首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The neuroprotective properties of bis(7)-tacrine, a novel dimeric acetylcholinesterase (AChE) inhibitor, on glutamate-induced excitotoxicity were investigated in primary cultured cerebellar granule neurons (CGNs). Exposure of CGNs to 75 mum glutamate resulted in neuronal apoptosis as demonstrated by Hoechst staining, TUNEL, and DNA fragmentation assays. The bis(7)-tacrine treatment (0.01-1 mum) on CGNs markedly reduced glutamate-induced apoptosis in dose- and time-dependent manners. However, donepezil and other AChE inhibitors, even at concentrations of inhibiting AChE to the similar extents as 1 mum bis(7)-tacrine, failed to prevent glutamate-induced excitotoxicity in CGNs; moreover, both atropine and dihydro-beta-erythroidine, the cholinoreceptor antagonists, did not affect the anti-apoptotic properties of bis(7)-tacrine, suggesting that the neuroprotection of bis(7)-tacrine appears to be independent of inhibiting AChE and cholinergic transmission. In addition, ERK1/2 and p38 pathways, downstream signals of N-methyl-d-aspartate (NMDA) receptors, were rapidly activated after the exposure of glutamate to CGNs. Bis(7)-tacrine inhibited the apoptosis and the activation of these two signals with the same efficacy as the coapplication of PD98059 and SB203580. Furthermore, using fluorescence Ca(2+) imaging, patch clamp, and receptor-ligand binding techniques, bis(7)-tacrine was found effectively to buffer the intracellular Ca(2+) increase triggered by glutamate, to reduce NMDA-activated currents and to compete with [(3)H]MK-801 with an IC(50) value of 0.763 mum in rat cerebellar cortex membranes. These findings strongly suggest that bis(7)-tacrine prevents glutamate-induced neuronal apoptosis through directly blocking NMDA receptors at the MK-801-binding site, which offers a new and clinically significant modality as to how the agent exerts neuroprotective effects.  相似文献   

2.
K R Gee  L Niu  K Schaper  V Jayaraman  G P Hess 《Biochemistry》1999,38(10):3140-3147
The amino acid L-glutamate is a major neurotransmitter at excitatory synapses within the central nervous system. Neuronal responses to glutamate are mediated by at least three receptor types, one of which is the NMDA subtype, named for its specific ligand N-methyl-D-aspartic acid. Neurotransmitter receptors are transmembrane proteins that can form ion channels upon binding a specific ligand and are involved in many physiological activities of the brain and in some neurological disorders. Elucidating the mechanisms of the formation of transmembrane receptor-channels and of receptor regulation and inhibition is necessary for understanding nervous system function and for designing potential therapeutic agents. This has been hampered by the lack of rapid reaction techniques suitable for investigating protein-mediated reactions on cell surfaces. Recently a laser-pulse photolysis technique was developed to study the chemical reactions of channel-forming receptor proteins in the microsecond-to-millisecond time region. To apply the technique to NMDA1 receptors a photolabile NMDA precursor (beta-DNB NMDA) was synthesized. In this precursor the side chain carboxylate was protected as a photosensitive 2,2'-dinitrobenzhydryl ester. Photolysis with 308 nm laser light generated free NMDA with a time constant of 4.2 +/- 0.1 microseconds at pH 7 and a photolysis quantum yield of 0.18 +/- 0.05. In rat hippocampal neurons the beta-DNB NMDA (250 microM) neither activated endogenously expressed receptors nor potentiated or inhibited the NMDA response. Equilibration of hippocampal neurons in the whole-cell current recording mode with 250 microM caged precursor followed by a pulse of 333 nm laser light resulted in a rapid current rise with a rate constant of 100 s-1 due to opening of NMDA-activated receptor-channels. The caged NMDA precursor described here now makes it possible to investigate the mechanism of NMDA receptors in the micro- to millisecond time region.  相似文献   

