首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
N Tsurushita  H Maki  L J Korn 《Gene》1988,62(1):135-139
Escherichia coli DNA polymerase III holoenzyme was used to synthesize double-stranded DNA from M13 single-stranded DNA hybridized to a phosphorylated synthetic oligodeoxynucleotide containing a nucleotide substitution. The resulting DNA was transfected into E. coli JM101 without further treatment. Sequence analysis of randomly chosen phage clones revealed that the efficiency of mutagenesis was nearly 50%, which is the theoretical maximum. Treatment with DNA ligase after DNA synthesis was not necessary to obtain high efficiency of mutagenesis. Thus, use of DNA polymerase III holoenzyme provides a simple and efficient procedure for site-directed mutagenesis.  相似文献   

2.
DNA polymerase III of Escherichia coli requires multiple auxiliary factors to enable it to serve as a replicative complex. We demonstrate that auxiliary components of the DNA polymerase III holoenzyme, the gamma delta complex and beta subunit, markedly stimulate DNA polymerase II on long single-stranded templates. DNA polymerase II activity is enhanced by single-stranded DNA binding protein, but the stimulation by gamma delta and beta can be observed either in the absence or presence of single-stranded DNA binding protein. In contrast with DNA polymerase III, the requirement of DNA polymerase II for gamma delta cannot be bypassed by large excesses of the beta subunit at low ionic strength in the absence of the single-stranded DNA binding protein. The product of the DNA polymerase II-gamma delta-beta reaction on a uniquely primed single-stranded circle is of full template length; the reconstituted enzyme apparently is incapable of strand displacement synthesis. The possible biological implications of these observations are discussed.  相似文献   

3.
Movements of DNA polymerase III holoenzyme (holoenzyme) in replicating a template multiprimed with synthetic pentadecadeoxynucleotides (15-mers) annealed at known positions on a single-stranded circular or linear DNA have been analyzed. After extension of one 15-mer on a multiprimed template, holoenzyme moves downstream in the direction of chain elongation to the next primer. Holoenzyme readily traverses a duplex, even 400 base pairs long, to exploit its 3'-hydroxyl end as the next available primer. This downstream polarity likely results from an inability to diffuse upstream along single-stranded DNA. These holoenzyme movements, unlike formation of the initial complex with a primer, do not require ATP. Time elapsed between completion of a chain and initiation on the next downstream primer is rapid (1 s or less); dissociation of holoenzyme to form a complex with another primed template is slow (1-2 min). Thus, holoenzyme diffuses rapidly only on duplex DNA, probably in both directions, and forms an initiation complex with the first primer encountered. Based on these findings, schemes can be considered for holoenzyme action at the replication fork of a duplex chromosome.  相似文献   

4.
Purified RecA protein from Escherichia coli inhibited 5-10-fold the rate of in vitro replication of both unirradiated and UV-irradiated single-stranded DNA (ssDNA) with DNA polymerase III holoenzyme. Maximal inhibition occurred at a ratio of 1 molecule of RecA per 2-4 nucleotides of DNA, and it affected primarily the initiation of elongation on primed ssDNA. Adding single-strand DNA-binding protein (SSB) caused a relief of inhibition. Under conditions when there was enough SSB to cover the ssDNA completely, RecA protein had no effect on initiation, elongation or dissociation steps of replication. These observations together with data from in vivo studies suggest a role for RecA protein in the arrest of DNA replication observed in cells exposed to UV-radiation and a variety of chemical carcinogens.  相似文献   

5.
Replication of UV-irradiated oligodeoxynucleotide-primed single-stranded phi X174 DNA with Escherichia coli DNA polymerase III holoenzyme in the presence of single-stranded DNA-binding protein was investigated. The extent of initiation of replication on the primed single-stranded DNA was not altered by the presence of UV-induced lesions in the DNA. The elongation step exhibited similar kinetics when either unirradiated or UV-irradiated templates were used. Inhibition of the 3'----5' proofreading exonucleolytic activity of the polymerase by dGMP or by a mutD mutation did not increase bypass of pyrimidine photodimers, and neither did purified RecA protein influence the extent of photodimer bypass as judged by the fraction of full length DNA synthesized. Single-stranded DNA-binding protein stimulated bypass since in its absence the fraction of full length DNA decreased 5-fold. Termination of replication at putative pyrimidine dimers involved dissociation of the polymerase from the DNA, which could then reinitiate replication at other available primer templates. Based on these observations a model for SOS-induced UV mutagenesis is proposed.  相似文献   

