首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
R J Debus  G Feher  M Y Okamura 《Biochemistry》1986,25(8):2276-2287
Reaction centers (RCs) from the photosynthetic bacterium Rhodopseudomonas sphaeroides R-26.1 were depleted of Fe by a simple procedure involving reversible dissociation of the H subunit. The resulting intact Fe-depleted RCs contained 0.1-0.2 Fe per RC as determined from atomic absorption and electron paramagnetic resonance (EPR) spectroscopy. Fe-depleted RCs that have no metal ion occupying the Fe site differed from native RCs in the following respects: (1) the rate of electron transfer from QA- to QB exhibited nonexponential kinetics with the majority of RCs having a rate constant slower by only a factor of approximately 2, (2) the efficiency of light-induced charge separation (DQA----D+QA-) produced by a saturating flash decreased to 63%, and (3) QA appeared readily reducible to QA2-. Various divalent metal ions were subsequently incorporated into the Fe site. The electron transfer characteristics of Fe-depleted RCs reconstituted with Fe2+, Mn2+, Co2+, Ni2+, Cu2+, and Zn2+ were essentially the same as those of native RCs. These results demonstrate that neither Fe2+ nor any divalent metal ion is required for rapid electron transfer from QA- to QB. However, the presence of a metal ion in the Fe site is necessary to establish the characteristic, native, electron-transfer properties of QA. The lack of a dominant role of Fe2+ or other divalent metals in the observed rate of electron transfer from QA- to QB suggests that a rate-limiting step (for example, a protonation event or a light-induced structural change) precedes electron transfer.  相似文献   

2.
Collagenases (EC 3.4.24.3) from human skin, rat skin and rat uterus were inhibited by the chelating agents EDTA, 1,10-phenanthroline and tetraethylene pentamine in the presence of excess Ca2+, suggesting that a second metal ion participates in the activity of the enzyme. Collagenase inhibition by 1,10-phenanthroline could be both prevented and reversed by a number of transition metal ions, specifically Zn2+, Co2+, Fe2+ and Cu2+. However, Zn2+ is effective in five-fold lower molar concentrations (1-10(-4) M) than the other ions. Furthermore, Zn2+ was the only ion tested able to prevent and reverse the inhibition of collagenase by EDTA in the presence of excess Ca2+. Atomic absorption analysis of purified collagenase for Zn2+ showed that Zn2+ was present in the enzyme preparations, and that the metal co-purifies with collagenase during column chromatography.  相似文献   

3.
4.
The interaction of different species variants of cytochrome c and myoglobin, as well as hen egg white lysozyme, with the hard Lewis metal ions Al3+, Ca2+, Fe3+, and Yb3+ and the borderline metal ion Cu2+, immobilized to iminodiacetic acid (IDA)-Sepharose CL-4B, has been investigated over the rangepH 5.5–8.0. With appropriately chosen buffer and metal ion conditions, these proteins can be bound to the immobilized M n +-IDA adsorbents via negatively charged amino acid residues accessible on the protein surface. For example, tuna heart cytochrome c, which lacks surface-accessible histidine residues, readily bound to the Fe3+-IDA adsorbent, while the other proteins also showed affinity toward immobilized Fe3+-IDA adsorbents when buffers containing 30 mM of imidazole were used. These studies document that protein selectivity can be achieved with hard-metalion immobilized metal ion affinity chromatography (IMAC) systems through the interaction of surfaceexposed aspartic and glutamic acid residues on the protein with the immobilized M n +-IDA complex. These investigations have also documented that the so-called soft or borderline immobilized metal ions such as the Cu2+-IDA adsorbent can also interact with surface-accessible aspartic and glutamic acid residues in a protein-dependent manner. A relationship is evident between the number and extent of clustering of the surfaceaccessible aspartic and glutamic acid residues and protein selectivity with these IMAC systems. The use of elution buffers which contain organic compound modifiers which replicate the carboxyl group moieties of these amino acids on the surface of proteins is also described.Abbreviations IDA iminodiacetic acid - IDA-Mn+ iminodiacetic acid chelated to metal ion - IMAC immobilized metal affinity chromatography - DHCC dog heart cytochrome c - HHCC horse heart cytochrome c, THCC, tuna heart cytochrome c - HMYO horse skeletal muscle myoglobin - SMYO sheep skeletal muscle myoglobin - HEWL hen egg white lysozyme  相似文献   

