首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Previous studies have suggested that the binding of mouse glucuronidase to endoplasmic reticulum membrane is stabilized by the membrane protein egasyn. Using a radioimmunoassay for egasyn, we have now examined the inheritance of egasyn levels in mice. Mice of the ibred strain C57BL/6J, which have normal levels of microsomal glucuronidase, contained 56±10 g egasyn per gram of liver. Mice of the inbred strain YBR, which carry the Eg 0 mutation resulting in the absence of microsomal glucuronidase, did not contain detectable levels of egasyn. The F1 progeny of these two strains contained intermediate levels of egasyn, 25±4 g egasyn per gram of liver. Progeny from the backcross of these F1 animals to YBR were distributed equally into two discrete phenotypic classes. One class lacked both egasyn and microsomal glucuronidase, while the other class contained 25±3 g egasyn per gram of liver and contained normal levels of microsomal glucuronidase. Thus egasyn levels are determined by the Eg locus and show additive inheritance. These results suggest that the Eg gene codes for egasyn and that it is the inability to produce egasyn that results in a deficiency of microsomal glucuronidase in the Eg 0 mutant.This work was supported in part by USPHS Grant GM-19521.  相似文献   

2.
The accumulation of the relatively large amounts of beta-glucuronidase in microsomal fractions of normal mice depends on formation of complexes with the protein egasyn. Unexpectedly, it was found that the egasyn gene also affects the processing of beta-glucuronidase, which is segregated to lysosomes. In egasyn-positive mice lysosomal beta-glucuronidase from liver has a mean pI of 5.9 with a minor proportion at pI 5.4, whereas in egasyn-negative mice the proportion of the two lysosomal forms is reversed. Combined experiments measuring susceptibility to neuraminidase and to endoglycosidase H and specific binding to Ricinus communis lectin-agarose columns showed that the alterations in isoelectric point were associated with a decrease in complex oligosaccharides of lysosomal beta-glucuronidase in egasyn-positive mice. Since this alteration occurs not only in a congenic strain carrying the Eg0 gene but also in several other inbred strains that are homozygous for this gene, it is considered to be a genuine effect of the Eg gene rather than other genes that might regulate oligosaccharide processing. Also, the alteration is likely to be a result of direct physical interaction of the egasyn protein and lysosomal beta-glucuronidase, since a second lysosomal enzyme, beta-galactosidase, which does not form complexes with egasyn, is unaffected. The results suggest a model in which egasyn not only causes accumulation of beta-glucuronidase in the microsomal compartment but also acts upon the precursor to lysosomal beta-glucuronidase to alter its interaction with trans-Golgi-apparatus processing enzymes.  相似文献   

3.
Murine egasyn, a protein which stabilizes the binding of β-glucuronidase to microsomal membranes, was induced 1.9 fold in liver by phenobarbital treatment. Accompanying this increase was an alteration of the subcellular distribution of liver β-glucuronidase, although total glucuronidase activity remained constant. In control mice 32.6 ± 4.6% of the activity was microsomal, while after four days of phenobarbital treatment 50.5 ± 3.1% was microsomal. Thus, the availability of egasyn appears to be an important factor in determining the proportion of glucuronidase distributed to either microsomes or lysosomes.  相似文献   

4.
The proenzyme form of beta-glucuronidase is compartmentalized in large quantities within the endoplasmic reticulum by binding to the esterase, egasyn. Also, the propeptide of the proenzyme form of beta-glucuronidase is likely located at the carboxyl terminus. We have, therefore, tested if this carboxyl-terminal peptide is important in binding to egasyn. A polyclonal antibody to a 30-mer synthetic peptide, corresponding to the carboxyl-terminal 30 amino acids of pro-beta-glucuronidase, provided evidence that egasyn binds to the carboxyl terminus of beta-glucuronidase. This antibody interacted with proenzyme beta-glucuronidase-egasyn complexes in which one, two, or three egasyn molecules were bound to the beta-glucuronidase tetramer, but not with those complexes (M4) which contained four egasyn molecules. We interpret these results as indicating that all available carboxyl termini of the beta-glucuronidase proenzyme tetramer are shielded by egasyn in the M4 complexes. The same antibody did not recognize the mature lysosomal form of beta-glucuronidase, indicating that only the proenzyme form of microsomal beta-glucuronidase contains the original carboxyl terminus. Also, the synthetic 30-mer was found to be a specific and potent inhibitor (50% inhibition at 1.3 microM) of the esterase activity of purified egasyn but exhibited little inhibitory activity toward other purified esterases including a rat trifluoroacetylated esterase or egasyn esterase from another species. Together, these data describe a potent interaction of the exposed carboxyl terminus of precursor glucuronidase with the esterase catalytic site of egasyn, which in turn results in the specific localization of glucuronidase within the lumen of the endoplasmic reticulum.  相似文献   

