首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The role of endogenous auxin in root initiation   总被引:10,自引:0,他引:10  
This paper describes the process of the formation of adventitious roots. There appears to be good agreement that this consists of four stages, defifferentiation coupled with the formation of a meristematic locus, cell division to form a radially symmetrical cluster of cells, further divisions coupled with organisation into a bilaterally symmetrical meristem and finally growth of cells in the basal part of the meristem which causes its protursion through the epidermis. Evidence for the involvement of auxins in these various stages is reviewed and the extent to which rooting of easy- and hard-to-root species can be accounted for in terms of auxin content discussed. Peaks of IAA occur soon after excision of cuttings in some species and there is some evidence suggesting that this is correlated with changes in peroxidase activity. The possible involvement of cytokinins with auxins is briefly considered.  相似文献   

2.
Previous data have suggested an involvement of MDR/PGP-like ABC transporters in transport of the plant hormone auxin and, recently, AtPGP1 has been demonstrated to catalyze the primary active export of auxin. Here we show that related isoform AtPGP4 is expressed predominantly during early root development. AtPGP4 loss-of-function plants reveal enhanced lateral root initiation and root hair lengths both known to be under the control of auxin. Further, atpgp4 plants show altered sensitivities toward auxin and the auxin transport inhibitor, NPA. Finally, mutant roots reveal elevated free auxin levels and reduced auxin transport capacities. These results together with yeast growth assays suggest a direct involvement of AtPGP4 in auxin transport processes controlling lateral root and root hair development.  相似文献   

3.
Na X  Hu Y  Yue K  Lu H  Jia P  Wang H  Wang X  Bi Y 《Journal of plant physiology》2011,168(11):1149-1156
Plant development displays an exceptional plasticity and adaptability that involves the dynamic, asymmetric distribution of the phytohormone auxin. Polar auxin flow, which requires transport facilitators of the PIN family, largely contributes to the establishment and maintenance of auxin gradients and mediates multiple developmental processes. Here, we report the effects of narciclasine (NCS), an Amaryllidaceae alkaloid isolated from Narcissus tazetta bulbs, on postembryonic development of Arabidopsis roots. Arabidopsis seedlings grown on NCS showed defects in root gravitropism which correlates with a reduction in auxin transport in roots. Expressions of auxin transport genes were affected and the polar localization of PIN2 protein was altered under NCS treatment. Taken together, we propose that NCS modulates auxin transport gene expression and PIN2 localization, and thus affects auxin transport and auxin distribution necessary for postembryonic development of Arabidopsis roots.  相似文献   

4.

Background

Leucine-rich-repeat receptor-like kinases (LRR-RLKs) represent the largest subfamily of putative RLKs in plants. Although several members in this subfamily have been identified, the studies about the relationships between LRR-RLKs and root development are still few. We previously identified a novel LRR-RLK in rice roots, and named it OsRPK1.

Methods

In this study, we first detected OsRPK1 kinase activity in vitro, and assessed its expression profile. We then investigated its biological function using transgenic rice plants over- and under-expressing OsRPK1.

Results

The OsRPK1 gene, which encodes a Ca2 +-independent Ser/Thr kinase, was predominantly expressed in root tips, leaf blades, and undifferentiated suspension cells, and was markedly induced by treatment with auxin or ABA. Knockdown of OsRPK1 promoted the growth of transgenic rice plants, and increased plant height and tiller numbers. In contrast, over-expressing plants showed undeveloped adventitious roots, lateral roots, and a reduced root apical meristem. OsRPK1 over-expression also inhibited the expression of most auxin efflux carrier OsPIN genes, which was accompanied by changes in PAT and endogenous free IAA distribution in the leaves and roots.

Conclusions

The data indicated that OsRPK1, a novel leucine-rich-repeat receptor-like kinase, affects the root system architecture by negatively regulating polar auxin transport in rice.

General significance

This study demonstrated a common regulatory pathway of root system development in higher plants, which might be initiated by external stimuli via upstream receptor-like kinases and downstream carriers for polar auxin transport.  相似文献   

5.
We present the three-dimensional structure of the N-terminal FK506-binding protein (FKBP)-like domain of the immunophilin FKBP42 from Arabidopsis thaliana. The data provide the structural background for the explanation of key functional properties reported previously.  相似文献   

6.
This paper is the second part of a review which considers evidence for the involvement of auxin in root initiation. Part II examines the research being carried out with transformed plant tissues. Agrobacterium rhizogenes causes abundant root initiation at the site of inoculation. Ri plasmid T-DNA contains several genes which encode enzymes involved in the biosynthesis and metabolism of indole-3-acetic acid. Transfer of various fragments of the Ri plasmid has also been reported to confer increased sensitivity to auxin upon plant cells. Controlled expression of these genes in the plant genome potentially offer an insight for developmental plant physiologists into the role of plant growth substances in the process of root initiation. The importance of absolute levels of IAA in the stimulation of root initiation is discussed.  相似文献   