5.
Divalent metal ions play a crucial role in forming the catalytic centres of DNA endonucleases. Substitution of Mg2+ ions by Fe2+ ions in two archaeal intron-encoded homing endonucleases, I-DmoI and I-PorI, yielded functional enzymes and enabled the generation of reactive hydroxyl radicals within the metal ion binding sites. Specific hydroxyl radical-induced cleavage was observed within, and immediately after, two conserved LAGLIDADG motifs in both proteins and at sites at, and near, the scissile phosphates of the corresponding DNA substrates. Titration of Fe2+-containing protein-DNA complexes with Ca2+ ions, which are unable to support endonucleolytic activity, was performed to distinguish between the individual metal ions in the complex. Mutations of single amino acids in this region impaired catalytic activity and caused the preferential loss of a subset of hydroxyl radical cleavages in both the protein and the DNA substrate, suggesting an active role in metal ion coordination for these amino acids. The data indicate that the endonucleases cleave their DNA substrates as monomeric enzymes, and contain a minimum of four divalent metal ions located at or near the catalytic centres of each endonuclease. The metal ions involved in cleaving the coding and the non-coding strand are positioned immediately after the N- and C-terminally located LAGLIDADG motifs, respectively. The dual protein/nucleic acid footprinting approach described here is generally applicable to other protein-nucleic acid complexes when the natural metal ion can be replaced by Fe2+.  相似文献   

6.
Oxidized and reduced manganese cytochromes c, Mn Cyt c+ and Mn Cyt c, have been synthesized. Mn Cyt c+ and Fe Cyt c+ have identical electrophoretic and ion exchange mobilities. Mn Cyt c+ does not bind F-, CN-, or N3- ions; Mn Cyt c does not bind CO or O2. Mn Cyt c is very rapidly autooxidized by O2 even at -50 degrees. The manganese ion is readily dissociated from Mn Cyt c at acidic pH values. Both Mn Cyt c and Mn Cyt c+ are high spin complexes with 3d5 S = 5/2 and 3d4 S = 2 electronic configurations, respectively. The epr spectrum of Mn Cyt c is rhombic with (formula: see text). Both oxidized and reduced Mn Cyt c react with NO; the former reaction is reversible and the product has the following epr spectral parameters: (formula: see text). There is no superhyperfine interaction observable with the NO ligand, and the unpaired electron density is estimated to be mostly in the metal ion d xy orbital. The structure is best formulated as Mn Cyt c (NO)+. The half-reduction potential of Mn Cyt c is + 60 +/- 40 mV. It is neither oxidized by cytochrome oxidase nor reduced by NADH, NADPH, or succinate cytochrome reductase. These physical, chemical, and enzymic properties of manganese cytochromes c suggest a five-coordinate metalloporphyrin prosthetic group with the manganese ion situated significantly out-of-plane toward the side of His-18.  相似文献   

7.
The preparations and spectral properties are reported of a range of complexes of nalidixic acid (= HNal) with some metal ions in the series CrZn and also Mg, Ca, Cd, Hg and Pd(II). Most of the compounds formed by the divalent metal ions had a 2:1 HNal:metal ratio, and some of them are polymeric. Complexes in which the carboxylate group of HNal functions as a chelate were isolated with Cu(II), Pd(II), Fe(III) and Cr(III).  相似文献   

8.
Oxidation of Fe2+, ascorbic acid, propyl gallate, tiron, L-cysteine, and glutathione by Acidithiobacillus ferrooxidans was studied with respect to the effect of electron transport inhibitors and uncouplers on the rate of oxidation. All the oxidations were sensitive to inhibitors of cytochrome c oxidase, KCN, and NaN3. They were also partially inhibited by inhibitors of complex I and complex III of the electron transport system. Uncouplers at low concentrations stimulated the oxidation and inhibited it at higher concentrations. The oxidation rates of Fe2+ and L-cysteine inhibited by complex I and complex III inhibitors (amytal, rotenone, antimycin A, myxothiazol, and HQNO) were stimulated more extensively by uncouplers than the control rates. Atabrine, a flavin antagonist, was an exception, and atabrine-inhibited oxidation activities of all these compounds were further inhibited by uncouplers. A model for the electron transport pathways of A. ferrooxidans is proposed to account for these results. In the model these organic substrates reduce ferric iron on the surface of cells to ferrous iron, which is oxidized back to ferric iron through the Fe2+ oxidation pathway, leading to cytochrome oxidase to O2. Some of electrons enter the uphill (energy-requiring) electron transport pathway to reduce NAD+. Uncouplers at low concentrations stimulate Fe2+ oxidation by stimulating cytochrome oxidase by uncoupling. Higher concentrations lower deltap to the level insufficient to overcome the potentially uphill reaction at rusticyanin-cytochrome c4. Inhibition of uphill reactions at complex I and complex III leads to deltap accumulation and inhibition of cytochrome oxidase. Uncouplers remove the inhibition of deltap and stimulate the oxidation. Atabrine inhibition is not released by uncouplers, which implies a possibility of atabrine inhibition at a site other than complex I, but a site somehow involved in the Fe2+ oxidation pathway.  相似文献   

