首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Huang NK  Lin YL  Cheng JJ  Lai WL 《Life sciences》2004,75(13):1649-1657
Gastrodia elata (G. elata) is a traditional Chinese herbal medicine for treating headaches, dizziness, tetanus, and epilepsy. In this study, differential methanol (MeOH) extracts of G. elata were found to prevent serum-deprived rat pheochromocytoma (PC12) cell apoptosis by the MTT assay and Hoechst staining. A serine/threonine kinase inhibitor attenuated this protection. G. elata resulted in phosphorylation and dephosphorylation of ERK1/2 and JNK1/2-p38 MAPKs (members of the serine/threonine kinase family), respectively, as revealed by Western blot analysis. An upstream ERK inhibitor attenuated G. elata-induced ERK phosphorylation but not protective effect. Although JNK and p38 inhibitors attenuated their related enzyme activities during serum deprivation, only JNK inhibitor prevented serum-deprived apoptosis. Thus, G. elata prevents serum-deprived apoptosis through activation of the serine/threonine kinase-dependent pathway and suppression of JNK activity.  相似文献   

3.
4.
It has been reported that oxidized low density lipoprotein (Ox-LDL) can activate both peroxisome proliferator-activated receptor-alpha (PPARalpha) and PPARgamma. However, the detailed mechanisms of Ox-LDL-induced PPARalpha and PPARgamma activation are not fully understood. In the present study, we investigated the effect of Ox-LDL on PPARalpha and PPARgamma activation in macrophages. Ox-LDL, but not LDL, induced PPARalpha and PPARgamma activation in a dose-dependent manner. Ox-LDL transiently induced cyclooxygenase-2 (COX-2) mRNA and protein expression, and COX-2 specific inhibition by NS-398 or meloxicam or small interference RNA of COX-2 suppressed Ox-LDL-induced PPARalpha and PPARgamma activation. Ox-LDL induced phosphorylation of ERK1/2 and p38 MAPK, and ERK1/2 specific inhibition abrogated Ox-LDL-induced COX-2 expression and PPARalpha and PPARgamma activation, whereas p38 MAPK-specific inhibition had no effect. Ox-LDL decreased the amounts of intracellular long chain fatty acids, such as arachidonic, linoleic, oleic, and docosahexaenoic acids. On the other hand, Ox-LDL increased intracellular 15-deoxy-Delta(12,14)-prostaglandin J(2) (15d-PGJ(2)) level through ERK1/2-dependent overexpression of COX-2. Moreover, 15d-PGJ(2) induced both PPARalpha and PPARgamma activation. Furthermore, COX-2 and 15d-PGJ(2) expression and PPAR activity were increased in atherosclerotic lesions of apoE-deficient mice. Finally, we investigated the involvement of PPARalpha and PPARgamma on Ox-LDL-induced mRNA expression of ATP-binding cassette transporter A1 and monocyte chemoattractant protein-1. Interestingly, specific inhibition of PPARalpha and PPARgamma suppressed Ox-LDL-induced ATP-binding cassette transporter A1 mRNA expression and enhanced Ox-LDL-induced monocyte chemoattractant protein-1 mRNA expression. In conclusion, Ox-LDL-induced increase in 15d-PGJ(2) level through ERK1/2-dependent COX-2 expression is one of the mechanisms of PPARalpha and PPARgamma activation in macrophages. These effects of Ox-LDL may control excess atherosclerotic progression.  相似文献   