6.
During in vitro replication of UV-irradiated single-stranded DNA with Escherichia coli DNA polymerase III holoenzyme termination frequently occurs at pyrimidine photodimers. The termination stage is dynamic and characterized by at least three different events: repeated dissociation-reinitiation cycles of the polymerase at the blocked termini; extensive hydrolysis of ATP to ADP and inorganic phosphate; turnover of dNTPs into dNMP. The reinitiation events are nonproductive and are not followed by further elongation. The turnover of dNTPs into dNMPs is likely to result from repeated cycles of insertion of dNMP residues opposite the blocking lesions followed by their excision by the 3'----5' exonucleolytic activity of the polymerase. Although all dNTPs are turned over, there is a preference for dATP, indicating that DNA polymerase III holoenzyme has a preference for inserting a dAMP residue opposite blocking pyrimidine photodimers. We suggest that the inability of the polymerase to bypass photodimers during termination is due to the formation of defective initiation-like complexes with reduced stability at the blocked termini.  相似文献   

7.
Tomer G  Livneh Z 《Biochemistry》1999,38(18):5948-5958
DNA damage-induced mutations are formed when damaged nucleotides present in single-stranded DNA are replicated. We have developed a new method for the preparation of gapped plasmids containing site-specific damaged nucleotides, as model DNA substrates for translesion replication. Using these substrates, we show that the DNA polymerase III holoenzyme from Escherichia coli can bypass a synthetic abasic site analogue with high efficiency (30% bypass in 16 min), unassisted by other proteins. The theta and tau subunits of the polymerase were not essential for bypass. No bypass was observed when the enzyme was assayed on a synthetic 60-mer oligonucleotide carrying the same lesion, and bypass on a linear gapped plasmid was 3-4-fold slower than on a circular gapped plasmid. There was no difference in the bypass when standing-start and running-start replication were compared. A comparison of translesion replication by DNA polymerase I, DNA polymerase II, the DNA polymerase III core, and the DNA polymerase III holoenzyme clearly showed that the DNA polymerase III holoenzyme was by far the most effective in performing translesion replication. This was not only due to the high processivity of the pol III holoenzyme, because increasing the processivity of pol II by adding the gamma complex and beta subunit, did not increase bypass. These results support the model that SOS regulation was imposed on a fundamentally constitutive translesion replication reaction to achieve tight control of mutagenesis.  相似文献   

8.
Stepwise reconstitution of the subunits of DNA polymerase III holoenzyme of Escherichia coli offers insights into the organization and function of this multisubunit assembly. A highly processive, holoenzyme-like activity can be generated when the gamma complex, in the presence of ATP and a primed template, activates the beta subunit to form a preinitiation complex, and this is then followed by addition of the core polymerase. Further analysis of early replicative complexes has now revealed: 1) that the gamma complex can stably bind a single-stranded DNA binding protein (SSB)-coated template, 2) that neither SSB coating of the template nor a proper primer terminus is required to form the preinitiation complex, and 3) that the gamma complex stabilizes the preinitiation complex in the presence of ATP and destabilizes it in the presence of adenosine 5'-O-(thiotriphosphate). Based on these findings, a sequence of stages can be formulated for an activation of the beta subunit that enables it to bind the template-primer and thereby interact with the core to create a processive polymerase.  相似文献   

9.
Purified DNA polymerase III holoenzyme (holoenzyme) was separated by glycerol gradient sedimentation into the beta subunit and the subassembly that lacks it (pol III). In the presence of ATP, beta subunit dimer dissociated from holoenzyme with a KD of 1 nM; in the absence of ATP, the KD was greater than 5 nM. The beta subunit was known to remain tightly associated in the holoenzyme upon formation of an initiation complex with a primed template and during the course of replication. With separation from the template, holoenzyme dissociated into beta and pol III. Cycling to a new template depended on the reformation of holoenzyme. Holoenzyme was in equilibrium with pol III and the beta subunit in crude enzyme fractions as well as in pure preparations.  相似文献   