9.
The catalytic activity of purified glutathione-insulin transhydrogenase (thiol:protein-disulfide oxidoreductase/isomerase, EC 1.8.4.2) from bovine pancreas is markedly stimulated by histidine and other chelating agents. The activation produced was highest with EDTA, followed by EGTA, 8-hydroxyquinoline and 1,10-phenanthroline. Of the many amino acids tested, histidine was the only one that activated the enzyme; the structurally related compounds, 3-methylhistidine and imidazole also stimulated the enzyme, but 1-methylhistidine and histamine were without effect. The activation of EDTA was negated by metal ions, most effectively by Se2+, Hg2+, Cu2+ and Zn2+, and less effectively by Ca2+ and Ni2+. Likewise, activation by histidine was negated by Zn2+ but not by Ca2+ or Mg2+. Thus, activation of glutathione-insulin transhydrogenase is apparently achieved in part by the chelation of inhibitory metal ion(s). These findings are consistent with a regulatory scheme for glutathione-insulin transhydrogenase in which (a) the enzyme is inhibited by selenium and heavy metal ions normally present in tissues and (b) this inhibition can be relieved by the addition of histidine or chelating agents.  相似文献   

10.
Multiheme cytochromes c have been found in a number of sulfate- and metal ion-reducing bacteria. Geobacter sulfurreducens is one of a family of microorganisms that oxidize organic compounds, with Fe(III) oxide as the terminal electron acceptor. A triheme 9.6 kDa cytochrome c(7) from G. sulfurreducens is a part of the metal ion reduction pathway. We cloned the gene for cytochrome c(7) and expressed it in Escherichia coli together with the cytochrome c maturation gene cluster, ccmABCDEFGH, on a separate plasmid. We designed two constructs, with and without an N-terminal His-tag. The untagged version provided a good yield (up to 6 mg/l of aerobic culture) of the fully matured protein, with all three hemes attached, while the N-terminal His-tag appeared to be detrimental for proper heme incorporation. The recombinant protein (untagged) is properly folded, it has the same molecular weight and displays the same absorption spectra, both in reduced and in oxidized forms, as the protein isolated from G. sulfurreducens and it is capable of reducing metal ions in vitro. The shape parameters for the recombinant cytochrome c(7) determined by small angle X-ray scattering are in good agreement with the ones calculated from a homologous cytochrome c(7) of known structure.  相似文献   

11.
Ring-cleaving dioxygenases catalyze key reactions in the aerobic microbial degradation of aromatic compounds. Many pathways converge to catecholic intermediates, which are subject to ortho or meta cleavage by intradiol or extradiol dioxygenases, respectively. However, a number of degradation pathways proceed via noncatecholic hydroxy-substituted aromatic carboxylic acids like gentisate, salicylate, 1-hydroxy-2-naphthoate, or aminohydroxybenzoates. The ring-cleaving dioxygenases active toward these compounds belong to the cupin superfamily, which is characterized by a six-stranded β-barrel fold and conserved amino acid motifs that provide the 3His or 2- or 3His-1Glu ligand environment of a divalent metal ion. Most cupin-type ring cleavage dioxygenases use an Fe(II) center for catalysis, and the proposed mechanism is very similar to that of the canonical (type I) extradiol dioxygenases. The metal ion is presumed to act as an electron conduit for single electron transfer from the metal-bound substrate anion to O(2), resulting in activation of both substrates to radical species. The family of cupin-type dioxygenases also involves quercetinase (flavonol 2,4-dioxygenase), which opens up two C-C bonds of the heterocyclic ring of quercetin, a wide-spread plant flavonol. Remarkably, bacterial quercetinases are capable of using different divalent metal ions for catalysis, suggesting that the redox properties of the metal are relatively unimportant for the catalytic reaction. The major role of the active-site metal ion could be to correctly position the substrate and to stabilize transition states and intermediates rather than to mediate electron transfer. The tentative hypothesis that quercetinase catalysis involves direct electron transfer from metal-bound flavonolate to O(2) is supported by model chemistry.  相似文献   

