首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
The conformations of two synthetic trisaccharides of blood group A and B (alpha-L-Fucp-(1-->2)-[alpha-D-GalpNAc-(1-->3)]-alpha-D-Galp and alpha-L-Fucp-(1-->2)-[alpha-D-Galp-(1-->3)]-alpha-D-Galp, respectively) and of a type A tetrasaccharide alditol, Fucp-(1-->2)-[alpha-D-GalpNAc-(1-->3)]-beta-D-Galp-(1-->3)-GalNAc-ol, were studied by NMR measurements of one-bond C-H residual dipolar couplings in partially oriented liquid crystal solutions. The conformations of the three oligosaccharides were analyzed by generating thousands of structures using a Monte-Carlo method. Two different strategies were applied to calculate theoretical dipolar couplings for these structures. In the first method, the orientation of the molecule was calculated from the optimal fit of the molecular model to the experimental data, while in the second method the orientation tensor was calculated directly from the moment of inertia of the molecular model. Both methods of analysis give similar results but with slightly better agreement with experiment for the former one. The analysis of the results implies a single unique conformation for both blood group epitopes in solution in disagreement with theoretical models suggesting the existence of two conformers in solution.  相似文献   

3.
A polar non-acid glycolipid fraction has been isolated from human kidney. It was shown by thin-layer chromatography to be a mixture of glycolipids having more than four carbohydrate residues. Immunological testing revealed strong blood group Lea and A activity together with weak Leb, P1 and B activity. Mass spectrometry of the permethylated and permethylated-reduced (LiAlH4) glycolipid fraction showed that the two major components were a five sugar fucolipid (isomer of Lea) and a glycolipid having four hexoses and one N-acetylhexosamine. In addition, blood group Leb, B and A type hexaglycosylceramides were present. Evidence for small amounts of more complex glycolipids was also found. Acid degradation and gas chromatography of the native fraction revealed fucose, glucose, galactose, N-acetylglucosamine and N-acetylgalactosamine. This is the first chemical isolation and characterization of complex blood group active glycolipids in human kidney. The existence of these molecules is discussed in view of their possible role as transplantation antigens.  相似文献   

4.
V Sachs  M Finke  F Netzband  B Vollert 《Blut》1975,31(1):29-40
According to the hypothesis of Ceppellini and Morgan the Lewis blood groups are formed by the secondary attachment of the Lewis substances to the red blood cells and this process is genetically controlled by the genes of the ABH und Lewis(a)-substance secretion (SE, se, L and 1). The correctness of this hypothesis is demonstrated by determination of the Lewis blood groups and the ABH and Lewis secretor status with different suitable antisera and by estimation of the gene frequencies Se, se, L and 1 in a sample of 382 blood donors from Schleswig-Holstein and by determination of the same groups in 73 pairs of parents with 156 children. There are no significant differences between observation and expectation in the sample as well as in the family investigation and there are no critical pairs of parents having children with "impossible" Lewis blood group. The results suggest to make more use of the Lewis blood groups.  相似文献   

5.
Neutral oligosaccharides in human milk samples from approximately 50 women were analysed applying a recently developed high-pH anion-exchange chromatographic method. Three different oligosaccharide patterns could be detected in accordance with milk groups that had been already described. These oligosaccharide groups correspond to the Lewis blood types Le(a−b+), Le(a+b−) and Le(a−b−). In addition to these oligosaccharide patterns, a new carbohydrate pattern was detected in a milk sample from a Le(a−b−) individual. Here, only nonfucosylated oligosaccharides and compounds bearing a1,3 linked fucosyl residues were found, whereas structures with a1,2 and a1,4 fucosyl linkages were missing. This finding led to the hypothesis that there are four different oligosaccharide milk groups that fit well to the genetic basis of the Lewis blood group system. This revised version was published online in November 2006 with corrections to the Cover Date.  相似文献   

