共查询到20条相似文献,搜索用时 15 毫秒
1.
Repetto S Salani B Maggi D Cordera R 《Biochemical and biophysical research communications》2005,337(3):849-852
Caveolae are plasmamembrane regions which take part in the regulation of intracellular trafficking and signaling of tyrosine kinase receptors. Insulin and IGF-I receptors and their intracellular substrates localize in caveolae. Also eNOS is targeted to caveolae and caveolin-1, the major caveolar protein, acts as a regulator of eNOS activity. Since Insulin and IGF-I phosphorylate and activate eNOS, we investigated the role of caveolin-1 in Insulin and IGF-I stimulated eNOS activity. Here we show that: (1) in human endothelial cells, Insulin and IGF-I stimulate eNOS phosphorylation in a different manner both qualitatively and quantitatively; (2) caveolin-1 down regulation abolishes Insulin and IGF-I stimulated eNOS phosphorylation. These results suggest that caveolae could represent an intracellular site that contributes to differentiate IR and IGF-IR activity, and demonstrate the role of caveolin-1 in the eNOS activation by Insulin and IGF-I. 相似文献
2.
Shan Yu Siu Ling Wong Chi Wai Lau Yu Huang Cheuk-Man Yu 《Biochemical and biophysical research communications》2011,407(1):44
It has long been considered that oxidized low-density lipoprotein (oxLDL) causes endothelial dysfunction and is remarkably related to the development of atherosclerosis. However, the effect of oxLDL at very low concentration (<10 μg/ml) on the endothelial cells remains speculative. Nitric oxide (NO) has a crucial role in the endothelial cell function. In this study, we investigated the effect of oxLDL at low concentration on NO production and proliferation, migration, tube formation of the human coronary artery endothelial cells (HCAEC). Results showed that oxLDL at 5 μg/ml enhanced HCAEC proliferation, migration and tube formation. These phenomena were accompanied by an increased intracellular NO production. l-NAME (a NOS inhibitor), LY294002 and wortmannin (PI3K inhibitors) could abolish oxLDL-induced angiogenic effects and prevent NO production in the HCAEC. The phosphorylation of Akt, PI3K and eNOS were up-regulated by oxLDL, which was attenuated by LY294002. Our results suggested that oxLDL at low concentration could promote in-vitro angiogenesis and activate nitric oxide synthesis through PI3K/Akt/eNOS pathway in HCAEC. 相似文献
3.
Wang L Takaku S Wang P Hu D Hyuga S Sato T Yamagata S Yamagata T 《Glycoconjugate journal》2006,23(5-6):303-315
GD1a was previously shown responsible for regulating cell motility, cellular adhesiveness to vitronectin, phosphorylation
of c-Met and metastatic ability of mouse FBJ osteosarcoma cells. To determine the particular molecules regulated by GD1a,
FBJ cells were assessed for tumor-related gene expression by semi-quantitative RT-PCR. Caveolin-1 and stromal interaction
molecule 1 (Stim1) expression in FBJ-S1 cells, rich in GD1a, were found to be 6 and 4 times as much, respectively, than in
FBJ-LL cells devoid of GD1a. Enhanced production of caveolin-1 in protein was confirmed by Western blotting. A low-metastatic
FBJ-LL cell variant, having high GD1a expression through β1-4GalNAcT-1 (GM2/GD2 synthase) cDNA transfection (Hyuga S, et al, Int J Cancer 83: 685-91, 1999), showed enhanced production of caveolin-1 and Stim1 in mRNA and protein, compared to mock-transfectant
M5. Incubation of FBJ-M5 cells with exogenous GD1a augmented the expression of caveolin-1 in mRNA and protein and Stim1 in
mRNA as well. Treatment of FBJ-S1 with fumonisin B1, an inhibitor of N-acylsphinganine synthesis, for 15 days caused the complete depletion of gangliosides and suppressed the expression of caveolin-1
and Stim1. St3gal5 siRNA transfected cells showed decreased expression of caveolin-1 and Stim1 mRNA, as well as St3gal5 mRNA.
These findings clearly indicate ganglioside GD1a to be involved in the regulation of the transformation suppressor genes,
caveolin-1 and Stim1. Moreover, treatment with GD1a of mouse melanoma B16 cells and human hepatoma HepG2 cells brought about
elevated expression of caveolin-1 and Stim1.
Li Wang and Shizuka Takaku are equal contributors to the present work 相似文献
4.