3.
Three major subtypes of glutamate receptors that are coupled to cation channels--N-methyl-D-aspartate (NMDA), kainate, and alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA) receptors--are known as ionotropic receptors in the mammalian CNS. Recently, an additional subtype that is coupled to GTP binding proteins and stimulates (or inhibits) metabolism of phosphoinositides has been proposed as a metabotropic receptor. Incubation of dispersed hippocampal cells from adult rats with glutamate or NMDA decreased forskolin-stimulated cyclic AMP (cAMP) accumulation; half-maximal effects were obtained with 5.6 +/- 2.2 and 6.4 +/- 2.3 microM, respectively. Kainate and quisqualate were less potent. The effect of glutamate was antagonized by 2,3-diaminopropionate and 2-amino-5-phosphonovalerate, NMDA/glutamate receptor antagonists, but not by 0.5 microM Joro spider toxin, a specific blocker of the AMPA receptor. The inhibitory effect of glutamate on cAMP formation was not blocked by 2 microM tetrodotoxin or by the absence of Ca2+. In hippocampal membranes, glutamate, similar to carbachol, inhibited adenylate cyclase activity in a GTP-dependent manner. These findings suggest that the glutamate inhibition of adenylate cyclase is direct and is not due to a result of the release of other neurotransmitters. The effect of glutamate on cAMP accumulation was observed in an assay medium containing 0.7 mM MgCl2, which is known to inhibit both ionotropic NMDA receptor/channels in the hippocampus and metabotropic NMDA receptors in the cerebellum. The inhibitory effect of glutamate was abolished by pertussis toxin treatment.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
The effects of magnesium on the inhibition of phosphoinositide (PI) hydrolysis and the stimulation of [3H]norepinephrine release by N-methyl-D-aspartate (NMDA) in rat cortical slices were investigated. Removal of the magnesium from the buffer resulted in a small reduction of the inhibitory effect of 100 microM NMDA (34% inhibition in the absence of magnesium, compared with 51% for the control) when slices were coincubated with NMDA and carbachol. Addition of 10 mM Mg2+ also allowed the inhibitory effect of 100 microM NMDA on carbachol-stimulated PI hydrolysis to be expressed (44% inhibition) under these conditions. Concentration-effect curve analysis for the NMDA-induced inhibition of carbachol-stimulated PI hydrolysis indicated that the IC50 for NMDA was decreased from 14.9 microM for the control to 4.2 microM in the absence of magnesium. The absence of magnesium also had small effects on the concentration-effect curve for (+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine hydrogen maleate reversal of the inhibitory effects of NMDA on carbachol-stimulated PI hydrolysis. The absence of magnesium also shifted slightly downward and flattened the NMDA concentration-effect curve if the cortical slices were pretreated with NMDA in the presence or absence of magnesium followed by removal of the NMDA and subsequent stimulation with carbachol. In contrast, cortical slices that had been prepared and treated similarly to the slices used in the PI experiments were very sensitive to the inhibitory effects of magnesium when using the NMDA stimulation of [3H]norepinephrine release assay in the presence or absence of carbachol.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
Fu H  Li W  Liu Y  Lao Y  Liu W  Chen C  Yu H  Lee NT  Chang DC  Li P  Pang Y  Tsim KW  Li M  Han Y 《Journal of proteome research》2007,6(7):2435-2446
Increasing evidence supports that the mitochondrial dysfunction, mainly caused by abnormal changes in mitochondrial proteins, plays a pivotal role in glutamate-induced excitotoxicity, which is closely associated with the pathogenesis of acute and chronic neurodegenerative disorders, such as stroke and Alzheimer's disease. In this study, post-treatment of cerebellar granule neurons with bis(7)-tacrine significantly reversed declines in mitochondrial membrane potential, ATP production, and neuronal cell death induced by glutamate. Moreover, this reversal was independent of NMDA antagonism, acetylcholinesterase inhibition, and cholinergic pathways. Using two-dimensional differential in-gel electrophoresis, we conducted a comparative analysis of mitochondrial protein patterns. In all, 29 proteins exhibiting significant differences in their abundances were identified in the glutamate-treated group when compared with the control. The expression patterns in 22 out of these proteins could be reversed by post-treatment with bis(7)-tacrine. Most of the differentially expressed proteins are involved in energy metabolism, oxidative stress, and apoptosis. In particular, the altered patterns of four of these proteins were further validated by Western blot analysis. Our findings suggest that multiple signaling pathways initiated by the altered mitochondrial proteins may mediate glutamate-induced excitotoxicity and also offer potentially useful intracellular targets for the neuroprotection provided by bis(7)-tacrine.  相似文献   

