首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Deacetoxycephalosporin C synthase, the penicillin N ring expansion enzyme from Streptomyces clavuligerus, was purified to near homogeneity, as judged by sodium dodecyl sulphate - polyacrylamide gel electrophoresis. The synthase was monofunctional and could be completely separated from deacetoxycephalosporin C hydroxylase activity early in the purification sequence. Synthase specific activity was increased 97-fold over crude cell-free extracts, and the purified enzyme appeared to be a monomer with a molecular weight of 36,000 and a Km for the penicillin N substrate of 50 microM. Deacetoxycephalosporin C synthase activity required alpha-ketoglutarate, Fe2+, and oxygen and was specifically stimulated by ascorbate and dithiothreitol. The enzyme was sensitive to thiol-specific inhibitors, the most effective of which was N-ethylmaleimide.  相似文献   

2.
3.
The cloning of the gene for Escherichia coli PL-2 2-keto-3-deoxy-D-manno-octonate 8-phosphate synthetase is reported. Positive transformants showed an increase of approximately three-fold in specific activity of the enzyme both in E. coli and in Salmonella typhimurium as host cells. A subclone containing a 1.5-kilobase PvuII fragment overproduced active enzyme. Minicell experiments that allow the detection of plasmid encoded proteins revealed an insert-coded single protein band of 34 kilodaltons.  相似文献   

4.
The pcbC gene, which encodes isopenicillin N synthase (IPNS), was subcloned from Streptomyces clavuligerus into Escherichia coli by using the pT7 series of plasmid vectors. The polymerase chain reaction was used to introduce an NdeI site at the translation initiation codon of pcbC, allowing the gene to be inserted behind an E. coli type of ribosome binding site. This construction directed high-level expression of IPNS, but the IPNS was in an inactive form in inclusion bodies. Active IPNS was recovered by solubilizing and renaturing the protein.  相似文献   

5.
The pcbC gene, which encodes isopenicillin N synthase (IPNS), was subcloned from Streptomyces clavuligerus into Escherichia coli by using the pT7 series of plasmid vectors. The polymerase chain reaction was used to introduce an NdeI site at the translation initiation codon of pcbC, allowing the gene to be inserted behind an E. coli type of ribosome binding site. This construction directed high-level expression of IPNS, but the IPNS was in an inactive form in inclusion bodies. Active IPNS was recovered by solubilizing and renaturing the protein.  相似文献   

6.
Formyltetrahydrofolate synthetase (FTHFS) (EC 6.3.4.3), a thermostable protein of four identical subunits from Clostridium thermoaceticum was cloned into Escherichia coli SK1592. The clone (CRL47) contained a 9.5 kb EcoRI fragment of C. thermoaceticum DNA ligated into pBR322. It produced catalytically active, thermostable FTHFS, that was not found in E. coli SK1592 containing native pBR322. The identity of the expressed enzyme was confirmed by specific binding of rabbit polyclonal anti-FTHFS serum produced against C. thermoaceticum FTHFS. The specific activities (mol·min-1·mg-1) of FTHFS in cell free extracts of CRL47 were 28–89 when assayed at 50°C and pH8. This was from 3–10-fold higher than in C. thermoaceticum extracts. FTHFS was purified to homogeneity from CRL47. The purified enzyme behaved during electrophoresis and gel chromatography and it had similar specific activity and thermostability as the enzyme purified from C. thermoaceticum.Abbreviations FTHFS formyltetrahydrofolate synthetase - kb kilobase - H4-folate tetrahydrofolate - SDS sodium dodecyl sulfate A preliminary account of this work was presented at the annual meeting of the American Society for Microbiology, Atlanta, GA, 1987 (C. R. Lovell, A. Przybyla and L. G. Ljungdahl, Abstr. Annu. Meet. Am. Soc. Microbiol. 1987, K126, p. 223).  相似文献   

7.
8.
Seryl-tRNA synthetase is the gene product of the serS locus in Escherichia coli. Its gene has been cloned by complementation of a serS temperature sensitive mutant K28 with an E. coli gene bank DNA. The resulting clones overexpress seryl-tRNA synthetase by a factor greater than 50 and more than 6% of the total cellular protein corresponds to the enzyme. The DNA sequence of the complete coding region and the 5'- and 3' untranslated regions was determined. Protein sequence comparison of SerRS with all available aminoacyl-tRNA synthetase sequences revealed some regions of significant homology particularly with the isoleucyl- and phenylalanyl-tRNA synthetases from E. coli.  相似文献   

