首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Radioactive sucrose, supplied through the cut base to Pisum sativum epicotyls, was transported to the growing apex (plumule and hook) and used there for the synthesis mainly of uridine diphosphoglucose (UDP- glucose), fructose and cell wall glucan. Enzyme extracts of the apical tissue contained sucrose synthetase activity which was freely reversible, i.e. formed UDP-glucose and fructose from sucrose (pH optimum = 6·6 for the cleavage reaction, Km for sucrose = 63 mM). Particulate fractions of the same tissue contained a β-glucan synthetase which utilized UDP-glucose for formation of alkali-soluble and -insoluble products (pH optimum = 8·4, Km for UDP-glucose = 1·9 mM). Values for Vmax and yields of these two synthetase activities were sufficient to account for observed rates of cellulose deposition during epicotyl growth (15–25 μg/hr/epicotyl). When soluble pea enzyme was supplied with sucrose and UDP at pH 6·6 and then the preparation was supplemented with particles bearing β-glucan synthetase at pH 8·4, the glucose moiety of sucrose was converted to glucan in vitro. The results indicate that it is feasible for these synthetases to co-operate in vivo to generate β-glucan for expanding cell walls.  相似文献   

2.
Sucrose synthase of soybean nodules   总被引:6,自引:6,他引:0  
Sucrose synthase (UDPglucose: d-fructose 2-α-d-glucosyl transferase, EC 2.4.1.13) has been purified from the plant cytosolic fraction of soybean (Glycine max L. Merr cv Williams) nodules. The native enzyme had a molecular weight of 400,000. The subunit molecular weight was 90,000 and a tetrameric structure is proposed for soybean nodule sucrose synthase. Optimum activity in the sucrose cleavage and synthesis directions was at pH 6 and pH 9.5 respectively, and the enzyme displayed typical Michaelis-Menten kinetics. Soybean nodule sucrose synthase had a high affinity for UDP (Km, 5 micromolar) and a relatively low affinity for ADP (apparent Km, 0.13 millimolar) and CDP (apparent Km, 1.1 millimolar). The Km for sucrose was 31 millimolar. In the synthesis direction, UDPglucose (Km, 0.012 millimolar) was a more effective glucosyl donor than ADPglucose (Km, 1.6 millimolar) and the Km for fructose was 3.7 millimolar. Divalent cations stimulated activity in both the cleavage and synthesis directions and the enzyme was very sensitive to inhibition by heavy metals.  相似文献   

3.
The properties of spinach leaf sucrose-phosphate synthetase (EC 2.4.1.14) and cytosolic fructose-1,6-bisphosphatase (EC 3.1.3.11) have been studied. These two enzymes have been considered to be important in the control of sucrose synthesis. Sucrose-phosphate synthetase from leaf tissue has not been studied in detail previously and we report a technique for purifying this enzyme 50-fold by chromatography on AH-Sepharose 4B. This method frees the enzyme from contaminants which interfere with assay procedures with little or no loss of activity. The partially purified enzyme has a Km for UDP-glucose of 7.1 mm and for fructose 6-phosphate of 0.8 mm. Fructose 1,6-bisphosphate, inorganic phosphate and UDP are strong inhibitors. The inhibition patterns of these suggest that the enzyme operates either by an ordered bi-bi or a Theorell-Chance mechanism. Partially purified cytosolic fructose-1,6-bisphosphatase is not only inhibited by AMP as previously reported, but is also inhibited by fructose 6-phosphate and UDP. From our observations, we conclude that sucrose biosynthesis is indeed controlled through these two enzymes and it appears that the rate of sucrose synthesis is largely dependent upon the supply of triose phosphate and ATP from the chloroplast.  相似文献   

4.
The synthetic and degradative activities toward sucrose of maize (Zea mays L.) endosperm sucrose-UDP glucosyltransferase preparations behave differently in several respects. Mg2+ or Ca2+ stimulate the synthetic activity but inhibit the degradative activity. Nueleotides have no effect on the synthetic activity but inhibit the degradative activity. The two activities have different pH optima, and ATP inhibits the degradative activity across the pH range tested. However, both activities exhibit identical patterns of heat inactivation, and various purification procedures employed have failed to separate these two activities. The Km values at pH 6.5 (degradation) and pH 8 (synthesis) are sucrose, 40 mM; UDP, 0.14 mM; ADP, 1,25 mM; UDPglucose, 1. 14 rnM; and fructose, 2.08 mM. In the developing endosperm, sucrose-6-P synthetase activity is only ca 1 % of the synthetic activity of sucrose-UDP glucosyltransferase.  相似文献   