10.
The beta sliding clamp encircles the primer-template and tethers DNA polymerase III holoenzyme to DNA for processive replication of the Escherichia coli genome. The clamp is formed via hydrophobic and ionic interactions between two semicircular beta monomers. This report demonstrates that the beta dimer is a stable closed ring and is not monomerized when the gamma complex clamp loader (gamma(3)delta(1)delta(1)chi(1)psi(1)) assembles the beta ring around DNA. delta is the subunit of the gamma complex that binds beta and opens the ring; it also does not appear to monomerize beta. Point mutations were introduced at the beta dimer interface to test its structural integrity and gain insight into its interaction with delta. Mutation of two residues at the dimer interface of beta, I272A/L273A, yields a stable beta monomer. We find that delta binds the beta monomer mutant at least 50-fold tighter than the beta dimer. These findings suggest that when delta interacts with the beta clamp, it binds one beta subunit with high affinity and utilizes some of that binding energy to perform work on the dimeric clamp, probably cracking one dimer interface open.  相似文献   

11.
Abstract Escherichia coli penicillin-binding protein 5 (PBP5) is anchored to the periplasmic face of the inner membrane via a C-terminal amphiphilic α-helix. The results of washing experiments have suggested an electrostatic contribution to the anchoring mechanism which may involve the cationic region of the C-terminal α-helix. Similarities between this anchor domain and some surface active agents, such as melittin, suggest that the cationic region of the PBP5 anchor may require the presence of anionic phospholipids for membrane interaction. Washing experiments performed on membranes of HDL11, an E. coli mutant in which the expression of the major anionic phospholipids is under lac control, found no such requirement. The results are discussed in relation to the hypothesis that the cationic region may interact with other sources of negative charge, possibly arising from a PBP complex.  相似文献   

12.
DNA polymerase III holoenzyme has been purified from Escherichia coli HMS-83, using, as an assay, the conversion of coliphage G4 single-stranded DNA to the duplex replicative form. The holoenzyme consists of at least four different subunits: alpha, beta, gamma, and delta of 140,000, 40,000, 52,000, and 32,000 daltons, respectively. The alpha subunit is DNA polymerase III, the dnaE gene product. The holoenzyme has been resolved by phosphocellulose chromatography into an alpha - gamma - delta complex and a subunit beta (copolymerase III*); neither possesses detectable activity in the G4 system but together reconstitute holoenzyme-like activity. The alpha - gamma - delta complex has been further resolved to yield a gamma - delta complex which reconstitutes alpha - gamma - delta activity when added to DNA polymerase III. The gamma - delta complex contains a product of the dnaZ gene and has been purified from a strain which contains a ColE1-dnaZ hybrid plasmid.  相似文献   

13.
The Escherichia coli chromosomal replicase, DNA polymerase III holoenzyme, is highly processive during DNA synthesis. Underlying high processivity is a ring-shaped protein, the beta clamp, that encircles DNA and slides along it, thereby tethering the enzyme to the template. The beta clamp is assembled onto DNA by the multiprotein gamma complex clamp loader that opens and closes the beta ring around DNA in an ATP-dependent manner. This study examines the DNA structure required for clamp loading action. We found that the gamma complex assembles beta onto supercoiled DNA (replicative form I), but only at very low ionic strength, where regions of unwound DNA may exist in the duplex. Consistent with this, the gamma complex does not assemble beta onto relaxed closed circular DNA even at low ionic strength. Hence, a 3'-end is not required for clamp loading, but a single-stranded DNA (ssDNA)/double-stranded DNA (dsDNA) junction can be utilized as a substrate, a result confirmed using synthetic oligonucleotides that form forked ssDNA/dsDNA junctions on M13 ssDNA. On a flush primed template, the gamma complex exhibits polarity; it acts specifically at the 3'-ssDNA/dsDNA junction to assemble beta onto the DNA. The gamma complex can assemble beta onto a primed site as short as 10 nucleotides, corresponding to the width of the beta ring. However, a protein block placed closer than 14 base pairs (bp) upstream from the primer 3' terminus prevents the clamp loading reaction, indicating that the gamma complex and its associated beta clamp interact with approximately 14-16 bp at a ssDNA/dsDNA junction during the clamp loading operation. A protein block positioned closer than 20-22 bp from the 3' terminus prevents use of the clamp by the polymerase in chain elongation, indicating that the polymerase has an even greater spatial requirement than the gamma complex on the duplex portion of the primed site for function with beta. Interestingly, DNA secondary structure elements placed near the 3' terminus impose similar steric limits on the gamma complex and polymerase action with beta. The possible biological significance of these structural constraints is discussed.  相似文献   