9.
The nucleotide sequence of the Clostridium stercorarium F-9 xynC gene, encoding a xylanase XynC, consists of 3,093 bp and encodes a 1,031-amino acids with a molecular weight of 115,322. XynC is a multidomain enzyme composed of an N-terminal signal peptide and six domains in the following order: two thermostabilizing domains, a family 10 xylanase domain, a family IX cellulose-binding domain, and two S-layer homologous domains. Immunological analysis indicated the presence of XynC in the culture supernatant of C. stercorarium F-9 and in the cells, most likely on the cell surface. XynC purified from a recombinant E. coli was highly active toward xylan and slightly active toward p-nitrophenyl-beta-D-xylopyranoside, p-nitrophenyl-beta-D-cellobioside, p-nitrophenyl-beta-D-glucopyranoside, and carboxymethylcellulose. XynC hydrolyzed xylan and xylooligosaccharides larger than xylotriose to produce xylose and xylobiose. This enzyme was optimally active at 85 degrees C and was stable up to 75 degrees C at pH 5.0 and over the pH range of 4 to 7 at 25 degrees C.  相似文献   

10.
Leucine and histidine biosynthetic genes from Streptomyces rochei HP1 that complemented auxotrophic mutations in S. lividans TK54 were cloned in pIJ61. DNA from one leucine recombinant plasmid was subcloned into pBR322. From the latter, a recombinant plasmid was obtained that complemented the leuA mutation in Escherichia coli CV512 but not other leucine markers in E. coli. Analysis of this and several subclones, including mutant plasmids constructed in vitro, established that the cloned S. rochei gene was expressed in E. coli from the tetracycline promoter of pBR322 to produce a polypeptide of 67 kDa; the corresponding coding region was shown to be within a 1.7 kbp DNA fragment. Blot hybridization revealed corresponding homologous genes in several other streptomycetes.  相似文献   

11.
A putatively rate-limiting synthase (expandase) of Streptomyces clavuligerus was stabilized in vitro and purified 46-fold from cell-free extracts; a major enriched protein with a Mr of 35,000 was further purified by electrophoretic elution. Based on a 22-residue amino-terminal sequence of the protein, the synthase gene of S. clavuligerus was cloned and expressed in Escherichia coli (Kovacevic, S., Weigel, B.J., Tobin, M.B., Ingolia, T.D., and Miller, J. R. (1989) J. Bacteriol. 171, 754-760). The synthase protein was detected mainly from granules of recombinant E. coli. The recombinant synthase was solubilized from the granules by urea, and for the first time a highly active synthase was purified to near homogeneity. The synthase was a monomer with a Mr of 34,600 and exhibited two isoelectric points of 6.1 and 5.3. Its catalytic activity required alpha-ketoglutarate, Fe2+, and O2, was stimulated by dithiothreitol or ascorbate but not by ATP, and was optimal at pH 7.0 in 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid buffer and at 36 degrees C. The Fe2+ requirement was specific, and at least one sulfhydryl group in the purified enzyme was apparently essential for the ring expansion. The Km values of the enzyme for penicillin N and alpha-ketoglutarate were 29 and 18 microM, respectively, and the Ka for Fe2+ was 8 microM. The recombinant synthase was indistinguishable from the native synthase of S. clavuligerus by those biochemical properties. In addition to the enzymic ring expansion of penicillin N to deacetoxycephalosporin C, the recombinant synthase catalyzed a novel hydroxylation of 3-exomethylenecephalosporin C to deacetylcephalosporin C.  相似文献   

12.
The glutamine synthetase (GS) gene glnA of Thiobacillus ferrooxidans was cloned on recombinant plasmid pMEB100 which enabled Escherichia coli glnA deletion mutants to utilize (NH4)2SO4 as the sole source of nitrogen. High levels of GS-specific activity were obtained in the E. coli glnA deletion mutants containing the T. ferrooxidans GS gene. The cloned T. ferrooxidans DNA fragment containing the glnA gene activated histidase activity in an E. coli glnA glnL glnG deletion mutant containing the Klebsiella aerogenes hut operon. Plasmid pMEB100 also enabled the E. coli glnA glnL glnG deletion mutant to utilize arginine or low levels of glutamine as the sole source of nitrogen. There was no detectable DNA homology between the T. ferrooxidans glnA gene and the E. coli glnA gene.  相似文献   

13.
14.
15.
16.
A nitroalkane-oxidizing enzyme gene (naoA) was cloned from a genomic DNA library of Streptomyces ansochromogenes 7100. The deduced protein (NaoA) of this gene contains 363 amino acids and has high similarity to several nitroalkane-oxidizing enzymes from various micro-organisms. The naoA gene was subcloned into an expression vector pET23b and overexpressed in Escherichia coli BL21(DE3). The protein was then purified, and its characteristics were studied. Experimental results showed that NaoA can convert 1-nitropropane, 2-nitropropane and nitroethane into the corresponding carbonyl compounds. The optimal pH and temperature for NaoA was found to be pH 7-8 and 48-56 degrees C, respectively. The Km of NaoA for nitroethane is approximately 26.8 mm. NADH and nitro blue tetrazolium are strong inhibitors of NaoA, and thiol compounds and superoxide dismutase partially inhibit the enzyme activity. Therefore, superoxide may be an essential intermediate in the oxidation of nitroalkane by NaoA.  相似文献   