5.
Glutamine synthetase from the plant cytosol fraction of lupin nodules was purified 89-fold to apparent homogeneity. The enzyme molecule is composed of eight subunits of Mr 44,700 ± 10%. Kinetic analysis indicates that the reaction mechanism is sequential and there is some evidence that Mg-ATP is the first substrate to bind to the enzyme. Michaelis constants for each substrate using the ammonium-dependent biosynthetic reaction are as follows: ATP, 0.24 mm; l-glutamate, 4.0–4.2 mm; ammonium, 0.16 mm. Using an hydroxamate-forming biosynthetic reaction the Km ATP is 1.1 mm but the Km for l-glutamate is not altered. The effect of pH on the Km for ammonium indicates that NH3 rather than NH4+ may be the true substrate. At 10 mm Mg2+, the pH optimum of the enzyme is between 7.5 and 8, but increasing Mg2+ concentrations produce progressively more acidic optima while lower Mg2+ concentrations raise the pH optimum. The rate-response curve for Mg2+ is sigmoidal becoming bell-shaped in alkaline conditions. The enzyme is inhibited by l-Asp (Ki, 1.4 mm) and less markedly by l-Gln and l-Asn. Inhibition by ADP and AMP is strong, both nucleotides exhibiting Ki values around 0.3 mM. Investigations of the probable physiological conditions within the nodule plant cytosol indicate that in situ glutamine synthetase has an activity greater than that required to support the efflux of amino acid nitrogen from the nodule. A possible role for glutamine synthetase in the control of nodule ammonium assimilation is suggested.  相似文献   

6.
The effect of concentration of each substrate in the reaction catalyzed by sucrose synthetase isolated from sweet potato roots was determined. For the sucrose synthesizing reaction, UDP-glucose(ADP-glucose)+fructose→sucrose+UDP(ADP), the substrate saturation curves for UDP-glucose, ADP-glucose and fructose were hyperbolic in shape and the reaction was strongly inhibited by UDP competitively. On the other hand, the substrates for the reversal of sucrose synthetase reaction, sucrose+UDP(ADP)→UDP-glucose(ADP-glucose)+fructose, exhibited a sigmoidal shaped saturation curve which was deviated from the Michaelis-Menten equation. The plot of data according to the empirical Hill equation gives a values greater than 1.0 for every substrate examined in the latter case. In view of these experimental data, the major role of sucrose synthetase is postulated in that this enzyme is involved in the breakdown of sucrose in sweet potato root tissues instead of the sucrose synthesizing reaction. The molecular weight of the enzyme was determined to be about 540,000 by the Sephadex gel filtration chromatography.  相似文献   

7.
Some enzymic Properties of a partially purified preparationof sucrose phosphate synthetase (E.C.2.4.1.14) from germinatingrice seed scutella were studied. Examination of the reactionkinetics revealed that the rate of synthesis of sucrose phosphatefollows the Michaelis-Menten equation at an optimum PH of 7.5,having Km of 25 mM for UDP-glucose, and of 4.9 mM for fructose6-phosphate. UDP inhibited the enzyme reaction competitively;K1 of 3.3 mM. Fe++ and Fe+++ activated the enzyme reaction about2-fold; Ka, 0.3 mM and 2.0 mM, respectively. Co++, Co(NH3)6+++,Mg++ and Mn++ also activated the enzyme reaction. At high concentrationK+ activated the enzyme reaction with the maximum activationof 24% at 400 mM. The molecular weight and S20,w value of theenzyme were determined as 4.5 ? 105 and 10.4S, respectively. 1Part IV of this series is Ref. (5). 2California Foundation for Biochemical Research Fellow (1973). (Received December 20, 1973; )  相似文献   