6.
P Cagas  C A Bush 《Biopolymers》1990,30(11-12):1123-1138
Through control of both the nmr probe temperature and of the solvent viscosity, phase-sensitive two-dimensional 1H nuclear Overhauser data (NOESY) at 300 and 500 MHz are obtained with excellent signal-to-noise ratios for Lewis blood group penta- and hexasaccharides isolated from human milk. Relatively long mixing times are required to produce measurable NOE intensities in these oligosaccharides, which makes a full relaxation matrix analysis necessary. By measurements of selective T1 for a few isolated 1H resonances, it was possible to generate a simulation of the complete NOESY spectrum at arbitrary mixing time for comparison with the experimental data. From an exhaustive search of the conformational space, it was found that only a small range of glycosidic dihedral angles of the nonreducing terminal Lewis blood group determinant fragments of the milk oligosaccharides LNF-2 and LND-1 produce simulated spectra agreeing within experimental error to the data. Conformational energy calculations reveal that each of these conformations is also one of minimum energy. It is concluded that the Lewis(a) and Lewis(b) oligosaccharides adopt relatively compact rigid structures in solution, as shown by the observation of cross peaks between protons in nonadjacent residues. Like the blood group A and H oligosaccharides, there exists only a small dependence of the conformation for Lewis(a) and Lewis(b) oligosaccharides on solvent. The apparent lack of dependence of conformation of these oligosaccharides on DMSO in D2O suggests that modification of solvent viscosity with mixtures of DMSO:D2O may provide a useful general strategy of NOESY studies of oligosaccharides.  相似文献   

7.
Synthesis of blood group ABH (type 1) determinant oligosaccharides and Leb tetrasaccharide has been performed using the same trisaccharide precursor-benzyl 2-acetamido-4,6-O-benzylidene-[4,6-O-benzylidene-2-O-[2-O-benzyl-3,4-di- O- (4-nitrobenzoyl)-alpha-L-fucopyranosyl]-beta-D-galactopyranosyl]-2-deoxy - alpha-D-glucopyranoside. A- and B-determinants were prepared by alpha-galactosaminylation and alpha-galactosylation of the title trisaccharide, respectively. Leb-determinant was synthesized by a series of simple blocking and deblocking steps followed by alpha-fucosylation.  相似文献   

8.
The three-dimensional structures of fourteen histo-blood groups carbohydrate antigens have been established through a combination of molecular mechanics and conformational searching methods. The conformational space available for each disaccharide, constituents of these determinants, has been throroughly characterized. The results have been organized in a data bank fashion. Larger relatives, i.e. 14 tri- and tetrasaccharides of histo-blood group antigens, have been modelled using a different method for exploring the complex potential energy surface. This approach is aimed at establishing all the possible families of conformations, along with the conformational pathways. Different conformational behaviours are exhibited by these oligosaccharides. Some of them, i.e. LeX and LeY tri and tetrasaccharides, are very rigid; 99% of their populations belong to the same conformational family. Others, like H type 1, H type 2 or H type 6 oligosaccharides, are essentially rigid, but a secondary conformational family, corresponding to 3–4% of the total population, can arise. Finally, the H types 3 and 4 trisaccharides, and the A type 1 and A type 2 tetrasaccharides are predicted to behave rather flexibly. The information gathered in the present investigation has been used to analyse the body of experimental evidence, either physical or biological, available for this series of carbohydrate antigens. Of special interest are the several different alignments that can be proposed for these molecules. They yield a realistic definition of the three-dimensional features of the epitopes thereby providing essential information about how carbohydrate antigens are recognized by proteins.  相似文献   

9.
10.
11.
C Mukhopadhyay  C A Bush 《Biopolymers》1991,31(14):1737-1746
Molecular dynamics simulations without explicit inclusion of solvent molecules have been performed to study the motions of Lewisa and Lewisb blood group oligosaccharides, and two blood group A tetrasaccharides having type I and type II core chains. The blood group H trisaccharide has also been studied and compared with the blood group A type II core chain. The potential energy surface developed by Rasmussen and co-workers was used with the molecular mechanics code CHARMM. The lowest energy minima of the component disaccharide fragments were obtained from conformational energy mapping. The lowest energy minima of these disaccharide fragments were used to build the tri- and tetrasaccharides that were further minimized before the actual heating/equilibration and dynamics simulations. The trajectories of the disaccharide fragments, e.g., Fuc alpha- (1----4)GlcNAc, Gal beta-(1----4)GlcNAc, etc., show transitions among various minima. However, the oligosaccharides were found to be dynamically stable and no transitions to other minimum energy conformations were observed in the time series of the glycosidic dihedral angles even during trajectories as long as 300 ps. The stable conformations of the glycosidic linkages in the oligosaccharides are not necessarily the same as the minimum energy conformation of the corresponding isolated disaccharides. The average fluctuations of the glycosidic angles in the oligosaccharides were well within the range of +/- 15 degrees. The results of these trajectory calculations were consistent with the relatively rigid single-conformation models derived for these oligosaccharides from 1H-nmr data.  相似文献   