5.
Three differently modified forms of beta-glucuronidase are known to exist: a microsomal enzyme form (M) existing in tissues where egasyn, a second microsomal protein, is present; and an acidic (La; complex-type oligosaccharide) and a basic (Lb; non-complex type oligosaccharide) lysosomal form which occur in all mouse tissues. Lb predominates in tissues containing microsomal beta-glucuronidase, La in those lacking it. In pulse-labelling experiments using mouse strain C57BL/6 liver containing egasyn (Eg+/Eg+) and microsomal enzyme, about half of the newly synthesized beta-glucuronidase was processed to the microsomal enzyme form, which was evidently further processed to Lb, and about half directly to La. In contrast, in liver of the congenic line C57BL/6.YBR Es-1b Eg0 that lacks egasyn (Eg0/Eg0) and microsomal enzyme, most of the labelled beta-glucuronidase was processed to La, and only a minor portion to Lb. Newly synthesized enzyme appeared first in microsomal, then in light and heavy lysosomal fractions of Eg+/Eg+ liver. In Eg0/Eg0 liver, no labelled enzyme was measurable in the microsomes, but it appeared rapidly in both types of lysosomes. Taken together these findings indicate that the microsomal enzyme form serves as a precursor of Lb, and that La is synthesized independently. The apparent half-life of La is only two-thirds that of Lb; this fact accounts for the reduced beta-glucuronidase activity in Eg0/Eg0 liver, which contains La as the predominant form.  相似文献   

6.
A significant portion of murine hepatocyte beta-glucuronidase is maintained within the endoplasmic reticulum (ER) by complex formation with the esterase active site of the protein egasyn. The carboxyl-terminal propeptide of the precursor form of glucuronidase appears important in localization of glucuronidase to the ER since a naturally occurring mutation in it is associated with decreased levels of ER glucuronidase. A sequence similarity was noted between the carboxyl-terminal propeptide and portions of the conserved sequences of the reactive site region of members of the serpin (serine proteinase inhibitor) superfamily. Also, previous studies had shown that a synthetic peptide, corresponding to the propeptide region, was a specific and potent inhibitor of the esterase activity of purified egasyn. Taken together, these results suggest that (a) the egasyn-glucuronidase system may use a novel mechanism related to that of serine proteinases and their inhibitors in complex formation and in subsequent localization of glucuronidase within the ER and that (b) a possible function of ER glucuronidase is to modulate the esterase activity of egasyn.  相似文献   

7.
The beige mouse is an animal model for the human Chediak-Higashi syndrome, a disease characterized by giant lysosomes in most cell types. In mice, treatment with androgenic hormones causes a 20-50-fold elevation in at least one kidney lysosomal enzyme, beta-glucuronidase. Beige mice treated with androgen had significantly higher kidney beta-glucuronidase, beta-galactosidase, and N-acetyl-beta-D-glucosaminidase (hexosaminidase) levels than normal mice. Other androgen-inducible enzymes and enzyme markers for the cytosol, mitochondria, and peroxisomes were not increased in kidney of beige mice. No significant lysosomal enzyme elevation was observed in five other organs of beige mice with or without androgen treatment, nor in kidneys of beige females not treated with androgen. Histochemical staining for glucuronidase together with subcellular fractionation showed that the higher glucuronidase content of beige mouse kidney is caused by a striking accumulation of giant glucuronidase-containing lysosomes in tubule cells near the corticomedullary boundary. In normal mice lysosomal enzymes are coordinately released into the lumen of the kidney tubules and appreciable amounts of lysosomal enzymes are present in the urine. Levels of urinary lysosomal enzymes are much lower in beige mice than in normal mice. It appears that lysosomes may accumulate in beige mice because of defective exocytosis resulting either from decreased intracellular motility of lysosomes or from their improper fusion with the plasma membrane. A similar defect could account for characteristics of the Chediak-Higashi syndrome.  相似文献   