8.
Dimethylallylpyrophosphate:l-tryptophan dimethylallyltransferase (DMAT synthetase), the first pathway-specific enzyme of ergot alkaloid biosynthesis, has been isolated from mycelia of Claviceps sp., strain SD 58, and purified to apparent homogeneity. The enzyme reaction products were identified as l-4-(γ,γ-dimethylallyl)tryptophan and inorganic pyrophosphate. DMAT synthetase is a single subunit protein of molecular weight 70,000–73,000 and has an isoelectric point at pH 5.8. The enzyme is activated by Fe2+, Mg2+, and particularly Ca2+; Km values for l-tryptophan and dimethylallylpyrophosphate were determined to be 0.067 and 0.2 mm, respectively. Kinetic analysis indicated that the DMAT synthetase reaction proceeds by a sequential rather than a ping-pong mechanism.  相似文献   

9.
Sucrose and sucrose 6-phosphate synthetase were isolated from potato tubers, partially purified and their properties studied. The sucrose synthetase showed optimum activity at 45° and was inhibited competitively by ADP and some phenolic glucosides. The Ki′s for these inhibitors were determined. Mg2+ was found to activate this enzyme. Activity toward UDP-glucose or ADP-glucose formation was measured. The optimum conditions for sucrose and UDP-glucose formation were found to differ. The specificity for the glucosyl donor and acceptor were determined.

The optimum conditions for sucrose 6-phosphate synthetase activity were studied. This enzyme was not inhibited by either ADP or phenolic glucosides; UDP-glucose was the only glucosyl donor for sucrose 6-phosphate formation.

  相似文献   

10.
The unique character of the plant glucosyltransferase sucrosesynthase, to catalyse in vitro the synthesis and cleavage ofsucrose under appropriate conditions, can be exploited for theenzymatic synthesis of carbohydrates. The present paper describesthe potential utilization of sucrose synthase from rice forthe enzymatic synthesis of activated sugars and saccharides.In the cleavage reaction of sucrose, the nucleoside diphosphatescan be used in the order UDP > TDP > ADP > CDP >GDP to obtain the corresponding activated glucoses. In batchreactions, >90% conversion of UDP and TDP could be achieved.Substituting different di- and trisaccharides for sucrose inthe cleavage reaction with UDP 2-deoxysucrose was the most promisingsubstrate. Sucrose synthase was combined with UDP-galactose4'-epimerase and ß1–4 galactosyltransferaseto synthesize N-acetyllactosamine with in situ regenerationof UDP-glucose. In the synthesis reaction of sucrose synthase,different donor (UDP-sugars) and acceptor substrates were investigated.UDP-N-acetylglucosamine and UDP-xylose could be used in combinationwith fructose as acceptor. D-Xylulose, D-tagatose, D-lyxose,D-psicose, L-sorbose, D-mannose, L-arabinose, 1, 6 anhydroglucose,lactulose, raffinose and isomaltulose can serve as acceptorsfor UDP-glucose. N-acetyllactosamine nucleotide sugars saccharides sucrose synthase  相似文献   

11.
Experiments were carried out to investigate whether sucrose synthase (Susy) catalyses a readily reversible reaction in vivo in potato (Solanum tuberosum L.) tubers, Ricinus communis L. cotyledons, and heterotrophic Chenopodium rubrum L. cell-suspension cultures. (i) The contents of sucrose, fructose, UDP and UDP-glucose were measured and the mass-action ratio compared with the theoretical equilibrium constant. In all three tissues the values were similar. (ii) Evidence for rapid turnover of label in the sucrose pool was obtained in pulse-chase experiments with potato discs and with intact tubers attached to the plant. The unidirectional rates of sucrose synthesis and degradation were considerably higher than the net flux through the sucrose pool in the tubers. (iii) Labelling of the glucosyl and fructosyl moieties of sucrose from [14C]glucose in the presence of unlabelled fructose provided evidence that Susy contributes to the movement of label into sucrose. Methods for estimating the contribution of sucrose-phosphate synthase and Susy are presented and it is shown that their relative contribution varies. For example, the contribution of Susy is high in developing tubers and is negligible in harvested tubers which contain low Susy activity. (iv) The absolute values of the forward (v+1) and backward (v?1) reaction direction of Susy are calculated from the kinetic labelling data. The estimated values of v+1 and v?1 are comparable, and much higher than the net flux through the sucrose pool. (v) The estimated concentrations of the substrates and products of Susy in tubers are comparable to the published K m values for potato-tuber Susy. (vi) It is concluded that Susy catalyses a readily reversible reaction in vivo and the relevance of this conclusion is discussed with respect to the regulation of sucrose breakdown and the role of Susy in phloem unloading.  相似文献   