12.
Cobalt ions (Co2+) are potent inducers of haem oxygenase in liver and inhibit microsomal drug oxidation probably by depleting microsomal haem and cytochrome P-450. Complexing of Co2+ ions with cysteine or glutathione (GSH) blocked ability of the former to induce haem oxygenase. When hepatic GSH content was depleted by treatment of animals with diethyl maleate, the inducing effect of Co2+ on haem oxygenase was significantly augmented. Other metal ions such as Cr2+, Mn2+, Fe2+, Fe3+, Ni2+, Cu2+, Zn2+, Cd2+, Hg2+ and Pb2+ were also capable of inducing haem oxygenase and depleting microsomal haem and cytochrome P-450. None of these metal ions had a stimulatory effect on hepatic haem oxidation activity in vitro. It is suggested that the inducing action of Co2+ and other metal ions on microsomal haem oxygenase involves either the covalent binding of the metal ions to some cellular component concerned directly with regulating haem oxygenase or non-specific complex-formation by the metal ions, which depletes some regulatory system in liver cells of an essential component involved in controlling synthesis or activity of the enzyme.  相似文献   

13.
DFT calculations were done for the (hydroperoxo)metal complexes with eta1-coordination mode, where metal ions are Fe(III), Al(III), Cu(II) and Zn(II). Results shows that 1) the electron density at the two oxygen atoms of the hydroperoxide ion is highly dependent on the angle O-O-H in M-OOH species and the difference in electron density between the two oxygen atoms reaches a maximum at the angle O-O-H = 180 degrees, 2) total electron density at the two oxygen atoms of the peroxide ion increases by approach of methane to the (hydroperoxo)metal species in the cases of Fe(III) and Cu(II); on the other hand, significant decrease of the electron density on peroxide oxygen atoms was observed for the cases of Al(III) and Zn(II) compounds. These findings suggest that the (hydroperoxo)metal species acts as an electrophile in the former cases (M = Fe(III), Cu(II)) and as a nucleophile for the latter two compounds (M = Zn(II), Al(III)). The electrophilicity observed for the Fe(III) and Cu(II) complexes is attributed to the presence of unoccupied- or half-filled d-orbitals interacting with the hydroperoxide ion. 3) Two oxygen atoms of the (hydroperoxo)-compounds of Fe(III) and Cu(II) complexes exhibit quite different reactivity toward the substrate, such as methane. When methane approaches the oxygen atom which is coordinated to a metal ion, a strong decrease of electron density at the methane carbon atom occurs with concomitant increase of electron density at the peroxide oxygen atoms inducing its heterolytic O-O cleavage. When methane approaches the terminal oxygen atom, an oxidative coupling reaction occurs between peroxide ion and methane; at first a nucleophilic attack by the terminal electron-rich oxygen atom occurs at the carbon atom to induce C-O bond formation, and a subsequent oxidative electron transfer proceeds from substrate to the metal-peroxide species yielding CH3-OOH, CH3OH, or other oxidized products. These results clearly demonstrate that the (hydroperoxo)-metal compound itself is a rather stable compound, and activation of the peroxide ion is induced by interaction with the substrate, and the products obtained by the oxygenation reaction are dependent on the chemical property of the substrate, redox property of a metal ion, and stability of the compounds formed in the intermediate process.  相似文献   

14.
15.
1. Micrococcus denitrificans excretes three catechol-containing compounds, which can bind iron, when grown aerobically and anaerobically in media deficient in iron, and anaerobically in medium with a high concentration of Ca2+. 2. One of these compounds was identified as 2,3-dihydroxybenzoic acid (compound I), and the other two were tentatively identified as N1N8-bis-(2,3-dihydroxybenzoyl)spermidine (compound II) and 2-hydroxybenzoyl-N-L-threonyl-N4[N1N8-bis-(2,3-dihydroxybenzoyl)]spermidine (compound III). 3. The equimolar ferric complex of compound III was prepared; compound III also forms complexes with Al3+, Cr3+ and Co2+ ions. 4. Cell-free extracts from iron-deficient organisms catalyse the formation of compound II from 2,3-dihydroxybenzoic acid and spermidine, and of compound III from compound II, L-threonine and 2-hydroxybenzoic acid; both reactions require ATP and dithiothreitol, and Mg2+ stimulates activity. The enzyme system catalysing the formation of compound II has optimum activity at pH 8.8 Fe2+ (35muM), Fe3+ (35muM) and Al3+ (65muM) inhibit the reaction by 50 percent. The enzyme system forming compound III has optimum activity at pH 8.6. Fe2+ (110 muM), Fe3+ (110 muM) and Al3+ (135 muM) inhibit the reaction by 50 percent. 5. At least two proteins are required for the formation of compound II, and another two proteins for its conversion into compound III. 6. The changes in the activities of these two systems were followed after cultures became deficient in iron. 7. Ferrous 1,10-phenanthroline is formed when a cell-free extract from iron-deficient cells is incubated with the ferric complex of compound III, succinate, NADH and 1,10-phenanthroline under N2.  相似文献   