8.
In the mouse β-glucuronidase is present in both microsomes and lysosomes and the enzyme at both sites is coded by the same structural gene. Electrophoresis on polyacrylamide gels showed that liver, kidney and lung from normal strains contained five enzyme forms designated L, M1, M2, M3 and M4 in order of decreasing mobility toward the anode. Band L is found primarily in lysosomes and is a tetramer of 260,000 molecular weight. Bands M1 to M4 are found exclusively in microsomes and range in molecular weight from 310,000 to 470,000. The increase in molecular weight is due to sequential addition of an accessory protein chain. When glucuronidase is highly induced in kidneys of female mice by injection of dihydrotestosterone, a sixth electrophoretic form of glucuronidase, designated X, appears. Form X appears early in induction, is localized in microsomes, and has a molecular weight (260,000) equal to that of the tetramer form L.Mice homozygous for the eg ° mutation, and thus deficient in microsomal glucuronidase, completely lack the microsomal forms M1 to M4. They do contain form X, and this increases after testosterone induction in kidney. The form X present in eg ° mice is indistinguishable from the form X seen in normal induced kidney.It appears that mice synthesize two different tetrameric forms of glucuronidase from the same structural gene. One, form L, is lysosomal; the other, form X, gives rise to microsomal enzyme forms M1 to M4 by the successive addition of up to four accessory protein chains. The eg ° mutant is blocked in the conversion of X to M1.  相似文献   

9.
S Medda  A M Stevens  R T Swank 《Cell》1987,50(2):301-310
Organophosphorous compounds, which are potent inhibitors of egasyn-esterase activity, caused a rapid dissociation of the high molecular weight egasyn-microsomal beta-glucuronidase complex when administered in vivo or when added in vitro to microsomal suspensions. The dissociation was relatively specific to phosphodiester inhibitors of the esterase active site. Also, the egasyn-esterase active site was inaccessible to substrates and to inhibitors when egasyn was complexed to beta-glucuronidase. Dissociation of the egasyn-microsomal beta-glucuronidase complex in vivo by organophosphorous compounds was followed by massive and rapid secretion of microsomal beta-glucuronidase, but not egasyn, into plasma. These experiments implicate the egasyn-esterase active site in attachment of microsomal beta-glucuronidase to egasyn by a novel mechanism that, in turn, compartmentalizes beta-glucuronidase within the endoplasmic reticulum.  相似文献   

10.
The glycoprotein egasyn complexes with and stabilizes precursor beta-glucuronidase in microsomes of several mouse organs. Several observations indicate egasyn is, in addition, an esterase. Liver homogenates of egasyn-positive strains have specific electrophoretically separable esterases which are absent in egasyn-negative mice. These esterases react with anti-egasyn serum. A specific esterase was likewise complexed with immunopurified microsomal beta-glucuronidase. The esterases were, like egasyn and microsomal beta-glucuronidase, concentrated in the microsomal subcellular fraction. Egasyn which is not bound to beta-glucuronidase, which represents 80-90% of total liver egasyn, is not complexed with other liver proteins. Egasyn, therefore, specifically stabilizes beta-glucuronidase in microsomes. The esterase activity is inhibited by bis-p-nitrophenyl phosphate indicating it is a carboxyl esterase. Several possible functions of egasyn-esterase activity are discussed.  相似文献   