12.
An investigation of the subunit structure of glutamyl-tRNA synthetase (EC 6.1.1.17) from Escherichia coli indicates that this enzyme is a monomer. The enzyme purified to apparent homogeneity is a single polypeptide chain with a molecular weight of 62,000 ± 3,000 and KGlum ? 50 μM in the aminoacylation reaction. Analytical gel electrophoretic procedures were used to determine the molecular weight of species exhibiting glutamyl-tRNA synthetase activity in freshly prepared extracts of several strains of E. coli, which had been grown under various nutritional conditions and harvested at different stages of growth. In all cases, glutamyl-tRNA synthetase activity was associated with a protein having about the same molecular weight and KGlum as the purified enzyme. Thus, no evidence of an oligomeric form of glutamyl-tRNA synthetase with a greater affinity for l-glutamate was obtained, in contrast to a previous report of J. Lapointe and D. Söll (J. Biol. Chem.247, 4966–4974, 1972).  相似文献   

13.
(i) The activity of purified NAD-specific isocitrate dehydrogenase from bovine heart was stimulated by free Ca2+ in the presence of ADP and subsaturating levels of magnesium isocitrate, but not in absence of ADP. However, Ca2+ was not absolutely required for ADP activation. This was particularly apparent when free Mg2+ was kept low (0.0024–0.020 mm) and the substrate magnesium dl-isocitrate ranged from 0.07–0.25 mm. When kinetic constants were determined at pH 7.4 under these conditions and in the absence of ethylene glycol bis(β-aminoethyl ether) N,N′-tetraacetate, Ca2+ had little or no effect on Km (app) for ADP; the stimulation of rate by Ca2+ was mainly due to increased V (app). With subsaturating ADP, there was an interdependence in the interaction of the enzyme with substrate and Ca2+. Thus, with ADP constant (0.30 mm) the values of Km (app) for magnesium dl-isocitrate declined from 0.35 mm at zero Ca2+ to 0.19 mm with saturating Ca2+ without affecting V; Km (app) for free Ca2+ declined with increasing magnesium isocitrate to a limiting Km of 0.3 μm. (ii) Ethylene glycol bis(β-aminoethyl ether)-N,N′-tetraacetate, frequently used as a calcium buffer, inhibited enzyme activity with and without ADP. (iii) The enzyme was not inhibited by the calmodulin inhibitors trifluoperazine and chlorpromazine. Inhibition by lanthanide ions of the isocitrate dehydrogenase was competitive with magnesium isocitrate and not with respect to Ca2+. The values of Kis (1.8 to 3.1 μm) for La3+, Yb3+, Gd3+, Eu3+, Tb3+, and Er3+ were about two orders of magnitude smaller than Km for magnesium dl-isocitrate.  相似文献   

14.
Studies on sucrose synthetase. Kinetic mechanism   总被引:2,自引:0,他引:2  
The kinetic properties of Helianthus tuberosus sucrose synthetase, which catalyzes the reaction UDP-glucose + fructose = UDP + sucrose, have been studied. A plot of the reciprocal initial velocity versus reciprocal substrate concentration gave a series of intersecting lines indicating a sequential mechanism. Product inhibition studies showed that UDP-glucose was competitive with UDP, whereas fructose was competitive with sucrose and uncompetitive with UDP. On the other hand, a dead-end inhibitor, salicine, was competitive with sucrose and uncompetitive with UDP. The results of initial velocity, product, and dead-end inhibition studies suggested that the addition of substrates to the enzyme follows an ordered mechanism.  相似文献   