14.
The 10 distinctive polypeptides of DNA polymerase III holoenzyme, purified as individual subunits or complexes, could be reconstituted to generate a polymerase with the high catalytic rate of the isolated intact holoenzyme. Functions and interactions of the subunits can be inferred from partial assemblies of the pol III core (alpha, epsilon, and theta subunits) with auxiliary subunits. The core possesses the polymerase and proofreading activities; the auxiliary subunits provide the core with processivity, the capacity to replicate long stretches of DNA without dissociating from the template. In a sequence of reconstruction steps, the beta subunit binds the primed template in an ATP-dependent manner through the catalytic action of a complex made up of the gamma, delta, delta', chi, and psi polypeptides. With the beta subunit in place, a processive polymerase is produced upon addition of the core. When the tau subunit is lacking, binding of polymerase to the primed template is less efficient and stable. The tau-less reconstituted polymerase is more prone to dissociation upon encountering secondary structures in the template in its path, such as a hairpin region in the single strand or a duplex region formed by a strand annealed to the template. With the tau subunit present, the interaction of the core.beta complex (the basic unit of a processive polymerase) with the primed template is strengthened. The tau-containing reconstituted polymerase can replicate DNA continuously through secondary structures in the template. The two distinctive kinds of processivity demonstrated by the tau-less and tau-containing reconstituted polymerases fit nicely into a scheme in which, organized as an asymmetric dimeric holoenzyme, the tau half is responsible for continuous synthesis of one strand, and the less stable half for discontinuous synthesis of the other.  相似文献   

15.
The dnaZ protein has been purified to near-homogeneity using an in vitro complementation assay that measures the restoration of activity in a crude enzyme fraction from the dnaZ mutant deficient in the replication of phi X174 DNA. Over 70-fold overproduction of the protein was obtained with a bacteriophage lambda lysogen carrying the dnaZ gene. The purified protein, under reducing and denaturing conditions, has a molecular weight of 52,000 and appears to be a dimer in its native form. The dnaZ protein is judged to be th 52,000-dalton gamma subunit of DNA polymerase III holoenzyme (McHenry, C., and Kornberg, A. (1977) J. Biol. Chem. 252, 6478-6484) for the following reasons: (i) highly purified DNA polymerase III holoenzyme contains a 52,000-dalton polypeptide and has dnaZ-complementing activity; (ii) the 52,000-dalton polypeptide is associated tightly with the DNA polymerase III holoenzyme and can be separated from the DNA polymerase III core only with severe measures; (iii) no other purified replication protein, among 14 tested, contains dnaZ protein activity; and (iv) the abundance of dnaZ protein, estimated at about 10 dimer molecules per Escherichia coli cell, is similar to that of the DNA polymerase III core. Among several circular templates tested in vitro (i.e. single stranded phi X174, G4 and M13 DNAs, and duplex phi X174 DNA), all rely on dnaZ protein for elongation by DNA polymerase III holoenzyme. The protein acts catalytically at a stoichiometry of one dimer per template.  相似文献   

16.
Summary The DNA polymerase III holoenzyme is a complex, multisubunit enzyme that is responsible for the synthesis of most of the Escherichia coli chromosome. Through studies of the structure, function and regulation of this enzyme over the past decade, considerable progress has been made in the understanding of the features of a true replicative complex. The holoenzyme contains at least seven different subunits. Three of these, , and , compose the catalytic core. Apparently is the catalytic subunit and the product of the dnaE gene. Epsilon, encoded by dnaQ (mutD), is responsible for the proofreading 35 activity of the polymerase. The function of the B subunit remains to be established. The auxiliary subunits, , and , encoded by dnaN, dnaZ and dnaX, respectively, are required for the functioning of the polymerase on natural chromosomes. All of the proteins participate in increasing the processivity of the polymerase and in the ATP-dependent formation of an initiation complex. Tau causes the polymerase to dimerize, perhaps forming a structure that can coordinate leading and lagging strand synthesis at the replication fork. This dimeric complex may be asymmetric with properties consistent with the distinct requirements for leading and lagging strand synthesis.  相似文献   

17.
The tau and gamma subunits of the DNA polymerase III holoenzyme of Escherichia coli were each isolated in large quantities as oligomers from overproducing cells in which their genes (dnaZ and X) were under the control of a T7 phage promoter. The 52-kDa gamma subunit (encoded by the dnaZ sequence) contains three-forths of the N-terminal residues of the 71-kDa tau subunit (encoded by the dnaX sequence). Both gamma and tau share a binding site for ATP (or dATP). A DNA-dependent ATPase activity (Lee, S.H., and Walker, J.R. (1987) Proc. Natl. Acad. Sci. U. S. A. 84, 2713-2717) exhibited only by the tau subunit, presumably requires a DNA-binding site in the C-terminal domain lacking in the gamma subunit. Among ATPases dependent on single-stranded DNA, the tau activity is remarkable in the failure of homopolymers (e.g. poly(dA) or poly(dT)) to replace natural DNAs. The presumed need for certain secondary structures may reflect a feature of template binding in the crucial contribution that tau makes to the high processivity of polymerase III holoenzyme. Limited tryptic digestion of tau generates a fragment that resembles gamma in: (i) size, (ii) binding of ATP without ATPase activity, and (iii) a level of complementing holoenzyme activity in extracts of dnaZ-mutant cells that is higher than that of tau.  相似文献   