16.
3-Methyl-substituted fatty acids are first oxidatively decarboxylated (alpha-oxidation) before they are degraded further via beta-oxidation. We synthesized [1-14C]phytanic and 3-[1-14C]methylmargaric acids in order to study their alpha-oxidation in isolated rat hepatocytes, rat liver homogenates and subcellular fractions. alpha-Oxidation was measured as the production of radioactive CO2. In isolated hepatocytes, maximal rates of alpha-oxidation amounted to 7 and 10 nmol/min x 10(8) cells with phytanic acid and 3-methylmargaric acid, respectively. At equimolar substrate concentrations, alpha-oxidation of branched fatty acids was approximately 10- to 15-fold slower than the beta-oxidation of the straight chain palmitate. In whole liver homogenates, rates of alpha-oxidation that equaled 60 to 70% of those observed in the hepatocytes were obtained. Optimum rates required O2, NADPH, Fe3+, and ATP. Fe3+ could be replaced by Fe2+ and ATP could be replaced by a number of other phosphorylated nucleosides and even inorganic phosphate without loss of activity. NADH could substitute for NADPH but not always with full restoration of activity. A variety of other cofactors and metal ions was either inhibitory or without effect. Scavengers of reactive oxygen species, known to be formed during the NADPH-dependent microsomal reduction of ferric-phosphate complexes, were without effect on alpha-oxidation. No evidence was found for the accumulation of NADPH-dependent or Fe(3+)-dependent reaction intermediates. Subcellular fractionation of liver homogenates demonstrated that alpha-oxidation was located predominantly, if not exclusively, in the endoplasmic reticulum. alpha-Oxidation, measured in microsomal fractions, was not inhibited by CO, cytochrome c, or ferricyanide, indicating that NADPH cytochrome P450 reductase and cytochrome P450 are not involved in alpha-oxidation. Our results indicate that, contrary to current belief, alpha-oxidation is catalyzed by the endoplasmic reticulum. The cofactor requirements suggest that alpha-oxidation involves the reduction of Fe3+ by electrons from NADPH and that it is stimulated by phosphate ions and nucleotides.  相似文献   

17.
AIMS: To determine the modulating action of some metal ions (Zn+2, Fe+2, Cu+2) on gene expression of enzymes related to fungal growth and accumulation of the mycotoxins aflatoxin and zearalenone. METHODS AND RESULTS: The effect of the metal ions, as single or mixed treatments, was observed in submerged cultures of toxigenic Aspergillus flavus or Fusarium graminearum, which produce the mycotoxins aflatoxin or zearalenone, respectively. The enzyme-linked immunosorbent assay results showed that the single metals Zn+2 or Cu+2 stimulated aflatoxin accumulation while Cu+2 or Fe+2 stimulated zearalenone in fungal cultures. Single Zn+2 treatment also affected conidial differentiation and pigmentation. A cDNA suppression subtractive library was also produced and followed by sequencing of potential metal treatment-specific clones, thus determining induced genes. The genes uncovered included enzymes and regulators of cell growth and division, including many genes with unknown functions were uncovered. A Northern blot analysis was used to verify the expression pattern of the corresponding genes under metal treatment. The metal ions enhanced the expression of alcohol dehydrogenase Adh1 homologue by up to 33-fold in A. flavus and ca fourfold in F. graminearum. Encoding homologues of a neutral amino acid permease, were also used in the Northern analysis. However, the expression of the permease was not significantly affected by metal ion treatments. CONCLUSIONS: The results showed a significant effect of metal ions on expression of gene related to fungal growth, development, conidiation and production of both aflatoxin and zearalenone. SIGNIFICANT AND IMPACT OF THE STUDY: At the molecular and cellular level, the significant effects of metal ions on fungal growth and development, conidiation, and production of both aflatoxin and zearalenone were demonstrated.  相似文献   