11.
Mouse liver beta-glucuronidase is stabilized within microsomal vesicles by complexation with the accessory protein egasyn. The location of the beta-glucuronidase-egasyn complex and free egasyn within microsomal vesicles was investigated. Surprisingly, it was found that neither the complex nor free egasyn are intrinsic membrane components. Rather, both are either free within the vesicle lumen or only weakly bound to the inside of the vesicle membrane. This conclusion was derived from release studies using low concentrations of Triton X-100 or controlled sonication. Both the intact complex and free egasyn were released in parallel with lumenal proteins, not with intrinsic membrane components. Also, beta-glucuronidase was protected from digestion by proteinase K by the membrane of microsomal vesicles. The hydrophilic nature of both the complex and free egasyn was confirmed by phase separation experiments with the detergent Triton X-114. Egasyn is one of an unusual group of esterases that, despite being located within the lumen or only weakly bound to the lumenal surface of the endoplasmic reticulum, do not enter the secretory pathway.  相似文献   

12.
The distribution, labeling and interrelationship of microsomal and lysosomal dolichol and dolichyl-P in rat liver was investigated. After membrane induction with phenobarbital, N-nitrosodiethylamine and diethylhexylphthalate, the amount of microsomal and lysosomal dolichols are modulated independently. Liposomal labeled dolichol injected into the portal vein appears only in lysosomes and even after 8 days is still limited to the lysosomes. After in vivo labeling with [3H]mevalonate, high initial labeling of dolichol and dolichyl-P is present in microsomes and the labeling in microsomes is greater than that in lysosomes even after 8 h. The results demonstrate compartmentalization of the intracellular dolichols in hepatocytes. These lipids may have independent roles at different membrane locations.  相似文献   

13.
Multiple forms of β-glucuronidase have been demonstrated using sucrose gradient and polyacrylamide gel isoelectric focusing techniques in 6 m urea. Microsomal β-glucuronidase, a membrane-bound enzyme, was solubilized from lysosome-free, Ca2+-precipitated microsomes by detergents and isolated by chromatography on columns of rabbit anti-rat preputial gland β-glucuronidase antibody bound to Sepharose. The enzyme has a pI of 6.7. Polyacrylamide gel isoelectric focusing resolves the microsomal enzyme into three components, each of which is protease sensitive. The protease-modified microsomal enzyme is very similar to several forms of β-glucuronidase in lysosomes. The lysosomal β-glucuronidase, isolated from osmotically shocked lysosomes, is very heterogeneous after isoelectric focusing over the range pI 5.4–6.0. The lysosomal enzyme can be resolved into 10–12 bands by polyacrylamide gel isoelectric focusing. The more acid forms of the lysosomal enzyme are neuraminidase sensitive, suggesting they may be sialoglycoproteins.  相似文献   

14.
(125)I-labelled asialo-fetuin, administered intravenously, rapidly accumulates in rat liver and the radioactivity is subsequently cleared from the liver within 60min. Plasma radioactivity reaches a minimum between 10 and 15 min after injection and rises slightly during the period of liver clearance. Free iodide is the only radioactive compound found in plasma during this latter period. Fractionation of rat liver at 5 and 13min after injection of (125)I-labelled asialo-fetuin supports the hypothesis that asialo-glycoprotein is taken into liver by pinocytosis after binding to the plasma membrane and is then hydrolysed by lysosomal enzymes. At 5min, radioactivity was concentrated 23-fold in a membrane fraction similarly enriched in phosphodiesterase I, a plasma-membrane marker enzyme, whereas at 13min the radioactivity appeared to be localized within lysosomes. Separation of three liver fractions (heavy mitochondrial, light mitochondrial and microsomal) on sucrose gradients revealed the presence of two populations of radioactive particles. One population banded in a region coincident with a lysosomal marker enzyme. The other, more abundant, population of radioactive particles had a density of 1.13 and contained some phosphodiesterase, but very little lysosomal enzyme. These latter particles appear to be pinocytotic vesicles produced after uptake of the asialo-fetuin bound by the plasma membrane. Lysosomal extracts extensively hydrolyse asialo-fetuin during incubation in vitro at pH4.7 and iodotyrosine is completely released from the iodinated glycoprotein. Protein digestion within lysosomes was demonstrated by incubating intact lysosomes containing (125)I-labelled asialo-fetuin in iso-osmotic sucrose, pH7.2. The radioactive hydrolysis product, iodotyrosine, readily passed through the lysosomal membrane and was found in the external medium. These results are not sufficient to account for the presence of free iodide in plasma, but this was explained by the observation that iodotyrosines are deiodinated by microsomal enzymes in the presence of NADPH.  相似文献   