7.
A comparison of rooting ability of stem cuttings made from hypocotyls and epicotyls from 50-day-old seedlings of loblolly pine ( Pinus taeda L. ) reveals a dramatic decline by epicotyl cuttings, which do not root at all in 20–30 days in the presence or absence of auxin. In contrast, almost all the hypocotyls root during this time, but only in the presence of exogenously applied auxin. The failure of epicotyls to root does not appear to be due to differences in [14C]-labeled auxin uptake, transport, metabolism, or tissue distribution in the two types of cuttings. At the cellular level, initial responses to auxin, such as differentiation of the cambium into parenchyma, occur in both types of cuttings, but localized rapid cell division and root meristem organization are not observed in epicotyls. Autoradiography revealed that radioactivity from a -naphthalene acetic acid is bound in the cortex but not concentrated at sites of root meristem organization prior to the organization of the meristem in hypocotys. During the development of the epicotyl. cellular competence to form roots appears to be lost. Although this loss in competence is not associated with a concurrent loss in ability to transport auxin polarly, the latter process appears to play a key role in rooting other than to move auxin to the site of root formation. The phytotropin N-(1-naphthyl)phthalamic acid inhibits rooting if applied during the first 3 days after the cutting is made, but does not affect auxin concentration or metabolism at the rooting site.  相似文献   

8.
Current hypotheses concerning the role of polar auxin transport in embryo development are entirely based on studies of angiosperms, while little is known about how auxin regulates pattern formation in gymnosperms. In this study, different developmental stages of somatic embryos of Norway spruce (Picea abies) were treated with the polar auxin transport inhibitor 1-N-naphtylphthalamic acid (NPA). Effects of the treatments on auxin content, embryo differentiation and programmed cell death (PCD) were analysed. During early embryo development, NPA-treatment led to increased indole-3-acetic acid (IAA) content, abnormal cell divisions and decreased PCD, resulting in aberrant development of embryonal tube cells and suspensors. Mature embryos that had been treated with NPA showed both apical and basal abnormalities. Typically the embryos had abnormal cotyledon formation and irregular cell divisions in the area of the root meristem. Our results show that polar auxin transport is essential for the correct patterning of both apical and basal parts of conifer embryos throughout the whole developmental process. Furthermore, the aberrant morhologies of NPA-treated spruce embryos are comparable with several auxin response and transport mutants in Arabidopsis. This suggests that the role of polar auxin transport is conserved between angiosperms and gymnosperms.  相似文献   

9.
The process of physiological ageing in woody plants is a very important factor influencing adventitious rooting. However, there is a lack of knowledge of biochemical backgrounds triggering ageing and consequently, rhizogenesis. Experiments with Prunus subhirtella ‘Autumnalis’ leafy cuttings of three different physiological ages (adult (over 40-year-old stock plants), semi-adult (5-year-old cutting plants) and juvenile (5-year-old in vitro plants)) were conducted in 2009. Half of the cuttings were banded ca. 3 cm above the bottom of the cutting with aluminum wire prior to insertion into the substrate to block the polar auxin transport. IBA, which was exogenously applied to the cuttings, could only be detected in the base of the cuttings on the first day after severance. Juvenile cuttings tended to have the highest values, but the effect was age specific. Later, the detection was not possible, regardless of the age. The IAA profile in cutting bases was similar for all physiological ages, reaching the peak on the first day after severance. Juvenile cuttings, in which the stems had been banded before insertion, contained more IAA in their bases on day 1 compared to the stems, which were not banded. These cuttings presumably transported absorbed auxin mainly via phloem, and not via mass flow like semi-adult and adult cuttings, where IAA concentrations were similar or even greater in non-banded cuttings compared to banded ones. These cuttings also tended to exhibit the best rooting results. The IAA-Asp accumulation was especially strong in adult cuttings, which contained significantly more aspartate on the first and third days after severance when compared with semi-adult and juvenile cuttings.  相似文献   

10.
By being sessile, plants have evolved a remarkable capacity to perceive and respond to changes in environmental conditions throughout their life cycle. Light represents probably the most important environmental factor that impinge on plant development because, other than supplying the energy source for photosynthesis, it also provides seasonal and positional information that are essential for the plant survival and fitness. Changes in the light environment can dramatically alter plant morphogenesis, especially during the early phases of plant life, and a compelling amount of evidence indicates that light-mediated changes in auxin homeostasis are central in these processes. Auxin exerts its morphogenetic action through instructive hormone gradients that drive developmental programs of plants. Such gradients are formed and maintained via an accurate control on directional auxin transport. This review summarizes the recent advances in understanding the influence of the light environment on polar auxin transport.  相似文献   