17.
The gene encoding thioredoxin in Anabaena sp. strain PCC 7119 was cloned in Escherichia coli based on the strategy that similarity between the two thioredoxins would be reflected both in the gene sequence and in functional cross-reactivity. DNA restriction fragments containing the Anabaena thioredoxin gene were identified by heterologous hybridization to the E. coli thioredoxin gene following Southern transfer, ligated with pUC13, and used to transform an E. coli strain lacking functional thioredoxin. Transformants that complemented the trxA mutation in E. coli were identified by increased colony size and confirmed by enzyme assay. Expression of the cloned Anabaena thioredoxin gene in E. coli was substantiated by subsequent purification and characterization of the algal protein from E. coli. The amino acid sequence derived from the DNA sequence of the Anabaena gene was identical to the known amino acid sequence of Anabaena thioredoxin. The E. coli strains which expressed Anabaena thioredoxin complemented the TrxA- phenotype in every respect except that they did not support bacteriophage T7 growth and had somewhat decreased ability to support bacteriophages M13 and f1.  相似文献   

18.
Acetyl coenzyme A synthetase (Acs) activates acetate to acetyl coenzyme A through an acetyladenylate intermediate; two other enzymes, acetate kinase (Ack) and phosphotransacetylase (Pta), activate acetate through an acetyl phosphate intermediate. We subcloned acs, the Escherichia coli open reading frame purported to encode Acs (F. R. Blattner, V. Burland, G. Plunkett III, H. J. Sofia, and D. L. Daniels, Nucleic Acids Res. 21:5408-5417, 1993). We constructed a mutant allele, delta acs::Km, with the central 0.72-kb BclI-BclI portion of acs deleted, and recombined it into the chromosome. Whereas wild-type cells grew well on acetate across a wide range of concentrations (2.5 to 50 mM), those deleted for acs grew poorly on low concentrations (< or = 10 mM), those deleted for ackA and pta (which encode Ack and Pta, respectively) grew poorly on high concentrations (> or = 25 mM), and those deleted for acs, ackA, and pta did not grow on acetate at any concentration tested. Expression of acs from a multicopy plasmid restored growth to cells deleted for all three genes. Relative to wild-type cells, those deleted for acs did not activate acetate as well, those deleted for ackA and pta displayed even less activity, and those deleted for all three genes did not activate acetate at any concentration tested. Induction of acs resulted in expression of a 72-kDa protein, as predicted by the reported sequence. This protein immunoreacted with antiserum raised against purified Acs isolated from an unrelated species, Methanothrix soehngenii. The purified E. coli Acs then was used to raise anti-E. coli Acs antiserum, which immunoreacted with a 72-kDa protein expressed by wild-type cells but not by those deleted for acs. When purified in the presence, but not in the absence, of coenzyme A, the E. coli enzyme activated acetate across a wide range of concentrations in a coenzyme A-dependent manner. On the basis of these and other observations, we conclude that this open reading frame encodes the acetate-activating enzyme, Acs.  相似文献   

19.
The isopenicillin N synthetase (IPNS) gene from Streptomyces clavuligerus was isolated from an Escherichia coli plasmid library of S. clavuligerus genomic DNA fragments using a 44-mer mixed oligodeoxynucleotide probe. The nucleotide sequence of a 3-kb region of the cloned fragment from the plasmid, pBL1, was determined and analysis of the sequence showed an open reading frame that could encode a protein of 329 amino acids with an Mr of 36,917. When the S. clavuligerus DNA from pBL1 was introduced into an IPNS-deficient mutant of S. clavuligerus on the Streptomyces vector pIJ941, the recombinant plasmid was able to complement the mutation and restore IPNS activity. The protein coding region of the S. clavuligerus IPNS gene shows about 63% and 62% similarity to the Cephalosporium acremonium and Penicillium chrysogenum IPNS nucleotide sequences, respectively, and the predicted amino acid sequence of the encoded protein showed about 56% similarity to both fungal sequences.  相似文献   

20.
Carnitine dehydratase from Escherichia coli O44 K74 is an inducible enzyme detectable in cells grown anaerobically in the presence of L-(-)-carnitine or crotonobetaine. The purified enzyme catalyzes the dehydration of L-(-)-carnitine to crotonobetaine (H. Jung, K. Jung, and H.-P. Kleber, Biochim. Biophys. Acta 1003:270-276, 1989). The caiB gene, encoding carnitine dehydratase, was isolated by oligonucleotide screening from a genomic library of E. coli O44 K74. The caiB gene is 1,215 bp long, and it encodes a protein of 405 amino acids with a predicted M(r) of 45,074. The identity of the gene product was first assessed by its comigration in sodium dodecyl sulfate-polyacrylamide gels with the purified enzyme after overexpression in the pT7 system and by its enzymatic activity. Moreover, the N-terminal amino acid sequence of the purified protein was found to be identical to that predicted from the gene sequence. Northern (RNA) analysis showed that caiB is likely to be cotranscribed with at least one other gene. This other gene could be the gene encoding a 47-kDa protein, which was overexpressed upstream of caiB.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号