Bueter CL Lee CK Rathinam VA Healy GJ Taron CH Specht CA Levitz SM 《The Journal of biological chemistry》2011,286(41):35447-35455
Chitin is an abundant polysaccharide found in fungal cell walls, crustacean shells, and insect exoskeletons. The immunological properties of both chitin and its deacetylated derivative chitosan are of relevance because of frequent natural exposure and their use in medical applications. Depending on the preparation studied and the end point measured, these compounds have been reported to induce allergic responses, inflammatory responses, or no response at all. We prepared highly purified chitosan and chitin and examined the capacity of these glycans to stimulate murine macrophages to release the inflammasome-associated cytokine IL-1β. We found that although chitosan was a potent NLRP3 inflammasome activator, acetylation of the chitosan to chitin resulted in a near total loss of activity. The size of the chitosan particles played an important role, with small particles eliciting the greatest activity. An inverse relationship between size and stimulatory activity was demonstrated using chitosan passed through size exclusion filters as well as with chitosan-coated beads of defined size. Partial digestion of chitosan with pepsin resulted in a larger fraction of small phagocytosable particles and more potent inflammasome activity. Inhibition of phagocytosis with cytochalasin D abolished the IL-1β stimulatory activity of chitosan, offering an explanation for why the largest particles were nearly devoid of activity. Thus, the deacetylated polysaccharide chitosan potently activates the NLRP3 inflammasome in a phagocytosis-dependent manner. In contrast, chitin is relatively inert. 相似文献
5.
6.
Lai HH Boone TB Yang G Smith CP Kiss S Thompson TC Somogyi GT 《Neurochemistry international》2004,45(8):1156-1193
Caveolin-1 (Cav1), a structural protein of caveolae, plays cell- and context-dependent roles in signal transduction pathway regulation. We have generated a knockout mouse homozygous for a null mutation of the Cav1 gene. Cav1 knockout mice exhibited impaired urinary bladder contractions in vivo during cystometry. Contractions of male bladder strips were evoked with electric and pharmacologic stimulation (5–40 Hz, 1–10 μM carbachol, 10 mM ,β-methylene ATP, 100 mM KCl). Acetylcholine (ACh) and norepinephrine (NE) release from bladder strips were measured with a radiochemical method by incubating the strips with 14C-choline and 3H-NE prior to electric stimulation, whereas ATP release was measured using the luciferin-luciferase assay with a luminometer. A 60–75% decline in contractility was observed when Cav1 knockout muscle strips were stimulated with electric current or carbachol, compared to wildtype muscle strips. No difference in contractility was noted when contractions were evoked either by the purinergic agonist ,β-methylene ATP, or by extracellular potassium. To investigate the relative contribution of non-cholinergic activity to bladder contractility, the amplitude of the electric stimulation-evoked contractions was compared in the presence of the muscarinic antagonist atropine (1 μM). While the non-muscarinic (purinergic) response was unaltered, muscarinic cholinergic response was principally disrupted in Cav1 knockout mice. The loss of Cav1 gene expression was also associated with a 70% reduction in ACh release. NE and ATP release was not altered. It is concluded that the loss of caveolin-1 is associated with disruption of M3 muscarinic cholinergic activity in the bladder. Both pre-junctional (acetylcholine neurotransmitter release from neuromuscular junctions) and post-junctional (M3 receptor-mediated signal transduction in bladder smooth muscles) mechanisms are disrupted, resulting in impaired bladder contraction. 相似文献
7.
目的检测caveolin-1在胚胎植入过程中小鼠子宫内膜组织中的表达,探讨其在胚胎植入过程中的作用。方法选择成年雌性昆明小白鼠42只,随机均分为7组(处于动情期的未孕组、妊娠3.5天组、妊娠4.5天组、妊娠5.5天组、妊娠6.5天组、妊娠7.5天组、妊娠9天组),采用免疫组织化学和RT-PCR方法检测子宫内膜组织中caveolin-1蛋白及mRNA水平在围植入期的变化。结果 (1)caveolin-1在胚胎植入前期(0d、3.5d)小鼠子宫内膜组织中的表达高于胚胎植入期(4.5d、5.5d、6.5d),差异有显著性(P<0.05)。(2)caveolin-1在胚胎植入后期(7.5d、9d)小鼠子宫内膜组织中的表达高于胚胎植入期(4.5d、5.5d、6.5d),差异有显著性(P<0.05)。(3)caveolin-1在胚胎植入后期小鼠子宫内膜组织中的表达略高于胚胎植入前期,但差异无显著性(P>0.05)。结论 Caveolin-1在胚胎植入前期和后期均高表达,植入期低表达。这种变化提示caveolin-1是影响胚胎植入的重要因素之一。 相似文献
8.