6.
Uncompetitive N-methyl-d-aspartate (NMDA) receptor antagonists with fast off-rate (UFO) may represent promising drug candidates for various neurodegenerative disorders. In this study, we report that bis(propyl)-cognitin, a novel dimeric acetylcholinesterase inhibitor and γ-aminobutyric acid subtype A receptor antagonist, is such an antagonist of NMDA receptors. In cultured rat hippocampal neurons, we demonstrated that bis(propyl)-cognitin voltage-dependently, selectively, and moderately inhibited NMDA-activated currents. The inhibitory effects of bis(propyl)-cognitin increased with the rise in NMDA and glycine concentrations. Kinetics analysis showed that the inhibition was of fast onset and offset with an off-rate time constant of 1.9 s. Molecular docking simulations showed moderate hydrophobic interaction between bis(propyl)-cognitin and the MK-801 binding region in the ion channel pore of the NMDA receptor. Bis(propyl)-cognitin was further found to compete with [3H]MK-801 with a Ki value of 0.27 μm, and the mutation of NR1(N616R) significantly reduced its inhibitory potency. Under glutamate-mediated pathological conditions, bis(propyl)-cognitin, in contrast to bis(heptyl)-cognitin, prevented excitotoxicity with increasing effectiveness against escalating levels of glutamate and much more effectively protected against middle cerebral artery occlusion-induced brain damage than did memantine. More interestingly, under NMDA receptor-mediated physiological conditions, bis(propyl)-cognitin enhanced long-term potentiation in hippocampal slices, whereas MK-801 reduced and memantine did not alter this process. These results suggest that bis(propyl)-cognitin is a UFO antagonist of NMDA receptors with moderate affinity, which may provide a pathologically activated therapy for various neurodegenerative disorders associated with NMDA receptor dysregulation.  相似文献   

7.
The retinal ischemia–reperfusion model has been studied extensively and is an ideal animal model for studying clinical situations such as acute glaucoma and optic neuropathy. Our previous reports showed that bis(7)-tacrine had neuroprotective effects against glutamate-induced retinal ganglion cells damage through the drug’s anti-NMDA receptor effects. Here, we investigated whether bis(7)-tacrine protects the retina from ischemic injury in a rat model. Retinal ischemia was induced by raising the intraocular pressure to 120 mmHg for 90 min. Rats received intraperitoneal injections of 0.2 mg/kg bis(7)-tacrine or saline at 30 min before ischemia, and then twice a day after retinal ischemia. Morphometric evaluation showed that bis(7)-tacrine dramatically reduced the retinal damage compared with the control group. Moreover, bis(7)-tacrine suppressed ischemia-induced reductions in a- and b-wave amplitudes of electroretinography. Protein levels of p53, the tumor suppressor gene known to induce apoptosis, were increased after ischemic injury, and treatment with bis(7)-tacrine reduced the expression of the protein. Our results suggest that bis(7)-tacrine has a neuroprotective effect against ischemic injury in the rat retina, possibly through the drug’s anti-apoptotic effects. Bis(7)-tacrine may potentially be useful as a therapeutic drug in the management of ischemic retinal diseases.  相似文献   

8.
In the present investigation the interaction of a novel selective NMDA receptors agonist, N-phthalamoyl-L-glutamic acid (PhGA), with the synaptic membranes preparation of human hippocampus was examined against NMDA. It was established that there are two binding sites of 3H-L-Glu, Kd1 = 0.35 +/- 0.11 nM, Bmax1 = 6.5 +/- 2.3 pmol/mg and Kd2 = 51 +/- 12 nM, Bmax2 = 98 +/- 17 pmol/mg. The inhibition constants (Ki) were calculated for NMDA and PhGA and were equal: Ki(NMDA) = 19 microM, Ki (PhGA) = 13 microM, respectively. It was concluded that PhGA is the partial agonist of the NMDA receptors.  相似文献   