5.
The dual-specificity mitogen-activated protein kinase (MAPK) phosphatase-1 (MKP-1) inactivates MAP kinases by dephosphorylation. Here we show that the proinflammatory cytokine interleukin (IL)-17A induces adult mouse primary cardiac fibroblast (CF) proliferation and migration via IL-17 receptor A//IL-17 receptor C-dependent MKP-1 suppression, and activation of p38 MAPK and ERK1/2. IL-17A mediated p38 MAPK and ERK1/2 activation is inhibited by MKP-1 overexpression, but prolonged by MKP-1 knockdown. IL-17A induced miR-101 expression via PI3K/Akt, and miR-101 inhibitor reversed MKP-1 down regulation. Importantly, MKP-1 knockdown, pharmacological inhibition of p38 MAPK and ERK1/2, or overexpression of dominant negative MEK1, each markedly attenuated IL-17A-mediated CF proliferation and migration. Similarly, IL-17F and IL-17A/F heterodimer that also signal via IL-17RA/IL-17RC, stimulated CF proliferation and migration. These results indicate that IL-17A stimulates CF proliferation and migration via Akt/miR-101/MKP-1-dependent p38 MAPK and ERK1/2 activation. These studies support a potential role for IL-17 in cardiac fibrosis and adverse myocardial remodeling.  相似文献   

6.
Leptin is recognized as a profibrogenic hormone in the liver, but the mechanisms involved have not been clarified. The tissue inhibitor of metalloproteinase (TIMP)-1, which acts through inhibition of collagen degradation, is synthesized by activated hepatic stellate cells (HSC) in response to fibrogenic substances. The capacity of leptin to induce TIMP-1 and its signaling molecules were investigated in a human HSC cell line, LX-2. Leptin stimulated TIMP-1 protein, mRNA, and promoter activity. JAK1 and -2, as well as STAT3 and -5, were activated. After leptin, there was increased expression of tyrosine 1141-phosphorylated leptin receptor, which may contribute to STAT3 activation. AG 490, a JAK inhibitor, blocked JAK phosphorylation with concomitant inhibition of STAT activation, TIMP-1 mRNA expression, and promoter activity. Leptin also induced an oxidative stress, which was inhibited by AG 490, indicating a JAK mediation process. ERK1/2 MAPK and p38 were activated, which was prevented by catalase, indicating an H2O2-dependent mechanism. Catalase treatment resulted in total suppression of TIMP-1 mRNA expression and promoter activity. SB203580, a p38 inhibitor, prevented p38 activation and reduced TIMP-1 message half-life with down-regulation of TIMP-1 mRNA. These changes were reproduced by overexpression of the dominant negative p38alpha and p38beta mutants. PD098059, an ERK1/2 inhibitor, opposed ERK1/2 activation and TIMP-1 promoter activity, leading to TIMP-1 mRNA down-regulation. Thus, leptin has a direct action on liver fibrogenesis by stimulating TIMP-1 production in activated HSC. This process appears to be mediated by the JAK/STAT pathway via the leptin receptor long form and the H2O2-dependent p38 and ERK1/2 pathways via activated JAK.  相似文献   

7.
8.
Leptin, a liver profibrogenic cytokine, induces oxidative stress in hepatic stellate cells (HSCs), with increased formation of the oxidant H2O2, which signals through p38 and extracellular signal-regulated kinase 1/2 (ERK1/2) pathways, stimulating tissue inhibitor of metalloproteinase-1 production. Since oxidative stress is a pathogenic mechanism of liver fibrosis and activation of collagen gene is a marker of fibrogenesis, we evaluated the effects of leptin on collagen I expression. We report here that, in LX-2 human HSCs, leptin enhances the levels of alpha1(I) collagen mRNA, promoter activity and protein. Janus kinase (JAK)1 and JAK2 were activated. H2O2 formation was increased; this was prevented by the JAK inhibitor AG490, suggesting a JAK-mediated process. ERK1/2 and p38 were activated, and the activation was blocked by catalase, consistent with an H2O2-dependent mechanism. AG490 and catalase also prevented leptin-stimulated alpha1(I) collagen mRNA expression. PD098059, an ERK1/2 inhibitor, abrogated ERK1/2 activation and suppressed alpha1(I) collagen promoter activity, resulting in mRNA down-regulation. The p38 inhibitor SB203580 and overexpression of dominant negative p38 mutants abrogated p38 activation and down-regulated the mRNA. While SB203580 had no effect on the promoter activity, it reduced the mRNA half-life from 24 to 4 h, contributing to the decreased mRNA level. We conclude that leptin stimulates collagen production through the H2O2-dependent and ERK1/2 and p38 pathways via activated JAK1 and JAK2. ERK1/2 stimulates alpha1(I) collagen promoter activity, whereas p38 stabilizes its mRNA. Accordingly, interference with leptin-induced oxidative stress by antioxidants provides an opportunity for the prevention of liver fibrosis.  相似文献   