15.
Rabbit muscle aldolase was used to synthesize d-glycero-d-altro-octulose 1,8-bisphosphate and d-glycero-d-ido-octulose 1,8-bisphosphate. The products, isolated by ion-exchange chromatography, were characterized with the cysteine-sulfuric acid reaction and shown to be 90–95% pure by analysis for organic phosphorus and for dihydroxyacetone phosphate formed on cleavage with aldolase. The kinetic constants for synthesis and cleavage of these octulose bisphosphates with muscle and liver aldolases were determined. In the direction of cleavage both octulose bisphosphates were excellent substrates for liver aldolase, comparable to fructose 1,6-bisphosphate with respect to both V and Km. With muscle aldolase the rate of cleavage was 1–5% of that with fructose bisphosphate and comparable to that with fructose 1-phosphate. In the direction of synthesis, ribose 5-phosphate was a better substrate than arabinose 5-phosphate for both the liver and muscle enzymes, although for both pentose phosphates the values of Km fell in the range between 5 and 25 mm. It is concluded that reactions catalyzed by aldolase might account for the reported presence of these eight-carbon sugar phosphate esters in liver and in red cells.  相似文献   

16.
Doehlert DC 《Plant physiology》1989,89(4):1042-1048
Four forms of hexose kinase activity from developing maize (Zea mays L.) kernels have been separated by ammonium sulfate precipitation, gel filtration chromatography, blue-agarose chromatography, and ion exchange chromatography. Two of these hexose kinases utilized d-glucose most effectively and are classified as glucokinases (EC 2.7.1.2). The other two hexose kinases utilized only d-fructose and are classified as fructokinases (EC 2.7.1.4). All hexose kinases analyzed had broad pH optima between 7.5 and 9.5 with optimal activity at pH 8.5. The two glucokinases differed in substrate affinities. One form had low Km values [Km(glucose) = 117 micromolar, Km(ATP) = 66 micromolar] whereas the other form had much higher Km values [Km(glucose) = 750 micromolar, Km(ATP) = 182 micromolar]. Both fructokinases had similar substrate saturation responses. The Km(fructose) was about 130 micromolar and the Km(ATP) was about 700 micromolar. Both exhibited uncompetitive substrate inhibition by fructose [Ki(fructose) = 1.40 to 2.00 millimolar]. ADP inhibited all four hexose kinase activities, whereas sugar phosphates had little effect on their activities. The data suggest that substrate concentrations are an important factor controlling hexose kinase activity in situ.  相似文献   

17.
A relatively rapid five-step procedure was used in purifying to apparent homogeneity the glutamine synthetase from roots and one form of the enzyme (GSI) from leaves of rice. The steps were: preparation of crude extracts, ammonium sulfate precipitation, filtration on Sepharose 4B, fractionation on DEAE-Sephadex A25, and affinity chromatography on ADP-Sepharose 4B. The purified protein appeared as a single band on polyacrylamide gel electrophoresis. Leaf GSI and the second type of leaf glutamine synthetase (GSII) formed distinct peaks when eluted from DEAE-Sephadex (step 4). The root enzyme and leaf GSI were similar in all the properties which were examined. Both enzymes bound to ADP-Sepharose, had similar biosynthetic (18 μmol P/img protein/min) and transferase (1324 and 1156 μmol γ-glutamyl hydroxamate/mg protein/min) activities, and the same or nearly the same Km values for glutamate (2.17 mm), Mg2+ (4.5 and 5.0 mm), ATP (286 μm), NH4+ (210 and 135 μm), and ADP (3.8 and 5.3 μm). In contrast, leaf GSII did not bind to ADP-Sepharose and had much higher Km values for glutamate (8.3 mm), Mg2+ (15 mm), NH4+ (684 μm), and ADP (33 μm).  相似文献   