11.
The vein networks of plant leaves are among the most spectacular expressions of biological pattern, and the principles controlling their formation have continually inspired artists and scientists. Control of vein patterning by the polar, cell-to-cell transport of the plant signaling molecule auxin—mediated in Arabidopsis primarily by the plasma-membrane-localized PIN1—has long been known. By contrast, the existence of intracellular auxin transport and its contribution to vein patterning are recent discoveries. The endoplasmic-reticulum-localized PIN5, PIN6, and PIN8 of Arabidopsis define an intracellular auxin-transport pathway whose functions in vein patterning overlap with those of PIN1-mediated intercellular auxin transport. The genetic interaction between the components of the intracellular auxin-transport pathway is far from having been resolved. The study of vein patterning provides experimental access to gain such a resolution—a resolution that in turn holds the promise to improve our understanding of one of the most fascinating examples of biological pattern formation.  相似文献   

12.
Auxin: regulation, action, and interaction   总被引:48,自引:0,他引:48  
  相似文献   

13.
14.
Correlatively inhibited pea shoots (Pisum sativum L.) did not transport apically applied 14C-labelled indol-3yl-acetic acid ([14C]IAA), and polar IAA transport did not occur in internodal segments cut from these shoots. Polar transport in shoots and segments recovered within 24 h of removing the dominant shoot apex. Decapitation of growing shoots also resulted in the loss of polar transport in segments from internodes subtending the apex. This loss was prevented by apical applications of unlabelled IAA, or by low temperatures (approx. 2° C) after decapitation. Rates of net uptake of [14C]IAA by 2-mm segments cut from subordinate or decapitated shoots were the same as those in segments cut from dominant or growing shoots. In both cases net uptake was stimulated to the same extent by competing unlabelled IAA and by N-1-naphthylphthalamic acid. Uptake of the pH probe [14C]-5,5-dimethyloxazolidine-2,4-dione from unbuffered solutions was the same in segments from both types of shoot. Patterns of [14C]IAA metabolism in shoots in which polar transport had ceased were the same as those in shoots capable of polar transport. The reversible loss of polar IAA transport in these systems, therefore, was not the result of loss or inactivation of specific IAA efflux carriers, loss of ability of cells to maintain transmembrane pH gradients, or the result of a change in IAA metabolism. Furthermore, in tissues incapable of polar transport, no evidence was found for the occurrence of inhibitors of IAA uptake or efflux. Evidence is cited to support the possibility that the reversible loss of polar auxin transport is the result of a gradual randomization of effluxcarrier distribution in the plasma membrane following withdrawal of an apical auxin supply and that the recovery of polar transport involves reestablishment of effluxcarrier asymmetry under the influence of vectorial gradients in auxin concentration.Abbreviations DMO 5,5-dimethyloxazolidine-2,4-dione - IAA indol-3yl-acetic acid - NPA N-1-naphthylphthalamic acid - TIBA 2,3,5-triiodobenzoic acid This work was supported by grant no. GR/D/08760 from the U.K. Science and Engineering Research Council. We thank Mrs. R.P. Bell for technical assistance.  相似文献   

15.
We report a new method for histochemical localization of cytokinins (CKs) in plant tissues based on bromophenol blue/silver nitrate staining. The method was validated by immunohistochemistry using anti-trans-zeatin riboside antibody. Indole-3-acetic acid (auxin, IAA) was localized by anti-IAA antibody in plant tissues as a proof for IAA histolocalization. We used root sections, because they are major sites of CKs synthesis, and insect galls of Piptadenia gonoacantha that accumulate IAA. Immunostaining confirmed the presence of zeatin and sites of accumulation of IAA indicated by histochemistry. The colors developed by histochemical reactions in free-hand sections of plant tissues were similar to those obtained by thin layer chromatography (TLC), which reinforced the reactive sites of zeatin. The histochemical method for detecting CKs is useful for galls and roots, whereas IAA detection is more efficient for gall tissues. Therefore, galls constitute a useful model for validating histochemical techniques due to their rapid cell cycles and relatively high accumulation of plant hormones.  相似文献   