18.
The cycling time of DNA polymerase III holoenzyme during replication of UV-irradiated single-stranded (ss) DNA was longer than with unirradiated DNA (8 versus 3 min, respectively), most likely due to slow dissociation from lesion-terminated nascent DNA strands. Initiation of elongation on primed ssDNA was not significantly inhibited by the presence of UV lesions as indicated by the identical distribution of replication products synthesized at early and late reaction times and by the identical duration of the initial synthesis bursts on both unirradiated and UV-irradiated DNA templates. When replication was performed with DNA polymerase III* supplemented with increasing quantities of purified beta 2 subunit, the cycling time on UV-irradiated DNA decreased from 14.8 min at 1.7 nM beta 2 down to 6 min at 170 nM beta 2, a concentration in which beta 2 was in large excess over the polymerase. In parallel to the reduction in cycling time, also the bypass frequency of cyclobutane-photodimers decreased with increasing beta 2 concentration, and at 170 nM beta 2, bypass of photodimers was essentially eliminated. It has been shown that polymerase complexes with more than one beta 2 per polymerase molecule were formed at high beta 2 concentrations (Lasken, R. S., and Kornberg, A. (1987) J. Biol. Chem. 262, 1720-1724). It is plausible that polymerase complexes obtained under high beta 2 concentration dissociate from lesion-terminated primers faster than polymerase complexes formed at a low beta 2 concentration. This is expected to favor termination over bypass at pyrimidine photodimers and thus decrease their bypass frequency. These results suggest that the beta 2 subunit might act as a sensor for obstacles to replication caused by DNA damage, and that it terminates elongation at these sites by promoting dissociation. The intracellular concentration of beta 2 was estimated to be 250 nM (Kwon-Shin, O., Bodner, J. B., McHenry, C. S., and Bambara, R. A. (1987) J. Biol. Chem. 262, 2121-2130) and is 15-fold higher than the estimated intracellular concentration of DNA polymerase III holoenzyme (15 nM). This high concentration of beta 2 may be responsible for the observation that very little (if any) bypass of pyrimidine photodimers occurred in vivo when the SOS system was not induced. Moreover, it predicts that bypass synthesis under SOS conditions might be associated with an altered form of the beta subunit.  相似文献   

19.
The Escherichia coli dnaX36 mutant displays a mutator effect, reflecting a fidelity function of the dnaX-encoded τ subunit of the DNA polymerase III (Pol III) holoenzyme. We have shown that this fidelity function (i) applies to both leading- and lagging-strand synthesis, (ii) is independent of Pol IV, and (iii) is limited by Pol II.  相似文献   

20.
We have recently shown that single-base frameshifts were predominant among mutations induced within the rpsL target sequence upon oriC plasmid DNA replication in vitro. We found that the occurrence of +1 frameshifts at a run of 6 residues of dA/dT could be increased proportionally by increasing the concentration of dATP present in the in vitro replication. Using single-stranded circular DNA containing either the coding sequence of the rpsL gene or its complementary sequence, the +1 frameshift mutagenesis by DNA polymerase III holoenzyme of Escherichia coli was extensively examined. A(6) --> A(7) frameshifts occurred 30 to 90 times more frequently during DNA synthesis with the noncoding sequence (dT tract) template than with the coding sequence (dA tract). Excess dATP enhanced the occurrence of +1 frameshifts during DNA synthesis with the dT tract template, but no other dNTPs showed such an effect. In the presence of 0.1 mM dATP, the A(6) --> A(7) mutagenesis with the dT tract template was not inhibited by 1.5 mM dCTP, which is complementary to the residue immediately upstream of the dT tract. These results strongly suggested that the A(6) --> A(7) frameshift mutagenesis possesses an asymmetric strand nature and that slippage errors leading to the +1 frameshift are made during chain elongation within the tract rather than by misincorporation of nucleotides opposite residues next to the tract.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号