18.
Kinetic properties of homogeneous preparations of pig kidney and pig muscle pyruvate kinases (EC 2.7.1.40) were studied. Both isozymes showed a hyperbolic relationship to ADP with an apparent Km of 0.3 mm. K+ and Mg2+ were necessary for the activity of both isozymes, and their dependences on these cations were similar. The muscle isozyme expressed Michaelis-Menten type of kinetics with respect to phosphoenolpyruvate, and the apparent Km was the same (0.03 mm) from pH 5.5 to pH 8.0. In contrast, the dependence on phosphoenolpyruvate changed with pH for the kidney isozyme. It showed similar properties to the muscle isozyme at pH 5.5–7.0 (apparent Km of 0.08 mm), while two apparent Km values for this substrate were present at pH 7.5–8.0, one low (0.1 mm) and one high (0.3–0.6 mm). At pH 7.5, fructose 1,6-bisphosphate converted the kidney isozyme to a kinetical form where only the lower apparent Km for phosphoenolpyruvate was detected. On the other hand, in the presence of alanine or phenylalanine the kidney pyruvate kinase showed only the higher Km for this substrate. At low phosphoenolpyruvate levels both isozymes were inhibited by phenylalanine, and half-maximal inhibition was found at 0.3 and 2.2 mm for the kidney and muscle isozymes, respectively. At a 5 mm concentration of the substrate only the kidney isozyme was inhibited, the apparent Ki being the same. Alanine inhibited the kidney isozyme (apparent Ki at 0.3 mm, irrespective of substrate concentration). No effect was seen on the muscle isozyme. Fructose 1,6-bisphosphate was an activator of the kidney isozyme at phosphoenolpyruvate concentrations below 1.0 mm It also counteracted the inhibition by alanine or phenylalanine of this isozyme. ATP inhibited both isozymes, and this inhibition was not counteracted by fructose 1,6-bisphosphate. The kidney isozyme showed both a high and a low apparent Km for phosphoenolpyruvate in the presence of ATP. The influence of the effectors on the activity of both isozymes varied markedly with pH, except for the action of ATP. At low substrate concentrations, however, the inhibitor action of ATP on the muscle enzyme was diminished around pH 7.5, in contrast to higher or lower pH values. Alanine or phenylalanine were more effective as inhibitors at higher pH values, and fructose 1,6-bisphosphate stimulated the kidney isozyme only at pH levels above pH 6.5. The influence of activators and inhibitors on the regulation of the kidney and muscle pyruvate kinases is discussed.  相似文献   

19.
Sucrose synthetase (EC 2.4.1.13 [EC] ) was found in the latex of therubber tree but the activity of sucrose phosphate synthetase(EC 2.4.1.14 [EC] ) was not detected. The enzyme was purified andsome properties have been investigated. Examination of the kineticsof sucrose synthesis revealed Km of 0.56 mM for uridine diphosphoglucoseand 3.85 mM for fructose. Mg2+ and cyanide activated sucrosesynthesis but reduced the cleavage reaction. Increased pH hadthe same effect, the synthetic activity being higher than theactivity of sucrose breakdown within the physiological levelsof latex pH. In the latex of regularly tapped trees, the total enzyme activityin the direction of synthesis was about 10% or less of the totalinvertase activity at pH 7.0. Because of the strong limitationof invertase under natural conditions, the proportion of actualsynthetase activity is, however, much higher and evidence ispresented that in the latex of regularly tapped trees this activitysignificantly reduces carbohydrate breakdown. Some indications have been obtained that this involvement ofsucrose synthetase is weakened by application of Ethrel to thebark. A reduction of its synthetic activity, accompanied byan acceleration of sucrose utilization in latex cytoplasm andby an increase of latex yield, could be observed before thetreatment-induced rise of pH enhancing inver.  相似文献   

20.
Sucrose synthase (EC 2.4.1.13 [EC] ) was purified from peach fruit(Prunus persica) to a single band of protein on SDS-PAGE byammonium sulfate fractionation, DEAE-cellulose (DE-52) chromatography,Sepharose CL-6B gel filtration, PBA-60 affinity chromatographyand Sephadex G-200 gel filtration. The molecular weight wasestimated to be 360,000 by gel filtration. The enzyme was foundto be a tetramer of identical 87-kDa subunits. The maximum activityfor the synthesis and cleavage of sucrose was observed at pH8.5 and pH 7.0, respectively. The enzymatic reaction followedtypical Michaelis-Menten kinetics in both directions, with thefollowing parameters: Km(fructose), 4.8 mmM; Km(UDPglucose),0.033 mM; Km(sucrose), 62.5 mM; Km(UDP), 0.080 mM. Other properties,such as substrate specificity and the effects of divalent cations,were also investigated. The relationship between the enzymeand the accumulation of sucrose in peach fruit is discussed. Present address: Laboratory of Horticulture, Faculty of Agriculture,Nagoya University, Chikusa, Nagoya 464, Japan. (Received May 2, 1988; Accepted September 14, 1988)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号