9.
Src homology 2-containing protein tyrosine phosphatase 2 (SHP-2) is known to protect neurons from neurodegeneration during ischemia/reperfusion injury. We recently reported that ROS-mediated oxidative stress promotes phosphorylation of endogenous SHP-2 in astrocytes and complex formation between caveolin-1 and SHP-2 in response to oxidative stress. To examine the region of SHP-2 participating in complex formation with caveolin-1, we generated three deletion mutant constructs and six point mutation constructs of SHP-2. Compared with wild-type SHP-2, binding of the N-SH2 domain deletion mutant of SHP-2 to p-caveolin-1 was reduced greatly, using flow cytometric competitive binding assays and surface plasmon resonance (SPR). Moreover, deletion of the N-SH2 domain of SHP-2 affected H2O2-mediated ERK phosphorylation and Src phosphorylation at Tyr 419 in primary astrocytes, suggesting that N-SH2 domain of SHP-2 is responsible for the binding of caveolin-1 and contributes to the regulation of Src phosphorylation and activation following ROS-induced oxidative stress in brain astrocytes. [BMB Reports 2015; 48(3): 184-189] 相似文献
10.
Kei Ohnuma Masahiko Uchiyama Ryo Hatano Yuko Endo Chikao Morimoto 《Biochemical and biophysical research communications》2009,386(2):327-332
CD26 binds to caveolin-1 in antigen-presenting cells (APC), and that ligation of CD26 by caveolin-1 induces T cell proliferation in a TCR/CD3-dependent manner. We report herein the effects of CD26-caveolin-1 costimulatory blockade by fusion protein caveolin-1-Ig (Cav-Ig). Soluble Cav-Ig inhibits T cell proliferation and cytokine production in response to recall antigen, or allogeneic APC. Our data hence suggest that blocking of CD26-associated signaling by soluble Cav-Ig may be an effective approach as immunosuppressive therapy. 相似文献
11.
Waschke J Golenhofen N Kurzchalia TV Drenckhahn D 《Histochemistry and cell biology》2006,126(1):17-26
Protein kinase C (PKC) is activated in response to various inflammatory mediators and contributes significantly to the endothelial barrier breakdown. However, the mechanisms underlying PKC-mediated permeability regulation are not well understood. We prepared microvascular myocardial endothelial cells from both wild-type (WT) and caveolin-1-deficient mice. Activation of PKC by phorbol myristate acetate (PMA) (100 nM) for 30 min induced intercellular gap formation and fragmentation of VE-cadherin immunoreactivity in WT but not in caveolin-1-deficient monolayers. To test the effect of PKC activation on VE-cadherin-mediated adhesion, we allowed VE-cadherin-coated microbeads to bind to the endothelial cell surface and probed their adhesion by laser tweezers. PMA significantly reduced bead binding to 78±6% of controls in WT endothelial cells without any effect in caveolin-1-deficient cells. In WT cells, PMA caused an 86±18% increase in FITC-dextran permeability whereas no increase in permeability was observed in caveolin-1-deficient monolayers. Inhibition of PKC by staurosporine (50 nM, 30 min) did not affect barrier functions in both WT and caveolin-1-deficient MyEnd cells. Theses data indicate that PKC activation reduces endothelial barrier functions at least in part by the reduction of VE-cadherin-mediated adhesion and demonstrate that PKC-mediated permeability regulation depends on caveolin-1. 相似文献
12.
Zhou H Jia L Wang S Wang H Chu H Hu Y Cao J Zhang J 《Biochemical and biophysical research communications》2006,345(1):486-494
Caveolin-1 is the major component protein of caveolae and associated with a lot of cellular events such as endocytosis, cholesterol homeostasis, signal transduction, and tumorigenesis. The majority of results suggest that caveolin-1 might not only act as a tumor suppressor gene but also a promoting metastasis gene. In this study, the divergent expression and roles of caveolin-1 were investigated in mouse hepatocarcinoma cell lines Hca-F, Hca-P, and Hepa1-6, which have high, low, and no metastatic potential in the lymph nodes, as compared with normal mouse liver cell line IAR-20. The results showed that expression of caveolin-1 mRNA and protein along with the amount of caveolae number in Hca-F cells was higher than that in Hca-P cells, but was not detectable in Hepa1-6 cells. When caveolin-1 expression in Hca-F cells was down-regulated by RNAi approach, Hca-F cells proliferation rate in vitro declined and the expression of lymphangiogenic factor VEGFA in Hca-F decreased as well. Furthermore, in vivo implantation assay indicated that reduction of caveolin-1 expression in Hca-F prevented the lymphatic metastasis tumor burden of Hca-F cells in 615 mice. These results suggest that caveolin-1 facilities the lymphatic metastasis ability of mouse hepatocarcinoma cells via regulation tumor cell growth and VEGFA expression. 相似文献
13.