12.
The major O-linked oligosaccharide structures attached to human glycophorin A (GPA) have been extensively characterized previously. Our own recent findings, obtained by immunochemical methods, suggested the presence of blood group A and B determinants in O-glycans of human glycophorin originating from blood group A or B erythrocytes, respectively. Here, we elucidate the structure of O-glycans, isolated from GPA of blood group A, B, and O individuals by reductive beta-elimination, carrying A, B or H blood group epitopes, respectively. Structural studies based on nanoflow electrospray-ionization tandem mass spectrometry and earlier reported data on the carbohydrate moiety of GPA and ABH antigens allowed us to conclude that these blood group epitopes are elongations of the beta-GlcNAc branch attached to C-6 of the reducing GalNAc. The galactose linked to C-3 of the reducing GalNAc carries NeuAcalpha2-3 linked residue. Identified here O-glycans were found in low amounts, their content estimated at about one percent of all GPA O-glycans. These O-glycans with type-2 core, carrying the blood group A, B or H determinants, have not been identified in GPA so far. Our results demonstrate the efficacy of nanoESI MS/MS in detecting minor oligosaccharide components present in a mixture with much more abundant structures.  相似文献   

13.
The conformations of the histo-blood group carbohydrate antigens Lewis X (Le(x)) and Lewis A (Le(a)) were studied by NMR measurements of one-bond C-H residual dipolar couplings in partially oriented liquid crystal solutions. A strategy for rapid calculation of the difference between theoretical and experimental dipolar couplings of a large number of model structures generated by computer simulations was developed, resulting in an accurate model structure for the compounds. Monte Carlo simulations were used to generate models for the trisaccharides, and orientations of each model were sought that could reproduce the experimental residual dipolar coupling values. For both, Le(a) and Le(x), single low energy models giving excellent agreement with experiment were found, implying a compact rigidly folded conformation for both trisaccharides. The new approach was also applied to the pentasaccharides lacto-N-fucopentaose 2 (LNF-2) and lacto-N-fucopentaose 3 (LNF-3) proving its consistency and robustness. For describing the conformation of tightly folded oligosaccharides, a definition for characterization of ring planes in pyranoside chairs is proposed and applied to the analysis of the relation between the fucose and galactose residues in the epitopes, revealing the structural similarity between them.  相似文献   