16.
Nanocarriers for encapsulation and sustained release of agrochemicals such as auxins have emerged as an attractive strategy to provide enhanced bioavailability and efficacy for improved crop yields and nutrition quality. Here, a comparative study was conducted on the effectiveness of chitosan-as a biopolymeric nanocarrier- and silver-as a metallic nanocarrier- on in vitro adventitious rooting potential of microcuttings in apple rootstocks, for the first time. Auxins indole-3-acetic acid (IAA) and indole-3-butyric acid (IBA) loaded silver (nAg) or chitosan nanoparticles (nChi) were synthesized. Scanning electron microscopy and transmission electron microscopy studies showed the spherical shape of the nanoparticles. The average particle size of IAA-nChi was 167.5 ± 0.1 nm while that of IBA-nChi was 123.2 ± 2.6 nm. The hydrodynamic diameter of the nAg-IAA and nAg-IBA particles were measured as 93.66 ± 5 nm and 71.41 ± 3 nm, respectively. Fourier transform infrared spectroscopy analyses confirmed the encapsulation of IAA or IBA in the chitosan nanoparticles. Meanwhile, the characteristic peaks of IAA or IBA were detected on silver nanoparticles. In-vitro adventitious rooting of microcuttings of Malling Merton 106 (MM 106) was significantly higher both in chitosan and silver nanoparticles loaded with IAA or IBA (91.7%–62.5%) compared to free IAA or IBA applications (50.0%–33.3%), except for 2.0 mg L–1 IBA (66.7%). However, the application of 2 mg L–1 IBA and IBA-nChi at all concentrations caused an undesirable large callus development.  相似文献   

17.
Mary Jo Vesper  Carol L. Kuss 《Planta》1990,182(4):486-491
To locate functionally the primary site of auxin action in growing cells, the pool of auxin relevant to induction of growth in maize (Zea mays L.) coleoptile sections was determined. A positive correlation was consistently noted between growth and intracellular levels of indole-3-acetic acid (IAA), i.e. growth appears to be relatively independent of the external level of IAA. N-1-Naphthylphthalamic acid (NPA), a potent inhibitor of auxin transport, was used to enhance accumulation of IAA in coleoptile cells. From the use of NPA, it is shown that: 1) increasing the accumulation of IAA in cells, while the external concentration is held constant, resulted in a concomitant increase in growth, and 2) blocking the exit of IAA from cells with NPA sustained an IAA-induced growth response in the absence of externally applied IAA. Furthermore, the absence of any alterations in auxin binding to microsomal fractions by NPA indicates that the action of NPA in causing enhancement of auxin-induced growth is based upon its inhibition of efflux of IAA from the cells. This research was supported by National Science Foundation grant No. DMB 8515925. The careful assistance of Laurie Brulport is gratefully acknowledged.  相似文献   

18.
FKBP42 is a membrane-anchored immunophilin playing a critical role in morphogenesis and development of higher plants. We present the X-ray structure of the cytoplasmic portion of FKBP42 comprising both the FKBP-like domain and the TPR domain at 2.85 A resolution. The data shed light on the probable binding modes of key interaction partners, including HSP90 and two classes of ABC transporters. The resulting models provide a structural background for further investigation of the unique biological properties of this protein.  相似文献   

19.
Auxin and its homeostasis play key roles in many aspects of plant growth and development. Cadmium (Cd) is a phytotoxic heavy metal and its inhibitory effects on plant growth and development have been extensively studied. However, the underlying molecular mechanism of the effects of Cd stress on auxin homeostasis is still unclear. In the present study, we found that the root elongation, shoot weight, hypocotyl length and chlorophyll content in wild-type (WT) Arabidopsis seedlings were significantly reduced after exposure to Cd stress. However, the lateral root (LR) formation was markedly promoted by Cd stress. The level and distribution of auxin were both greatly altered in primary root tips and cotyledons of Cd-treated plants. The results also showed that after Cd treatment, the IAA content was significantly decreased, which was accompanied by increases in the activity of the IAA oxidase and alteration in the expression of several putative auxin biosynthetic and catabolic genes. Application of the auxin transport inhibitor, 1-naphthylphthalamic acid (NPA) and 1-naphthoxyacetic acid (1-NOA), reversed the effects of Cd on LR formation. Additionally, there was less promotion of LR formation by Cd treatment in aux1-7 and pin2 mutants than that in the WT. Meanwhile, Cd stress also altered the expression of PINs and AUX1 in Arabidopsis roots, implying that the auxin transport pathway is required for Cd-modulated LR development. Taken together, these findings suggest that Cd stress disturbs auxin homeostasis through affecting auxin level, distribution, metabolism, and transport in Arabidopsis seedling.  相似文献   

20.
Starch phosphorylase was purified from either freshly harvested or stored roots of sweet potato (.Ipomoea batatas (L.) Lam. cv Tain on 65). Both enzyme preparations in their native state showed on polyacrylamide gel electrophoresis a cluster of about six closely located activity bands, which had common antigenic determinants as they were simultaneously probed by monoclonal antibodies. The molecules of enzymes from stored roots were smaller than those from fresh roots. However, the two enzyme preparations had completely fused precipitin lines in double diffusion assays with an antiserum raised against the fresh root preparation. One large subunit and several small ones were found for both enzyme preparations. The small subunits appeared to be the degradation products of the large ones as revealed by peptide mapping and immunoblotting. Immunofluorescence microscopy showed that the enzyme was present in the amyloplasts and cell walls of root storage parenchyma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号