14.
Cellular localization and interaction of ABCA1 and caveolin-1 in aortic endothelial cells after HDL incubation 总被引:5,自引:0,他引:5
Chao WT Tsai SH Lin YC Lin WW Yang VC 《Biochemical and biophysical research communications》2005,332(3):743-749
The goal of this study was to investigate the cellular localization and the interaction between caveolin-1 and ABCA1 in cholesterol-loaded aortic endothelial cells after HDL incubation. Immunofluorescence confocal microscopy showed that ABCA1 was found primarily on the cell surface, whereas caveolin-1 was revealed on the cell surface and in the cytoplasm. The HDL appeared to colocalize with ABCA1 and caveolin-1 on the cell surface. No free HDL was revealed in the cytoplasm. The HDL was colocalized neither with early endosome marker (CD71) nor with late endosome marker (LAMP2). The chemical cross-linking and immunoprecipitation analysis revealed that ABCA1 binds directly to both HDL and caveolin-1, whereas HDL does not bind directly to caveolin-1. The studies provide evidence for a direct interaction between ABCA1 and HDL, ABCA1 and caveolin-1, but not HDL and caveolin-1, indicating that ABCA1 may act as a structural platform between HDL and caveolin-1 on the cell surface during cellular cholesterol efflux. 相似文献
15.
Peng Zou 《Archives of biochemistry and biophysics》2009,486(2):150-236
The cytoplasmic domain of influenza M2 protein (M2c) consists of 54 amino acid (aa) residues from aa44 to aa97. In this paper, M2c and its deletion mutant M2cΔ47-55 were expressed using prokaryotic expression system. First, glutaraldehyde crosslinking assay showed that M2c had multimerization potential mediated by aa47-55. Then, M2c, instead of M2cΔ47-55, directed eGFP from the whole cell localization to a predominately perinuclear region in CHO cells, which indicated that aa47-55 of M2c mediated the localization. Moreover, M2c colocalized with caveolin-1 (Cav) when CHO cells were cotransfected with Cav. A caveolin-1 binding motif ΦxxxxΦxxΦ (Φ represents aromatic amino acid residues) in aa47-55 of M2c was found by sequence alignment and analysis. Further overlay ELISA result showed that M2c, but not M2cΔ47-55, bound to prokaryotically expressed cholesterol-free Cav2-101, which illustrated the interaction could be cholesterol-independent. That was the first report of cellular protein bound to M2c. 相似文献
16.
Members of Akt family are highly conserved protein kinase and yet, they show clearly distinct in vivo functions. Here, we have examined the abilities of Akt1 and Akt2 to activate CREB. We found that, in contrast to Akt1 that induces CREB phosphorylation at Ser-133 and CREB target gene expression, Akt2 was unable to induce CREB phosphorylation at Ser-133 in vivo and CREB target gene expression. This difference is specific to CREB as both Akt1 and Akt2 similarly inhibits FoxO1 mediated gene expression. We further showed that the regulatory domain of Akt plays a critical role to confer Akt substrate specificity as substitution of regulatory domain of Akt1 with that of Akt2 abolished the ability of Akt1 to activate CREB. We suggest that the regulatory domain of Akts contributes to the functional difference between Akt1 and Akt2. 相似文献
17.
Wu P Wang X Li F Qi B Zhu H Liu S Cui Y Chen J 《Biochemical and biophysical research communications》2008,376(1):215-220
Caveolin-1 is an essential structural constituent of caveolae membrane domains that has been implicated in mitogenic signaling and oncogenesis. However, the exact functional role of caveolin-1 still remains controversial. In this report, utilizing MCF-7 human breast adenocarcinoma cells stably transfected with caveolin-1 (MCF-7/cav-1 cells), we demonstrate that caveolin-1 expression dramatically inhibits invasion and migration of these cells. Importantly, in vivo experiments employing xenograft tumor models demonstrated that expression of caveolin-1 results in significant growth inhibition of breast tumors. Moreover, a dramatic delay in tumor progression was observed in MCF-7/cav-1 cells as compared with MCF-7 cells. Histological analysis of tumor sections demonstrated a marked decrease in the percentage of proliferating tumor cells (Ki-67 assay) along with an increase in apoptotic tumor cells (TUNEL assay) in MCF-7/cav-1-treated animals. Our current findings provide for the first time in vivo evidence that caveolin-1 can indeed function as a tumor suppressor in human breast adenocarcinoma derived from MCF-7 cells rather than as a tumor promoter. 相似文献
18.