14.
Wu AM  Wu JH  Singh T  Liu JH  Tsai MS  Gilboa-Garber N 《Biochimie》2006,88(10):1479-1492
Pseudomonas aeruginosa Fuc > Man specific lectin, PA-IIL, is an important microbial agglutinin that might be involved in P. aeruginosa infections in humans. In order to delineate the structures of these lectin receptors, its detailed carbohydrate recognition profile was studied both by microtiter plate biotin/avidin-mediated enzyme-lectin-glycan binding assay (ELLSA) and by inhibition of the lectin-glycan interaction. Among 40 glycans tested for binding, PA-IIL reacted well with all human blood group ABH and Le(a)/Le(b) active glycoproteins (gps), but weakly or not at all with their precursor gps and N-linked gps. Among the sugar ligands tested by the inhibition assay, the Le(a) pentasaccharide lacto-N-fucopentaose II (LNFP II, Galbeta1-3[Fucalpha1-4]GlcNAcbeta1-3Galbeta1-4Glc) was the most potent one, being 10 and 38 times more active than the Le(x) pentasaccharide (LNFP III, Galbeta1-4 [Fucalpha1-3]GlcNAcbeta1-3Galbeta1-4Glc) and sialyl Le(x) (Neu5Acalpha2-3Galbeta1-4[Fucalpha1-3] GlcNAc), respectively. It was 120 times more active than Man, while Gal and GalNAc were inactive. The decreasing order of PA-IIL affinity for the oligosaccharides tested was: Le(a) pentaose > or = sialyl Le(a) tetraose > methyl alphaFuc > Fuc and Fucalpha1-2Gal (H disaccharide)>2'-fucosyllactose (H trisaccharide), Le(x) pentaose, Le(b) hexaose (LNDFH I) and gluco-analogue of Le(y) tetraose (LDFT)>H type I determinant (LNFP I)>Le(x) trisaccharide (Galbeta1-4[Fucalpha1-3]GlcNAc) > sialyl Le(x) trisaccharide > Man > Gal, GalNAc, and Glc (inactive). The results presented here, in accordance with the crystal 3D structural data, imply that the combining site of PA-IIL is a small cavity-type best fitting Fucalpha1- with a specific shallow groove subsite for the remainder part of the Le(a) saccharides, and that polyvalent glycotopes enhance the reactivity. The Fuc > Man Ralstonia solanacearum lectin RSL, which resembles PA-IIL in sugar specificity, differs from it in it's better fit to the B and A followed by H oligosaccharides vs. Fuc, whereas, the second R. solanacearum lectin RS-IIL (the structural homologue of PA-IIL) binds Man > Fuc. These results provide a valuable information on PA-IIL interactions with mammalian glycoforms and the possible spectrum of attachment sites for the homing of this aggressive bacterium onto the target molecules. Such information might be useful for the antiadhesive therapy of P. aeruginosa infections.  相似文献   

15.
The 1H NMR chemical shifts and NOEs of hydroxy protons in Lewis X trisaccharide, β-d-Galp-(1 → 4)[α-l-Fucp-(1 → 3)]-β-d-GlcpNAc, and Lewis Y tetrasaccharide, α-l-Fucp-(1 → 2)-β-d-Galp-(1 → 4)[α-l-Fucp-(1 → 3)]-β-d-GlcpNAc, were obtained for 85% H2O/15% (CD3)2CO solutions. The OH-4 signal of Galp in Lewis X and OH-3, OH-4 signals of Galp, and OH-2 signal of Fucp linked to Galp in Lewis Y had chemical shifts which indicate reduced hydration due to their proximity to the hydrophobic face of the Fucp unit linked to GlcpNAc. The inter-residue NOEs involving the exchangeable NH and OH protons confirmed the stacking interaction between the Fucp linked to the GlcpNAc and the Galp residues in Lewis X and Lewis Y.  相似文献   

16.
Possible conformations of lacto-N-tetraose, lacto-N-neotetraose, related disaccharides, and other milk oligosaccharides have been studied by an energy-minimization procedure using empirical potential functions. Lacto-N-tetraose favors a “curved” conformation, while lacto-N-neotetraose favors an approximately “straight” conformation. These two conformations differ mainly in the position of the terminal galactose residue with respect to the rest of the molecule. This difference explains the greater strength of lacto-N-neotetraose compared with lacto-N-tetraose in its ability to inhibit the cross-reaction of blood group P1 fractions with Type XIV pneumococcal antipolysaccharide. Although the favored conformation of lacto-N-tetraose (inactive) agrees with the model proposed by the earlier workers, that for lacto-N-neotetraose (active) differs. The favored conformations for the disaccharides galactose-β(1-4)-N-acetylglucosamine, galactose-β(1-3)-N-acetylglucosamine, and lactose are similar in overall shape, differing only in the nature and orientation of the side groups. This explains their nearly equal inhibitory activity. These theoretical models also explain the increased activity of lacto-N-fucopentaose I over that of lacto-N-tetraose and the relative activities of the substituted lactoses. The present studies suggest that it is the overall shape of the molecule which is important for activity, rather than the terminal β(1-4)-linked galactose residue alone.  相似文献   