9.
Fu H  Li W  Lao Y  Luo J  Lee NT  Kan KK  Tsang HW  Tsim KW  Pang Y  Li Z  Chang DC  Li M  Han Y 《Journal of neurochemistry》2006,98(5):1400-1410
Beta amyloid protein (Abeta) and acetylcholinesterase (AChE) have been shown to be closely implicated in the pathogenesis of Alzheimer's disease. In the current study, we investigated the effects of bis(7)-tacrine, a novel dimeric AChE inhibitor, on Abeta-induced neurotoxicity in primary cortical neurons. Bis(7)-tacrine, but not other AChE inhibitors, elicited a marked reduction of both fibrillar and soluble oligomeric forms of Abeta-induced apoptosis as evidenced by chromatin condensation and DNA specific fragmentation. Both nicotinic and muscarinic receptor antagonists failed to block the effects of bis(7)-tacrine. Instead, nimodipine, a blocker of L-type voltage-dependent Ca2+ channels (VDCCs), attenuated Abeta neurotoxicity, whereas N-, P/Q- or R-type VDCCs blockers and ionotropic glutamate receptor antagonists did not. Fluorescence Ca2+ imaging assay revealed that, similar to nimodipine, bis(7)-tacrine reversed Abeta-triggered intracellular Ca2+ increase, which was mainly contributed by the extracellular Ca2+ instead of endoplasmic reticulum and mitochondria Ca2+. Concurrently, using whole cell patch-clamping technique, it was found that bis(7)-tacrine significantly reduced the augmentation of high voltage-activated inward calcium currents induced by Abeta. These results suggest that bis(7)-tacrine attenuates Abeta-induced neuronal apoptosis by regulating L-type VDCCs, offers a novel modality as to how the agent exerts neuroprotective effects.  相似文献   

10.
A S Ramoa  E X Albuquerque 《FEBS letters》1988,235(1-2):156-162
Phencyclidine (PCP) is a dissociative anesthetic agent which blocks the excitatory effect of N-methyl-D-aspartate (NMDA) in the central nervous system. To investigate the role of the PCP reactive site in the control of NMDA activation of hippocampal pyramidal cells, we have examined the action of PCP and some of its analogues on the response properties of single NMDA receptors. Application of NMDA (5-15 microM) to outside-out patches of membrane elicited bursts of ion channel openings which were greatly reduced in frequency and duration in the presence of PCP (2.5-10 microM) or m-amino-PCP (2.5-10 microM), a behaviorally active derivative of PCP. These effects of PCP were reversed when the membrane potential was shifted from negative to positive values. Application of the behaviorally inactive agent 1-piperidino-cyclohexanecarbonitrile (greater than or equal to 220 microM) left NMDA-activated currents relatively unaltered. Treatment with another analogue, m-nitro-PCP (5-20 microM), resulted in an unexpected increase in frequency of openings. At a higher concentration (100-300 microM), however, m-nitro-PCP acted like PCP in reducing frequency of opening and channel life-time. Like PCP, these effects of m-nitro-PCP were reversed at positive potentials. Taken together, these results suggest that PCP and its derivatives block the open state of the NMDA channel. Moreover, the dual effect of m-nitro-PCP shows that excitability is not necessarily decreased by PCP analogues but may instead be enhanced depending on modifications of the PCP molecule.  相似文献   

11.
The regulation of α-, β-, (BACE-1), and γ-secretase activities to alter β-amyloid (Aβ) generation is considered to be one of the most promising disease-modifying therapeutics for Alzheimer’s disease. In this study, the effect and mechanisms of bis(7)-tacrine (a promising anti-Alzheimer’s dimer) on Aβ generation were investigated. Bis(7)-tacrine (0.1-3 μM) substantially reduced the amounts of both secreted and intracellular Aβ in Neuro2a APPswe cells without altering the expression of APP. sAPPα and CTFα increased, while sAPPβ and CTFβ decreased significantly in Neuro2a APPswe cells following the treatment with bis(7)-tacrine, indicating that bis(7)-tacrine might activate α-secretase and/or inhibit BACE-1 activity. Furthermore, bis(7)-tacrine concentration-dependently inhibited BACE-1 activity in cultured cells, and also in recombinant human BACE-1 in a non-competitive manner with an IC50 of 7.5 μM, but did not directly affect activities of BACE-2, Cathepsin D, α- or γ-secretase. Taken together, our results not only suggest that bis(7)-tacrine may reduce the biosynthesis of Aβ mainly by directly inhibiting BACE-1 activity, but also provide new insights into the rational design of novel anti-Alzheimer’s dimers that might have disease-modifying properties.  相似文献   

