleavage vesicle membranes withthe plasmalemma. Golgi-like cisternae and small vesicular profileswere present in sporangium protoplasts at all stages of cleavagevesicle enlargement. In sporangia, the columella zone was delimitedby cleavage vesicles and separated from the sporogenous zoneby a fibrillar wall. A similar wall, which sometimes protrudedto form a small columella, was formed in sporangiola. Recently delimited spore protoplasts were bounded by plasmalemmamembrane derived from cleavage vesicle bounding membrane andsporangium or sporangiolum plasmalemma and surrounded by aninvesting layer derived from cleavage vesicle lining material.The investing layer at first appeared single, but later twoelectron opaque profiles were discernible. The spore wall wasformed between the investing layer and the plasmalemma. Wallsof sporangia and sporangiola which contained fully formed sporesconsisted of the primary layers only.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号