首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The inhibitory effect of sucrose and sodium chloride on sago starch gelatinisation was investigated by differential scanning calorimetry (DSC). The temperature of gelatinisation of starch in the presence of low levels of water and high levels of sucrose was found to increase in the presence of sucrose, whereas the gelatinisation enthalpy was unaffected. The gelatinisation temperature range was not as broad in the presence of sucrose as without sucrose. Furthermore, the shape of the gelatinisation endotherm was changed by the addition of sucrose. The double endotherm obtained in limited water:starch systems was changed into a single endotherm, similar to the endotherm obtained in excess water:starch systems at a higher temperature. DSC was also used to examine the effects of water and sodium chloride content on the phase transitions of sago starch. Samples were adjusted to starch:water ratios of 2:3 and 3:2 in sodium chloride concentrations of 0.0, 1.0, 2.0, 3.0, 4.0, 5.0 M. The gelatinisation temperatures of sago starch increased and then decreased as the sodium chloride concentration increased. Sodium chloride created similar effects on the endotherms in excess water content and on the first endotherm with limited water content. In the presence of sucrose and sodium chloride, gelatinisation shifted to higher temperatures, and enthalpy associated with the endothermic process decreased. The extent of temperature shift and enthalpy change was dependent on the water to starch to solutes ratios.  相似文献   

2.
We investigated the tolerance of adult specimens of the shallow-water shrimp Palaemonetes varians to sustained high hydrostatic pressure (10 MPa) across its thermal tolerance window (from 5 to 27 °C) using both behavioural (survival and activity) and molecular (hsp70 gene expression) approaches. To our knowledge, this paper reports the longest elevated hydrostatic pressure exposures ever performed on a shallow-water marine organism. Behavioural analysis showed a 100% survival rate of P. varians after 7 days at 10 MPa and 5 or 10 °C, whilst cannibalism was observed at elevated temperature (27 °C), suggesting no impairment of specific dynamic action. A significant interaction of pressure and temperature was observed for both behavioural and molecular responses. Elevated pressure was found to exacerbate the effect of temperature on the behaviour of the animals by reducing activity at low temperature and by increasing activity at high temperature. In contrast, only high pressure combined with low temperature increased the expression of hsp70 genes. We suggest that the impressive tolerance of P. varians to sustained elevated pressure may reflect the physiological capability of an ancestral species to colonise the deep sea. Our results also support the hypothesis that deep-sea colonisation may have occurred during geological periods of time when the oceanic water column was warm and vertically homogenous.  相似文献   

3.
SANS study of the distribution of water within starch granules   总被引:2,自引:0,他引:2  
This study describes contrast variation small angle neutron scattering (SANS) experiments which focus on the role which the intra-granular room temperature distribution of water and carbohydrate plays in determining the native structure and subsequent functionality of starch. It is shown that variations in botanical origin and amylose content do not correlate with significant differences in room temperature composition of A-type starch granules. In turn, variations in the gelatinisation behaviour of A-type starches do not correlate with variations in room temperature water distribution. In contrast, the room temperature water content is found to differ significantly between granules of potato (B-type) and a range of A-type starch cultivars. A correlation is found between these compositional differences and variations in crystal structure, which has implications for biological growth conditions and gelatinisation behaviour.  相似文献   

4.
A study of starch gelatinisation over the pressure range 0·1–400 MPa has been performed using high pressure differential thermal analysis (HPDTA). The results show that the gelatinisation temperature first increases by a few degrees, becomes constant at 150–250 MPa and then decreases slightly. ΔH decreases with an increase in pressure, with the decrease being more rapid for wheat and smooth pea starches than for potato starch. Using the Clapeyron equation it can be deduced that ΔV is initially positive, but decreases with an increase in pressure to become zero at 150–250 MPa and eventually just negative.  相似文献   

5.
A general procedure was developed to measure the degree of gelatinisation in samples over a broad concentration range. Measurements based on birefringence, DSC (Differential scanning calorimetry), X-ray and amylose–iodine complex formation were used. If a 10 w/w % wheat starch–water mixture was used, each method resulted in approximately the same degree of gelatinisation vs. temperature curve. In case the gelatinisation of a 60 w/w % wheat starch–water mixture was followed as a function of the temperature, each method resulted in a different degree of gelatinisation vs. temperature curve. DSC and X-ray measurements are preferred, because they can be used to determine when the final stage of the gelatinisation process has been completed. Birefringence and amylose–iodine complex formation measurements are suitable alternatives if DSC and X-ray equipment is not available, but will lead to different results. The differences between the methods can be explained by considering the phenomena that take place during the gelatinisation at limiting water conditions.