15.
We report biochemical, immunological, and genetic studies which demonstrate that an accessory protein with the essential features of mouse egasyn is complexed with and stabilizes a portion of beta-glucuronidase in microsomes of rat liver. The accessory protein exists as a complex with beta-glucuronidase since it coprecipitates with beta-glucuronidase after treatment of extracts with a specific beta-glucuronidase antibody. The two proteins are associated by noncovalent bonds since they are easily dissociated at elevated temperatures. Only 20-25% of total liver accessory protein is complexed with microsomal beta-glucuronidase. The remainder exists as a free form. The molecular weight of the accessory protein is 61 to 63 kDa depending upon the rat strain of origin. This protein, like mouse egasyn, has esterase catalytic activity and is concentrated in microsomes. The accessory protein is genetically polymorphic with at least four alleles. Combined biochemical and genetic evidence indicates it is identical with esterase-3 of the rat. Also, both mouse egasyn and rat esterase-3 react with antisera to egasyn and to rat esterase-3, indicating they are homologous proteins. Several inbred rat strains lack microsomal beta-glucuronidase. The same strains lack the accessory protein, suggesting that stabilization of beta-glucuronidase in rat microsomes requires egasyn.  相似文献   

16.
Male BALB/C mice were injected intraperitoneally with 2.5 i.u. of gonadotrophin. After the injection, increase of β-glucuronidase activity was first observed in the microsomal fraction. By 36h 45–50% of the total homogenate activity was found in the microsomal fraction compared with 20–25% in the control microsomal fraction. From 36 to 80h not only microsomal β-glucuronidase but also lysosomal β-glucuronidase increased progressively. After 69h stimulation with 2.5 i.u. of gonadotrophin, d-[1-14C]glucosamine or l-[U-14C]leucine was injected intraperitoneally. After a further 3h the kidneys were homogenized and five particulate fractions were prepared by differential centrifugation. The β-glucuronidase in the microsomal and lysosomal fractions was released respectively by ultrasonication and by freezing and thawing treatment. The enzyme was purified by organic-solvent precipitation and by sucrose-density-gradient centrifugation. The results demonstrated the incorporation of these two labels into the mouse renal β-glucuronidase. The microsomal β-glucuronidase was much more radioactive than the lysosomal enzyme and approx. 80% of the newly synthesized enzyme appeared in microsomes and approx. 20% of that was found in lysosomes at this period. These results suggest that the mouse renal β-glucuronidase is a glycoprotein and that the newly synthesized enzyme is transported from endoplasmic reticulum to lysosomes.  相似文献   

17.
Rat-kidney lysosomes: isolation and properties   总被引:2,自引:2,他引:0  
1. The activities of lysosomal enzymes in the cortexes and medullas and the principal subcellular fractions of rat kidney were measured. 2. A method is described for the isolation of rat-kidney lysosomes and a detailed analysis of the enzymic composition of the lysosomes is reported. Enzyme analysis of the other principal subcellular fractions is included for comparison. 3. Studies of the distribution of α-glucosidase showed that the lysosomal fraction contained only 10% of the total enzyme activity. The microsomal fraction contained most of the particulate α-glucosidase. Lysozyme was concentrated mainly in the lysosomal fraction with only small amounts present in the microsomal fraction. Lysosomal α-glucosidase had optimum pH5 whereas the microsomal form had optimum pH6. Both lysosomal and microsomal lysozyme had optimum pH6·2. 4. The stability of lysosomal suspensions was studied. Incubation at 37° and pH7 resulted in first an increased availability of enzymes without parallel release of enzyme. This was followed by a second stage during which the availability of enzymes was closely related to the release of enzymes. These changes were closely paralleled by changes in light-scattering properties of lysosomes. 5. The latent nature of the α-glucosidase and lysozyme of intact kidney lysosomes was demonstrated by their graded and parallel release with other typical lysosomal enzymes. 6. Isolated lysosomes were unstable at pH values lower than 5, most stable at pH6–7 and less stable at pH 8–9. Lysosomes were not disrupted when the osmolarity of the suspending medium was decreased from 0·6m to 0·25m. 7. The discussion compares the properties and composition of kidney lysosomes, liver lysosomes and the granules of macrophages. 8. The possible origin of the lysozyme in kidney lysosomes by reabsorption of the lysozyme in blood is discussed.  相似文献   