17.
The use of the indirect ELISA techniques did not ensure the sharp differentiation of the antigens of the blood groups A and B on the polystyrene sorbent by means of heteroimmune sera, though such differentiation could be achieved by means of monoclonal antibodies. The test system known as "the lectin-antibody sandwich" was found to have the optimum sensitivity and specificity permitting the detection of soluble ABH antigens. This variant of ELISA permitted the detection of blood group A antigen both in native biological materials and in traces of blood and saliva, thus making it possible to carry out its quantitative determination.  相似文献   

18.
The origin of blood group ABH activity in human gastric content was investigated. Dialyzed and lyophilized samples of ten individual gastric secretions were assayed for ABH antigen under various conditions. The native activity persisted in delipidated residue of the respective secretions, but was completely missing in the lipid extracts of the analyzed samples. The alkaline degradation of the native and delipidated samples led to total loss of blood group activity of the analyzed materials, but no effect on A-active glycosphingolipid was evolved. Purified glycolipid portion of the lipid extract was lacking ABH activity and was shown to have distinct composition. This fraction contained only glyceroglucolipids and neither sphingosine nor other carbohydrates were present. On the basis of blood group activity assays of the native, delipidated, alkaline degraded samples and also on glycolipid analysis it was established that the ABH blood group activity of stomach secretion originated entirely from the glycoprotein portion of these samples.  相似文献   

19.
Using indirect immunofluorescence (IFL) on viable human thyroid cultures, it has been shown that, although adult follicular cells do not express blood group ABH antigens in vivo, they invariably reexpress the corresponding antigens on the cell surface when cultured in monolayers, even for very short periods. The absence of blood group antigens on noncultured thyroid cells was confirmed by negative IFL on cell suspensions obtained after enzymatic digestion of the glands, whereas these antigens were readily demonstrable on cell suspensions obtained by trypsinization of established monolayers. The quantitative expression of ABH antigens on individual thyroid cells was variable and the cell-surface IFL pattern due to binding of blood group isoantibodies was different from that given by organ-specific thyroid autoantibodies on viable cultures. Reexpression of blood group antigens by cultured thyroid cells could not be related to the secretor status of the donors, the presence of a particular source of serum in the culture medium or cell division in vitro. After 2-3 wk in culture, thyroid cells became morphologically dedifferentiated and no longer displayed blood group antigens, though they still expressed cell- surface beta 2-microglobulin. Fibroblasts present in the primary thyroid cultures were invariably negative for ABH antigens. These results demonstrate that the surface antigenic repertoire of cultured human cells is not necessarily identical to that present on the same cells in vivo. Furthermore, the possibility that blood group natural isoantibodies bind to the cell surface must be taken into account in experiments in which cultured thyroid cells are exposed to human sera.  相似文献   

20.
Z Y Yan  C A Bush 《Biopolymers》1990,29(4-5):799-811
Molecular dynamics simulations were carried out without explicit consideration of solvent to explore the conformational mobility of blood group A and H oligosaccharides. The potential energy force field of Rasmussen and co-workers was used with the CHARMM program on a number of disaccharide and trisaccharide models composed of fucose, galactose, glucose, N-acetyl glucosamine, and N-acetyl galactosamine chosen to represent various fragments of blood group oligosaccharides. In agreement with results of earlier studies, stable chair conformations were found for each pyranoside from which no transitions were detected in simulations as long as 800 ps. Exocyclic dihedral angles, including that of C5-C6, generally show numerous transitions on a time scale of approximately 5-30 ps. The dihedral angles of some but not all glycosidic linkages of blood group oligosaccharides show transitions on the time scale of 30-50 ps, implying that the extent of internal motion in blood group oligosaccharides depends strongly on linkage stereochemistry. For certain blood group A and H oligosaccharides that show limited internal motion in these simulations, we argue that the calculations are consistent with our previous analysis of 1H nuclear Overhauser enhancement (NOE) data that imply single conformations over a wide range of temperature and solvent conditions. While the trajectories are consistent with 13C T1 values that have been interpreted as indicating rigid conformations, measurements of 13C-NOE and T1 as a function of magnetic field strength are proposed as an improved method for experimental detection of the internal motion that is suggested for certain oligosaccharides in these simulations. The results of these simulations differ substantially from those of peptides of a similar molecular weight in that the oligosaccharides show much less internal motion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号