Based on the experimental data obtained with DSC and X-ray measurements, the gelatinisation of 10 w/w % and 60 w/w % wheat starch–water mixtures started at the same temperature (approximately 50 °C). However, complete gelatinisation was reached at different temperatures (approximately 75 °C and 115 °C for, respectively, 10 w/w % and 60 w/w % wheat starch–water mixtures) according to the experimental DSC and X-ray data. These results are in accordance with independent DSC measurements that were carried out.

The Flory equation was adapted to provide a quantitative explanation for the curves describing the degree of starch gelatinisation as a function of the starch–water ratio and the temperature. The gelatinisation curves that were obtained with the model are in good agreement with the experimentally determined curves. The parameters , ΔHu and χ12 that resulted in the lowest sum of the squared residuals are 291 ± 63 °C, 29.2 ± 3.9 kJ/mol and 0.53 ± 0.05 (95% confidence interval). These values agree with other values reported in literature.  相似文献   


6.
The effect of hydrostatic pressure on lipid structure and dynamics is highly important as a tool in biophysics and bio-technology, and in the biology of deep sea organisms. Despite its importance, high hydrostatic pressure remains significantly less utilised than other thermodynamic variables such as temperature and chemical composition. Here, we give an overview of some of the theoretical aspects which determine lipid behaviour under pressure and the techniques and technology available to study these effects. We also summarise several recent experiments which highlight the information available from these approaches.  相似文献   

7.
Effects of barrel temperature (81–149°C) and screw speed (315–486rpm) on extrusion processing of sago starch in a co-rotating twin-screw extruder under a high moisture system (34–47%) were investigated using response surface methodology. Structural changes were characterised by measuring water solubility index (WSI), water absorption index (WAI), degree of gelatinisation (DG), dextrose equivalent (DE) and high performance size-exclusion chromatography (HPSEC) profiles of the extradates. Thermomechanical processing of sago starch in the twin-screw extruder at the high moisture (34–47%) system led to shearinduced limited degradation and starch phase transitions (a composite melting gelatinisation process). Strong positive correlations between WAI, WSI and DG showed that gelatinisation was the fundamental mechanism in this high moisture system rather than dextrinisation. Processing-induced solubility increased at the expense of water absorption. Low WSI (4.5–18.1%) is ascribed to the presence of structures of either granular crystallite remnants or rearrangement of bonds during extrusion.  相似文献   

8.
The complex influence of baro-, photo- and thermo-gradients on distribution and behaviour of young physostomous Leuciscus leuciscus L., leaciscus idus L. and physoclistous fish Perca fluviatilis L. was investigated. 40 different combinations consisting of 4 types of photogradients, 3 types of termo gradients and 4 types of baro-gradients were tested. All considered factors influenced the distribution of physostomous and physoclistous fish with high degree of significance. Under a multi-factorial experiment fish behaviour and distribution are determined not only by a separately taken environmental factor but by the presence of other accompanying factors. Under different combinations of imposed factors, the reaction of fish to an individual factor and the character of the response (positive or negative) may change. Hydrostatic pressure is one of the strongest factors which influence fish distribution. The presence of its gradient may change the character of response of perch Perca fluviatilis to light (a changing of a sign of its photoreaction). Water temperature influences fish distribution more than illumination. However, the definite value of water temperature at which most fish prefer to stay may be changed depending on both the intensity of illumination and the value of hydrostatic pressure.  相似文献   

9.
The ligand binding and kinetic behaviour of butyrylcholinesterase (EC 3.1.1.8, acylcholine acylhydrolase) from human plasma was studied at 35 degrees C under high hydrostatic pressure. The binding of phenyltrimethylammonium was studied by affinity electrophoresis at various pressures ranging from 10(-3) to 2 kbar. The kinetics of enzyme carbamylation with N-methyl(7-dimethylcarbamoxy)quinolinium iodide was studied in single-turnover conditions up to 1.2 kbar using a high-pressure stopped-flow fluorimeter. Experiments were carried out in different media: 1 mM Tris-HCl (pH 8) with water, water containing 0.1 M lithium chloride and deuterium oxide as solvents. The volume changes (delta V and delta V++) associated with each process were determined from the pressure-dependence of the binding and kinetic constants. Kinetic data show that the binding of substrate to the enzyme leads to a pressure-sensitive enzyme conformational state which cannot accomplish the catalytic act. The pressure-induced inhibitory effect is highly cooperative; it depends on both the nature (charged or neutral) and the concentration of the substrate. Also, large solvent effects indicate that enzyme sensitivity to pressure depends on the solvent structure. This findings suggests that the substrate-dependent pressure effect is modulated by the solvation state of the enzyme.  相似文献   