18.
Subcellular distribution of glutathione S-transferase activity was investigated as stimulated form by N-ethylmaleimide in rat liver. The stimulated glutathione S-transferase activity was localized in mitochondrial and lysosomal fractions besides microsomes. Among N-ethylmaleimide-treated submitochondrial fractions, glutathione S-transferase activity was stimulated only in outer mitochondrial membrane fraction. In lysosomal fraction, it was suggested that glutathione S-transferase activity in peroxisomes, which is immunochemically related to microsomal transferase, was also stimulated, but not in lysosomes.  相似文献   

19.
The role of the cystic fibrosis transmembrane conductance regulator (CFTR) in lysosomal acidification has been difficult to determine. We demonstrate here that CFTR contributes more to the reacidification of lysosomes from an elevated pH than to baseline pH maintenance. Lysosomal alkalinization is increasingly recognized as a factor in diseases of accumulation, and we previously showed that cAMP reacidified alkalinized lysosomes in retinal pigmented epithelial (RPE) cells. As the influx of anions to electrically balance proton accumulation may enhance lysosomal acidification, the contribution of the cAMP-activated anion channel CFTR to lysosomal reacidification was probed. The antagonist CFTR(inh)-172 had little effect on baseline levels of lysosomal pH in cultured human RPE cells but substantially reduced the reacidification of compromised lysosomes by cAMP. Likewise, CFTR activators had a bigger impact on cells whose lysosomes had been alkalinized. Knockdown of CFTR with small interfering RNA had a larger effect on alkalinized lysosomes than on baseline levels. Inhibition of CFTR in isolated lysosomes altered pH. While CFTR and Lamp1 were colocalized, treatment with cAMP did not increase targeting of CFTR to the lysosome. The inhibition of CFTR slowed lysosomal degradation of photoreceptor outer segments while activation of CFTR enhanced their clearance from compromised lysosomes. Activation of CFTR acidified RPE lysosomes from the ABCA4(-/-) mouse model of recessive Stargardt's disease, whose lysosomes are considerably alkalinized. In summary, CFTR contributes more to reducing lysosomal pH from alkalinized levels than to maintaining baseline pH. Treatment to activate CFTR may thus be of benefit in disorders of accumulation associated with lysosomal alkalinization.  相似文献   

20.
Mice of inbred strains A/J, C57BL/6J and C57BL/6J beige were kept on a K+-deficient diet for up to 40 days to determine the magnitude and mechanism of changes in tissue lysosomal enzymes. From days 10 to 40 glucuronidase activity increased 3-fold in kidney of K+-deficient mice, but there was little effect on beta-galactosidase or acid phosphatase activity. Similar increases in kidney glucuronidase activity occurred in inbred strains known to have genetically altered control of the synthesis (A/J) and secretion (C57BL/6J beige) of glucuronidase in kidney proximal-tubule cells. Deprivation of K+ did not affect glucuronidase activity in liver, spleen, lung and brain, but there was a 2-3-FOld increase in glucuronidase activity in heart in the C57BL/6J and C57BL/6J beige strains. As shown by specific antibody titration, increased glucuronidase activity in kidney of K+-deficient mice was accompanied by accumulation of enzyme molecules. Likewise in kidney of deficient mice there was an increased rate of synthesis of glucuronidase as measured by incorporation of labelled leucine into immunoprecipitable glucuronidase. In kidney of K+-deficient mice the elevated glucuronidase activity was found in both collecting-tubule and interstitial cells of the medulla. It is probable therefore that a significant fraction of the increased kidney lysosomal synthesis and enzyme activity is due to infiltrating cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号