12.
Flavonoids and isoflavonoids are potent inhibitors of glucose efflux in human erythrocytes. Net changes of sugars inside the cells were measured by right angle light scattering. The inhibitory potency of hydroxylated flavonoids depends on the pH of the medium. The apparent affinity is maximal at low pH where the molecule is in the undissociated form. The following K(i)-values at pH 6.5 in microM have been obtained: phloretin 0.37+/-0.03, myricetin 0.76+/-0.42, quercetin 0.93+/-0.28, kaempferol 1.33+/-0.17, isoliquiritigenin 1.96, genistein 3.92+/-0.62, naringenin 8.88+/-1.88, 7-hydroxyflavone 17.58+/-3.15 and daidzein 18.62+/-2.85. Flavonoids carrying hydroxyl groups are weak acids and are deprotonated at high pH-values. From spectral changes pK-values between 6.80 (naringenin) and 7.73 (myricetin) have been calculated. No such pK-value could be obtained from quercetin which was rather unstable at alkaline pH. Flavone itself without a hydroxyl group does not demonstrate any absorbance changes at different pH-values and no significant change in inhibition of glucose transport with pH (K(i)-value around 35 microM). In this respect it is similar to the antiestrogens diethylstilbestrol, tamoxifen and cyclofenil with K(i)-values for glucose efflux inhibition of 2.61+/-0.30, 6.75+/-2.03 and 3.97+/-0.54 microM. Except for phloretin, the flavonoids investigated have planar structures. The inhibitory activity in glucose efflux of planar flavonoids increases exponentially with the number of hydroxyl groups in the molecule.  相似文献   

13.
We investigated inhibition of the N-methyl-D-aspartic acid (NMDA) receptor-channel complex by N-ethyl-1,4,9, 9alpha-tetrahydro-4alphaR-cis-4alphaH-fluoren-++ +4alpha-amine (NEFA), a structural analog of phencyclidine (PCP). Using the whole-cell recording technique, we demonstrated that NEFA inhibits NMDA responses with an IC50 of 0.51 microM at -66 mV. We determined that NEFA binds to the open channel, and subsequently the channel can close and trap the blocker. Once the channel has closed, NEFA is unable to dissociate until the channel reopens. Single-channel recordings revealed that NEFA reduces the mean open time of single NMDA-activated channels in a concentration-dependent manner with a forward blocking rate (k+) of 39.9 microM-1 s-1. A computational model of antagonism by NEFA was developed and constrained using kinetic measurements of single-channel data. By multiple criteria, only models in which blocker binding in the channel causes a change in receptor operation adequately fit or predicted whole-cell data. By comparing model predictions and experimental measurements of NEFA action at a high NMDA concentration, we determined that NEFA affects receptor operation through an influence on channel gating. We conclude that inhibition of NMDA receptors by PCP-like blockers involves a modification of channel gating as well as block of current flow through the open channel.  相似文献   

14.
N-Methyl-d-aspartate (NMDA)-activated glutamate receptors are expressed in lymphocytes, but their roles have not yet been defined. We show that incubation of human peripheral blood lymphocytes with NMDA resulted in increased intracellular calcium and reactive oxygen species (ROS) levels through effects on NMDA-activated glutamate receptors. In terms of ROS production, T cells were most affected, followed by NK cells, whereas B cell ROS levels were not increased. In unstimulated T and NK cells, interferon-gamma (IFN-gamma) production was unaffected by NMDA, whereas interleukin-2 stimulation of IFN-gamma production was significantly suppressed by NMDA. Simultaneous incubation of the cells with NMDA and IL-2 resulted in a dramatic increase in the amount of cells expressing the NR1 subunit of the NMDA-activated receptors. We conclude that NMDA-activated glutamate receptor activation, accompanied by the changes in intracellular calcium and ROS levels, may be involved in the modification of immune functions of human T and NK cells.  相似文献   