10.
It is well known that heart rate, oxygen uptake and body temperature during exercise in water are affected by water temperature, buoyancy, hydrostatic and so on. It has been reported that the central blood volume during immersion was affected by the increased external hydrostatic pressure and cold-induced peripheral vasoconstriction, and intrathoratic blood volume should be greater during cold than warm water immersion (Epstein, 1992). The purpose of this presentation study was to make clear heart rate, blood pressure, oxygen uptake and cardiac autonomic nervous system modulation during supine floating at water temperatures of 25, 35 and 41 degrees C.  相似文献   

11.
The axiom that zooplankton species exhibit upwards migration behaviour at night is challenged by recent findings. Such behaviour is not universal, may vary during ontogeny, and is occasionally reversed. Moreover, in some estuarine and coastal zooplankton species vertical migration rhythms are of tidal, not diel, periodicity. There is evidence for several species that vertical migrations are endogenously controlled, occurring in constant conditions in the laboratory, suggesting that they have arisen under considerable selection pressure. They appear to play a significant role in orientation and navigation of coastal and estuarine zooplankton, predicated on the selective advantage of closure of life cycles. Vertical migrations between water masses moving in different directions at tidal, diel or longer timescales permit dispersal and recruitment, or retention, of planktonic larvae and adults in favourable ecological locations. Exogenous factors serving as cues for, or directly controlling, vertical migration rhythms include light, hydrostatic pressure, salinity, temperature, water movements and gravity responses, besides biological factors such as the timing of larval release, duration of larval life and predator/prey interactions. Behavioural characteristics should be quantified and factored into dispersal models which assume that zooplankton adults and larvae are advected as passive particles.  相似文献   

12.
Starches extracted from the sweet potato cultivars Sunnyred and Ayamurasaki grown at 15 or 33 degrees C (soil temperature) were annealed in excess water (3 mg starch/mL water) for different times (1, 4, 8 or 10h) at the temperatures 2-3 degrees K below the onset melting temperature. The structures of annealed starches, as well as their gelatinisation (melting) properties, were studied using high-sensitivity differential scanning calorimetry (HSDSC). In excess water, the single endothermic peak shifted to higher temperatures, while the melting (gelatinisation) enthalpy changed only very slightly, if any. The elevation of gelatinisation temperature was associated with increasing order/thickness of the crystalline lamellae. The only DSC endotherm identified in 0.6 M KCl for Sunnyred starch grown at 33 degrees C was attributed to A-type polymorphic structure. The multiple endothermic forms observed by DSC performed in 0.6M KCl for annealed starches from both cultivars grown at 15 degrees C provided evidence of a complex C-type (A- plus B-type) polymorphic structure of crystalline lamellae. The A:B-ratio of two polymorphic forms increased upon annealing due to partial transformation of B- to A-polymorph, which was time dependent. Long heating periods facilitated the maximal transformation of B- to A-polymorph associated with limited A:B ratio.  相似文献   

13.
The solubility and dissolution behaviour of A- and B-type crystals of short chain amylose were measured both directly and using differential scanning calorimetry in the temperature range 30-110 degrees C. Dissolution in the calorimeter was affected by super-heating to the extent of 24-28 degrees C. Following trends previously found by calorimetry the B-type crystal polymorph was more soluble than the A-type. Analysis of the chain composition of the dissolved material revealed a preferential solubilisation of the short chains at the lower temperatures. The solubility of both crystal polymorphs and the magnitude of the preferential solubilisation effect was reduced in the presence of 30% w/w sucrose. A comparison of calorimetric measurements of crystal dissolution and the gelatinisation of native granular waxy maize and potato starches found some broad similarities, such as transition temperatures and their composition dependence, and some differences, such as the relatively narrow temperature range of granular gelatinisation, which reflects its cooperative nature.  相似文献   

14.
The time-temperature profiles of selected starch-water systems subjected to microwave processing were established and the effect of microwave radiation on the physico-chemical properties and structure of potato and tapioca starches was studied. The experimental starch samples were examined by the Brabender rheological method, light microscopy, scanning electron microscopy and X-ray diffractometry. Microwave radiation was evidenced to affect the temperature and moisture contents of the experimental starches, with a strong correlation between the moisture content and the rate of temperature rise. An isothermal transformation was revealed with the samples of moisture contents over 20%, causing a rise in the gelatinisation temperature of the starch and a drop in its solubility in water. The most pronounced change was observed in the case of potato starch: its crystal structure changed from type B to type A. The tapioca starch underwent similar but less marked changes.  相似文献   