Bernat Elvira Sabina Honisch Ahmad Almilaji Tatsiana PakladokGuilai Liu Ekaterina ShumilinaIoana Alesutan Wenting YangCarlos Munoz Florian Lang 《生物化学与生物物理学报:生物膜》2013
The Na+-coupled glucose transporter SGLT1 (SLC5A1) accomplishes concentrative cellular glucose uptake even at low extracellular glucose concentrations. The carrier is expressed in renal proximal tubules, small intestine and a variety of nonpolarized cells including several tumor cells. The present study explored whether SGLT1 activity is regulated by caveolin-1, which is known to regulate the insertion of several ion channels and carriers in the cell membrane. To this end, SGLT1 was expressed in Xenopus oocytes with or without additional expression of caveolin-1 and electrogenic glucose transport determined by dual electrode voltage clamp experiments. In SGLT1-expressing oocytes, but not in oocytes injected with water or caveolin-1 alone, the addition of glucose to the extracellular bath generated an inward current (Ig), which was increased following coexpression of caveolin-1. Kinetic analysis revealed that caveolin-1 increased maximal Ig without significantly modifying the glucose concentration required to trigger half maximal Ig (KM). According to chemiluminescence and confocal microscopy, caveolin-1 increased SGLT1 protein abundance in the cell membrane. Inhibition of SGLT1 insertion by brefeldin A (5 μM) resulted in a decline of Ig, which was similar in the absence and presence of caveolin-1. In conclusion, caveolin-1 up-regulates SGLT1 activity by increasing carrier protein abundance in the cell membrane, an effect presumably due to stimulation of carrier protein insertion into the cell membrane. 相似文献
19.
Nephrin, an important structural and signal molecule of podocyte slit-diaphragm (SD), has been suggested to contribute to the angiotensin II (Ang II)-induced podocyte injury. Caveolin-1 has been demonstrated to play a crucial role in signaling transduction. In the present study, we evaluated the role of caveolin-1 in Ang II-induced nephrin phosphorylation in podocytes. Wistar rats-receiving either Ang II (400 ng/kg/min) or normal saline (via subcutaneous osmotic mini-pumps, control) were administered either vehicle or telmisartan (3 mg/kg/min) for 14 or 28 days. Blood pressure, 24-hour urinary albumin and serum biochemical profile were measured at the end of the experimental period. Renal histomorphology was evaluated through light and electron microscopy. In vitro, cultured murine podocytes were exposed to Ang II (10−6 M) pretreated with or without losartan (10−5 M) for variable time periods. Nephrin and caveolin-1 expression and their phosphorylation were analyzed by Western-blotting and immunofluorescence. Caveolar membrane fractions were isolated by sucrose density gradient centrifugation, and then the distribution and interactions between Ang II type 1 receptor (AT1), nephrin, C-terminal Src kinase (Csk) and caveolin-1 were evaluated using Western-blotting and co-immunoprecipitation. Podocyte apoptosis was evaluated by cell nucleus staining with Hoechst-33342.Ang II-receiving rats displayed diminished phosphorylation of nephrin but enhanced glomerular/podocyte injury and proteinuria when compared to control rats. Under control conditions, podocyte displayed expression of caveolin-1 in abundance but only a low level of phospho moiety. Nonetheless, Ang II stimulated caveolin-1 phosphorylation without any change in total protein expression. Nephrin and caveolin-1 were co-localized in caveolae fractions. AT1 receptors and Csk were moved to caveolae fractions and had an interaction with caveolin-1 after the stimulation with Ang II. Transfection of caveolin-1 plasmid (pEGFPC3-cav-1) significantly increased Ang II-induced nephrin dephosphorylation and podocyte apoptosis. Furthermore, knockdown of caveolin-1 expression (using siRNA) inhibited nephrin dephosphorylation and prevented Ang II-induced podocyte apoptosis. These findings indicate that Ang II induces nephrin dephosphorylation and podocyte injury through a caveolin-1-dependent mechanism. 相似文献
20.