9.
Peroxisome proliferator-activated receptors (PPARs) play important roles in the metabolic regulation of lipids including steroids. In this study, we investigated whether fenofibrate, a ligand for PPARalpha, could influence estrogen synthesis in vivo in the ovary of mice. As reported, chronic treatment of C57BL6/J female mice with various amounts of fenofibrate as a diet reduced the serum triglycerides level and induced hepatomegaly in a dose-dependent manner. Northern blot analyses using hepatic RNA confirmed the induction of classical PPARalpha-target genes including acyl-CoA oxidase and lipoprotein lipase. The analyses using ovarian RNA revealed the suppression of gene expression for enzymes involved in steroidogenesis including CYP11A, CYP19, steroidogenic acute regulatory protein, and HDL receptor, but the CYP17 expression was evidently induced. Consistent with the suppression of CYP19 mRNA expression, the aromatase activity in the ovary was dose-dependently inhibited, resulting in significant decreases in the uterine size and bone mineral density. When PPARalpha null mice were treated with dietary fenofibrate, neither hepatomegaly nor inhibition of ovarian aromatase activity was observed, rather the activity was enhanced. These results demonstrate that fenofibrate inhibits ovarian estrogen synthesis by suppressing the mRNA expressions and that functional PPARalpha is indispensable for the inhibitory action of the agent in vivo.  相似文献   

10.
The mechanisms involved in the development of alcoholic liver disease (ALD) are not well established. We investigated the involvement of acyl-CoA: diacylglycerol acyltransferase 2 (DGAT2) upregulation in mediating hepatic fat accumulation induced by chronic alcohol consumption. Chronic alcohol feeding caused fatty liver and increased hepatic DGAT2 gene and protein expression, concomitant with a significant suppression of hepatic MAPK/ERK kinase/extracellular regulated kinase 1/2 (MEK/ERK1/2) activation. In vitro studies demonstrated that specific inhibitors of the MEK/ERK1/2 pathway increased DGAT2 gene expression and triglyceride (TG) contents in HepG2 cells, whereas epidermal growth factor, a strong ERK1/2 activator, had the opposite effect. Moreover, chronic alcohol feeding decreased hepatic S-adenosylmethionine (SAM): S-adenosylhomocysteine (SAH) ratio, an indicator of disrupted transmethylation reactions. Mechanistic investigations revealed that N-acetyl-S-farnesyl-l-cysteine, a potent inhibitor of isoprenylcysteine carboxyl methyltransferase, suppressed ERK1/2 activation, followed by an enhanced DGAT2 expression and an elevated TG content in HepG2 cells. Lastly, we demonstrated that the beneficial effects of betaine supplementation in ALD were associated with improved SAM/SAH ratio, alleviated ERK1/2 inhibition, and attenuated DGAT2 upregulation. In conclusion, our data suggest that upregulation of DGAT2 plays an important role in the pathogenesis of ALD, and that abnormal methionine metabolism contributes, at least partially, to DGAT2 upregulation via suppression of MEK/ERK1/2 activation.  相似文献   