15.
Prenatal exposure to diazepam (DZ), a positive allosteric modulator of the gamma-aminobutyric acid(A) (GABA(A)) receptor complex, exerts profound effects that become more evident during puberty and in many cases are sex-specific, suggesting that such exposure interferes with the activity of steroid hormones. Apart from their well known effects on the genome, the reduced metabolites of many steroid hormones also interact directly with membrane receptors, including those for N-methyl-D-aspartate (NMDA). In this study, we compared the effects of several neurosteroids on NMDA receptors from normal rats and those exposed in utero to DZ (1.25mg/kg per day) from the 14th through the 20th day of gestation.In superfused rat hippocampal synaptosomes, activation of the NMDA receptor stimulates the basal release of [3H]noradrenaline ([3H]NA), which was used in our study as an index of receptor function. [3H]NA release was evoked in a concentration-dependent manner by NMDA (100 microM) plus glycine (GLY). The maximal increase (68.23+/-3.86%) with respect to basal release was achieved with a GLY concentration of 10 microM, and the EC(50) for GLY was 0.1 microM. Release stimulated by 100 microM NMDA + 0.1 microM GLY was not modified by any of the neurosteroids tested, with the exception of pregnenolone sulfate (PREG-S), which produced a 78.57+/-3.94% reduction in release at the maximal concentration used (0.3 microM). In synaptosomes from animals exposed in utero to DZ, the inhibitory effect of PREG-S was reduced by 46.55+/-2.33%.Given the important roles played by NMDA receptors in physiological and pathological processes within the central nervous system (CNS), characterization of NMDA receptor modulation is an important objective. The fact that this modulation can be altered by exposure in utero to DZ indicates that the behavioral abnormalities observed in exposed animals might be partially attributed to an altered sensitivity of NMDA receptors to the modulatory effects of neurosteroids.  相似文献   

16.
F A Rassendren  P Lory  J P Pin  J Nargeot 《Neuron》1990,4(5):733-740
Pharmacological characterization of Zn2+ effects on glutamate ionotropic receptors was investigated in Xenopus oocytes injected with rat brain mRNA, using a double microelectrode, voltage-clamp technique. At low concentration, Zn2+ inhibited NMDA currents (IC50 = 42.9 +/- 1.3 microM) and potentiated both AMPA (EC50 = 30.0 +/- 1.2 microM) and desensitized kainate responses (EC50 = 13.0 +/- 0.1 microM). At higher concentrations, Zn2+ inhibited non-NMDA responses with IC50 values of 1.3 +/- 0.1 mM and 1.2 +/- 0.3 mM for AMPA and kainate, respectively. The potentiation of AMPA or quisqualate currents by Zn2+ was more than 2-fold, whereas that of the kainate current was only close to 30%. This potentiating effect of Zn2+ on AMPA current modified neither the affinity of the agonist for its site nor the current-voltage relationship. In addition, 500 microM Zn2+ differentially affected NMDA and non-NMDA components of the glutamate-induced response. The possible physiological relevance of Zn2+ modulation is discussed.  相似文献   

17.
Chang HR  Kuo CC 《Biophysical journal》2007,93(6):1981-1992
Felbamate (FBM) is a potent nonsedative anticonvulsant whose clinical effect is chiefly related to gating modification (and thus use-dependent inhibition) rather than pore block of N-methyl-D-aspartate (NMDA) channels at pH 7.4. Using whole-cell recording in rat hippocampal neurons, we examined the effect of extracellular pH on FBM action. In sharp contrast to the findings at pH 7.4, the inhibitory effect of FBM on NMDA currents shows much weakened use-dependence at pH 8.4. Moreover, FBM neither accelerates the activation kinetics of the NMDA channel, nor enhances the currents elicited by very low concentrations of NMDA at pH 8.4. These differential effects of FBM between pH 7.4 and 8.4 are abolished in the mutant NMDA channels which lack proton sensitivity. Most interestingly, the inhibitory effect of FBM becomes flow-dependent and is evidently stronger in inward than in outward NMDA currents at pH 8.4. These findings indicate that FBM has a significantly more manifest pore-blocking effect on the NMDA channel at pH 8.4 than at pH 7.4. FBM therefore acts as an opportunistic pore blocker modulated by extracellular proton, suggesting that the FBM binding site is located at the junction of a widened and a narrow part of the ion conduction pathway. Also, we find that the inhibitory effect of FBM on NMDA currents is antagonized by external but not internal Na+, and that increase of external Na+ decreases the binding rate without altering the unbinding rate of FBM. These findings indicate that the FBM binding site faces the extracellular rather than the intracellular solution, and coincides with the outmost ionic (e.g., Na+) site in the NMDA channel pore. We conclude that the FBM binding site very likely is located in the external pore mouth, where extracellular proton, Na+, FBM, and NMDA channel gating have an orchestrating effect.  相似文献   