18.
Sadoski RC  Engstrom G  Tian H  Zhang L  Yu CA  Yu L  Durham B  Millett F 《Biochemistry》2000,39(15):4231-4236
Electron transfer between the Rieske iron-sulfur protein (Fe(2)S(2)) and cytochrome c(1) was studied using the ruthenium dimer, Ru(2)D, to either photoreduce or photooxidize cytochrome c(1) within 1 micros. Ru(2)D has a charge of +4, which allows it to bind with high affinity to the cytochrome bc(1) complex. Flash photolysis of a solution containing beef cytochrome bc(1), Ru(2)D, and a sacrificial donor resulted in reduction of cytochrome c(1) within 1 micros, followed by electron transfer from cytochrome c(1) to Fe(2)S(2) with a rate constant of 90,000 s(-1). Flash photolysis of reduced beef bc(1), Ru(2)D, and a sacrificial acceptor resulted in oxidation of cytochrome c(1) within 1 micros, followed by electron transfer from Fe(2)S(2) to cytochrome c(1) with a rate constant of 16,000 s(-1). Oxidant-induced reduction of cytochrome b(H) was observed with a rate constant of 250 s(-1) in the presence of antimycin A. Electron transfer from Fe(2)S(2) to cytochrome c(1) within the Rhodobacter sphaeroides cyt bc(1) complex was found to have a rate constant of 60,000 s(-1) at 25 degrees C, while reduction of cytochrome b(H) occurred with a rate constant of 1000 s(-1). Double mutation of Ala-46 and Ala-48 in the neck region of the Rieske protein to prolines resulted in a decrease in the rate constants for both cyt c(1) and cyt b(H) reduction to 25 s(-1), indicating that a conformational change in the Rieske protein has become rate-limiting.  相似文献   

19.
Membrane vesicles were isolated from alkalophilic Bacillus No. 8-1, and the active transport of amino acids was studied. The transport of amino acids was dependent upon substrate oxidation and the presence of Na+. Concentrative uptake of amino acids was stimulated by the addition of an artificial electron donor system, ascorbate-phenazine methosulfate (PMS), and to a lesser extent by NADH, while succinate, L-lactate, and alpha-glycerol-phosphate did not stimulate the uptake. N,N,N',N'-Tetramethyl-p-phenylenediamine (TMPD) and cytochrome c were able to replace PMS, and reduced forms of these compounds were also very efficient electron donors. Amino acid transport was dependent on electron transfer, and inhibition of NADH oxidation by cyanide, 2-heptyl-4-hydroxyquinoline-N-oxide (HOQNO), and sodium azide directly prohibited serine transport. The pH optima for serine transport lay between pH 8 and 9 for all energy sources. Sodium ion stimulated serine transport in the presence of NADH, NADH plus cytochrome c or succinate plus PMS, but had no stimulatory effect on the corresponding dehydrogenase activities. Sodium ion was also required for accumulation of serine in response to an artificial membrane potential where the respiratory chain was not operative. These results indicated that the stimulatory effect of Na+ on amino acid uptake was on the transport process itself.  相似文献   

20.
A new type of sulfite oxidase which utilizes ferric ion (Fe3+) as an electron acceptor was found in iron-grown Thiobacillus ferrooxidans. It was localized in the plasma membrane of the bacterium and had a pH optimum at 6.0. Under aerobic conditions, 1 mol of sulfite was oxidized by the enzyme to produce 1 mol of sulfate. Under anaerobic conditions in the presence of Fe3+, sulfite was oxidized by the enzyme as rapidly as it was under aerobic conditions. In the presence of o-phenanthroline or a chelator for Fe2+, the production of Fe2+ was observed during sulfite oxidation by this enzyme under not only anaerobic conditions but also aerobic conditions. No Fe2+ production was observed in the absence of o-phenanthroline, suggesting that the Fe2+ produced was rapidly reoxidized by molecular oxygen. Neither cytochrome c nor ferricyanide, both of which are electron acceptors for other sulfite oxidases, served as an electron acceptor for the sulfite oxidase of T. ferrooxidans. The enzyme was strongly inhibited by chelating agents for Fe3+. The physiological role of sulfite oxidase in sulfur oxidation of T. ferrooxidans is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号