11.
12.
The protein phosphatase 2A (PP2A) acts on several kinases in the extracellular signal-regulated kinase (ERK) signaling pathway but whether a specific holoenzyme dephosphorylates ERK and whether this activity is controlled during mitogenic stimulation is unknown. By using both RNA interference and overexpression of PP2A B regulatory subunits, we show that B56, but not B, family members of PP2A increase ERK dephosphorylation, without affecting its activation by MEK. Induction of the early gene product and ERK substrate IEX-1 (ier3) by growth factors leads to opposite effects and reverses B56-PP2A-mediated ERK dephosphorylation. IEX-1 binds to B56 subunits and pERK independently, enhances B56 phosphorylation by ERK at a conserved Ser/Pro site in this complex and triggers dissociation from the catalytic subunit. This is the first demonstration of the involvement of B56-containing PP2A in ERK dephosphorylation and of a B56-specific cellular protein inhibitor regulating its activity in an ERK-dependent fashion. In addition, our results raise a new paradigm in ERK signaling in which ERK associated to a substrate can transphosphorylate nearby proteins.  相似文献   

13.
14.
We investigated the effects of tumor necrosis factor-α (TNF-α) exposure on mitogen-activated protein kinase signaling in human microvascular endothelial cells. TNF-α caused a significant suppression of a dual specificity phosphatase, DUSP4, that regulates ERK1/2 activation. Thus, we hypothesized that suppression of DUSP4 enhances cell survival by increasing ERK1/2 signaling in response to growth factor stimulation. In support of this concept, TNF-α pre-exposure increased growth factor-mediated ERK1/2 activation, whereas overexpression of DUSP4 with an adenovirus decreased ERK1/2 compared to an empty adenovirus control. Overexpression of DUSP4 also significantly decreased cell viability, lessened recovery in an in vitro wound healing assay, and decreased DNA synthesis. Pharmacological inhibition of NFκB activation or a dominant negative construct of the inhibitor of κB significantly lessened TNF-α-mediated suppression of DUSP4 expression by 70–84 % and attenuated ERK activation, implicating NFκB-dependent pathways in the TNF-α-mediated suppression of DUSP4 that contributes to ERK1/2 signaling. Taken together, our findings show that DUSP4 attenuates ERK signaling and reduces cell viability, suggesting that the novel crosstalk between NFκB and MAPK pathways contributes to cell survival.  相似文献   

15.
16.
Endothelial cells play a vital role in the maintenance of cardiovascular homeostasis. Epoxyeicosatrienoic acids (EETs), cytochrome P-450 (CYP) epoxygenase metabolites of arachidonic acid in endothelial cells, possess potent and diverse biological effects within the vasculature. We evaluated the effects of overexpression of CYP epoxygenases on tumor necrosis factor-alpha (TNF-alpha)-induced apoptosis in bovine aortic endothelial cells. CYP epoxygenase overexpression significantly increased endothelial cell viability and inhibited TNF-alpha induction of endothelial cell apoptosis as evaluated by morphological analysis of nuclear condensation, DNA laddering, and fluorescent-activated cell sorting (FACS) analysis. CYP epoxygenase overexpression also significantly inhibited caspase-3 activity and downregulation of Bcl-2 expression induced by TNF-alpha. The antiapoptotic effects of CYP epoxygenase overexpression were significantly attenuated by inhibition of the phosphatidylinositol 3-kinase (PI3K)/Akt and MAPK signaling pathways; however, inhibition of endothelial nitric oxide synthase activity had no effect. Furthermore, CYP epoxygenase overexpression significantly attenuated the extent of TNF-alpha-induced ERK1/2 dephosphorylation in a time-dependent manner and significantly increased PI3K expression and Akt phosphorylation in both the presence and absence of TNF-alpha. Collectively, these results suggest that CYP epoxygenase overexpression, which is known to increase EET biosynthesis, significantly protects endothelial cells from apoptosis induced by TNF-alpha. This effect is mediated, at least in part, through inhibition of ERK dephosphorylation and activation of PI3K/Akt signaling.  相似文献   