18.
NMDA receptors regulating hippocampal noradrenaline (NA) and striatal dopamine (DA) release have been compared using superfused synaptosomes prelabelled with the [(3)H]catecholamines. Both receptors mediated release augmentation when exposed to NMDA plus glycine. Quinolinic acid (100 microM or 1 mM) plus glycine (1 microM)-elicited [(3)H]NA, but not [(3)H]DA release. The NMDA (100 microM)-evoked release of [(3)H]NA and [(3)H]DA was similar and concentration-dependently enhanced by glycine or D-serine (0.1-1 microM); in contrast, the HIV-1 envelope protein gp120 potently (30-100 pM) enhanced the NMDA-evoked release of [(3)H]NA, but not that of [(3)H]DA. Gp120 also potentiated quinolinate-evoked [(3)H]NA release. Ifenprodil (0.1-0.5 microM) or CP-101,606 (0.1-10 microM) inhibited the NMDA plus glycine-evoked release of both [(3)H]catecholamines. Zinc (0.1-1 microM) was ineffective. Lowering external pH from 7.4 to 6.6 strongly inhibited the release of [(3)H]NA elicited by NMDA plus glycine, whereas the release of [(3)H]DA was unaffected. The protein kinase C inhibitors GF 109203X (0.1 microM) or H7 (10 microM) selectively prevented the effect of NMDA plus glycine on the release of [(3)H]NA. GF 109203X also blocked the release of [(3)H]NA induced by NMDA or quinolinate plus gp120. It is concluded that the hippocampal NMDA receptor and the striatal NMDA receptor are pharmacologically distinct native subtypes, possibly containing NR2B subunits but different splice variants of the NR1 subunit.  相似文献   

19.
In the cerebellum, infusion of NMDA (200 microM) for 20 min evoked a marked (200%) increase of extracellular cyclic GMP (cGMP) levels. The selective GABA(A) receptor agonist muscimol (0.01-100 microM) was able to counteract the NMDA effect with an EC(50) of 0.65 microM; the inhibitory effect of muscimol (10 microM) was prevented by bicuculline (50 microM). Diazepam (10 microM) significantly potentiated the muscimol (1 microM) inhibition; furthermore, when coinfused with 0.1 microM muscimol (a concentration not affecting, on its own, the cGMP response to NMDA), diazepam (10 microM) reduced the NMDA effect. Similar results were obtained with zolpidem (0.1-1 microM). Finally, local infusion of the benzodiazepine site antagonist flumazenil (10 microM), together with muscimol and diazepam, almost completely restored the effect of NMDA on extracellular cGMP levels. It is concluded that GABA(A) receptors potently control the NMDA/nitric oxide/cGMP pathway in the cerebellum in vivo. In terms of the alpha subunit composition, we can deduce that the cerebellar GABA(A) receptor does not contain alpha(6) or beta(4) subunits because it is diazepam-sensitive. Moreover, the observation that zolpidem is active at a rather low concentration, in combination with localization studies present in the literature, tend to exclude the presence of alpha(5) subunits in the receptor composition and suggest the involvement of an alpha(1) subunit.  相似文献   

20.
A whole-cell patch recording was used to determine the effects of staurosporine (ST), a potent protein kinase C (PKC) inhibitor, on L-type Ca(2+) channel (LTCC) activity in rabbit atrial myocytes. Bath application of ST (300 nM) caused a significant reduction in peak I-V relationship of LTCC (from -16.8+/-2.55 to -3.74+/-1.22pApF(-1) at 0 mV). The level of L-type Ca(2+) current (I(Ca,L)) inhibition produced by ST was independent of the voltage at which the effect was measured. ST inhibited the I(Ca,L) in a dose-dependent manner with a K(d) value of 61.98+/-6.802 nM. ST shifted the activation curve to more positive potentials, but did not have any significant effect on the voltage dependence of the inactivation curve. Other PKC inhibitors, GF 109203X (1 microM) and chelerythrine (3 microM), and PKA inhibitor, PKA-IP (5 microM), did not show any inhibitory effect on I(Ca,L). Additional application of ST in the presence of isoproterenol (1 microM), a selective beta-adrenoreceptor agonist, reduced peak I(Ca,L) (78.2%) approximately to the same level with single application of ST (77.8%). In conclusion, our results indicate that ST directly blocks the LTCC in a PKC or PKA-independent manner on LTCC and it should be taken into consideration when ST is used in functional studies of ion channel modulation by protein phosphorylation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号