15.
Field measurements of xylem sap osmotic and pressure potentialwere made on sugar maple trecs (Acer saccharum Marsh) duringthe winter and spring of 3 years to determine whether the hydrostaticpressure was osmotically generated. Sap osmotic potential waslow enough to account for the hydrostatic pressure but the dynamicsof its diurnal behaviour indicated that osmotic potential wasnot directly responsible for hydrostatic pressure. The diurnalcourse of hydrostatic pressure showed definite peaks but osmoticpotential often did not. The magnitude of the diurnal changesin hydrostatic pressure was approximately 0·15 MPa whereasthe changes in osmotic potential were only 0·05 MPa.Because the sap osmoticum is primarily sucrose, and starch isstored in the xylem throughout the tree, the temperature dependenceof the sucrose-starch interconversion system was investigated.More active amylase was formed in maple twigs after incubationat 0°C and 4°C than at –3, 6 or 15°C. Therate of starch hydrolysis by maple amylase increased with temperature,reaching a maximum at approximately 45°C. There was somestarch hydrolysis at –3°C. The starch hydrolysis systemthus indicated no critical role for temperature fluctuationsabout 0°C. Starch was found to be densely stored in therays of the trunk and twigs and around the central pith in thetwigs. Key words: Acer succhmum Marsh, Osmotic potential, Xylem sap pressure  相似文献   

16.
Pea seeds were soaked in distilled water or in saturated D-mannitol solution either under normal or under high external pressures (10-30 atms.) for approximately 24 hours. Imbibition in distilled water was independent of the hydrostatic pressure. However, imbibition in D-mannitol solution was enhanced by the pressure. It was concluded that hydrostatic pressure caused by turgor could enhance imbibition of the protoplast. Under high turgor, the protoplast may swell even at a high osmotic potential. Turgor seems to be of importance for the physiological activity of the plant cell.  相似文献   

17.
Field and laboratory experiments show that endogenous circatidal rhythms in coastal animals are entrained by exposure to real or simulated tidal cycles of hydrostatic pressure, temperature, salinity, wave agitation, immersion and light. Short pulses (2–3 h) of simulated high tide induce slight phase advances or delays in the free-running circatidal rhythm of groups of experimental animals, depending upon the time of application. Phase-response curves derived in this way are less clear-cut than for typical circadian rhythms, but their pattern suggests that tidally rhythmic behaviour is controlled by truly circatidal (and not circadian) oscillators. The underlying circatidal oscillators appear, in general, to be fairly stable, suggesting that populations of coastal animals are relatively unsusceptible to irregularly timed environmental stimuli associated, say, with severe storms.  相似文献   

18.
Respiratory gas exchange was investigated in human subjects immersed up to the shoulders in water at different temperatures (Tw = 25, 34, and 40 degrees C). Cardiac output (Qc) and pulmonary tissue volume (Vti) were measured by a rebreathing technique with the inert gas Freon 22, and O2 consumption (VO2) was determined by the closed-circuit technique. Arterial blood gases (PaO2, PaCO2) were analyzed by a micromethod, and alveolar gas (PAO2) was analyzed during quiet breathing with a mass spectrometer. The findings were as follows. 1) Immersion in a cold bath had no significant effect on Qc compared with the value measured at Tw = 34 degrees C, whereas immersion in a hot bath led to a considerable increase in Qc. Vti was not affected by immersion at any of the temperatures tested. 2) A large rise in metabolic rate VO2 was only observed at Tw = 25 degrees C (P less than 0.001). 3) Arterial blood gases were not significantly affected by immersion, whatever the water temperature. 4) O2 transport during immersion is affected by two main factors: hydrostatic pressure and temperature. Above neutral temperature, O2 transport is improved because of the marked increase in Qc resulting from the combined actions of hydrostatic counter pressure and body heating. Below neutral temperature, O2 transport is altered; an increase in O2 extraction of the tissue is even calculated.  相似文献   

19.
The purpose of the experiments was to study the effect of high hydrostatic pressure treatment prior to vitrification to the survival of expanded mouse blastocysts. High hydrostatic pressure has been reported to induce the production of "shock proteins" in bacteria, which can provide a possibility of cross-protection to other environmental stresses. The possible beneficial effects of this alleged principle was examined on embryo vitrification. First, the behaviour of blastocysts was studied at altered pressure conditions. In the second part of the study, pressure treatment was combined with a cryopreservation protocol. Our results indicate that the survival of pressurized mouse embryos depends on the magnitude and the duration of pressure applied. We demonstrated that a preceding pressure treatment strikingly increases the survival of the frozen blastocysts as well as the speed of resumption of the development, and hatching rate.  相似文献   

20.
The rate of cell division of Tetrahymena growing in an observational high pressure vessel was measured at selected pressures of helium, hydrogen and at high hydrostatic pressure. Pressures greater than 100 atm reduced the rate of division, but the gases inhibited division to a lesser degree than pure hydrostatic pressure. Hydrogen's effect was distinguishable from that of hydrostatic pressure at 130 atm or more, while helium's effect appeared at 175 atm. These inert gases probably counteract the action of pressure by stabilising apolar pressure-labile targets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号