17.
Previous studies demonstrated that chronic dermal exposure to the pesticide adjuvant (surfactant), Toximul (Tox), has significant detrimental effects on hepatic lipid metabolism. This study demonstrated that young mice dermally exposed to Tox for 12 days have significant increases in expression of peroxisomal acyl-CoA oxidase (mRNA and protein), bifunctional enzyme (mRNA) and thiolase (mRNA), as well as the P450 oxidizing enzymes Cyp4A10 and Cyp4A14 (mRNA and protein). Tox produced a similar pattern of increases in wild type adult female mice but did not induce these responses in PPARalpha-null mice. These data support the hypothesis that Tox, a heterogeneous blend of nonionic and anionic surfactants, modulates hepatic metabolism at least in part through activation of PPARalpha. Notably, all three groups of Tox-treated mice had increased relative liver weights due to significant accumulation of lipid. This could be endogenous in nature and/or a component(s) of Tox or a metabolite thereof. The ability of Tox and other hydrocarbon pollutants to induce fatty liver despite being PPARalpha agonists indicates a novel consequence of exposure to this class of chemicals, and may provide a new understanding of fatty liver in populations with industrial exposure.  相似文献   

18.
19.
Li F  Yang H  Duan Y  Yin Y 《Cell biology international》2011,35(11):1141-1146
Myostatin is known as an inhibitor of muscle development, but its role in adipogenesis and lipid metabolism is still unclear, especially the underlying mechanisms. Here, we demonstrated that myostatin inhibited 3T3-L1 preadipocyte differentiation into adipocyte by suppressing C/EBPα (CCAAT/enhancer-binding protein α) and PPARγ (peroxisome-proliferator-activated receptor γ), also activated ERK1/2 (extracellular-signal-regulated kinase 1/2). Furthermore, myostatin enhanced the phosphorylation of HSL (hormone-sensitive lipase) and ACC (acetyl-CoA carboxylase) in fully differentiated adipocytes, as well as ERK1/2. Besides, we noted that myostatin markedly raised the levels of leptin and adiponectin release and mRNA expression during preadipocyte differentiation, but the levels were inhibited by myostatin treatments in fully differentiated adipocytes. These results suggested that myostatin suppressed 3T3-L1 preadipocyte differentiation and regulated lipid metabolism of mature adipocyte, in part, via activation of ERK1/2 signalling pathway.  相似文献   

20.
The importance of PP2A in the regulation of Akt/PKB activity has long been recognized but the nature of the holoenzyme involved and the mechanisms controlling dephosphorylation are not yet known. We identified IEX-1, an early gene product with proliferative and survival activities, as a specific inhibitor of B56 regulatory subunit-containing PP2A. IEX-1 inhibits B56-PP2A activity by allowing the phosphorylation of B56 by ERK. This leads to sustained ERK activation. IEX-1 has no effect on PP2A containing other B family subunits. Thus, studying IEX-1 contribution to signaling should help the discovery of new pathways controlled by B56-PP2A. By using overexpression and RNA interference, we show here that IEX-1 increases Akt/PKB activity in response to various growth factors by preventing Akt dephosphorylation on both Thr(308) and Ser(473) residues. PP2A-B56beta and gamma subunits have the opposite effect and reverse IEX-1-mediated Akt activation. The effect of IEX-1 on Akt is ERK-dependent. Indeed: (i) a IEX-1 mutant deficient in ERK binding had no effect on Akt; (ii) ERK dominant-negative mutants reduced IEX-1-mediated increase in pAkt; (iii) a B56beta mutant that cannot be phosphorylated in the ERK.IEX-1 complex showed an enhanced ability to compete with IEX-1. These results identify B56-containing PP2A holoenzymes as Akt phosphatases. They suggest that IEX-1 behaves as a general inhibitor of B56 activity, enabling the control of both ERK and Akt signaling downstream of ERK.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号