首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Summary The acyl-CoA dehydrogenases are a family of mitochondrial flavoenzymes required for fatty acid beta-oxidation and branched-chain amino acid degradation. The hepatic activity of these enzymes, particularly the short-chain acyl-coenzyme A (CoA) dehydrogenase, is markedly decreased in riboflavin deficient rats. We now report that the in vivo effects of riboflavin deficiency on the beta-oxidation enzymes of this group are reproduced in FAO rat hepatoma cells cultured in riboflavin-deficient medium. Although it has been long known that hepatic short-chain acyl-CoA dehydrogenase activity is the most severely affected of the straight-chain specific enzymes in riboflavin deficiency, the mechanism by which its activity is decreased has not been reported. We have used this new cell culture system to characterize further this mechanism. Whole cell extracts from riboflavin-deficient and control cells were subjected to analysis by denaturing polyacrylamide gel electrophoresis. The contents of the gels were then electroblotted onto nitrocellulose filters and probed with short-chain acyl-CoA dehydrogenase-specific antiserum. The relative abundance of enzyme antigen was estimated autoradiographically. Our findings indicate that short-chain acyl-CoA dehydrogenase activity changes in parallel with its antigen, suggesting that riboflavin deprivation does not affect the activity of individual enzyme molecules. Further, no evidence of extramitochondrial enzyme precursor was found on the blots, making unlikely a significant block in the mitochondrial uptake process. These findings suggest that changes in short-chain acyl-CoA dehydrogenase activity in riboflavin deficiency result from either increased synthesis or decreased degradation of the enzyme. This work was supported by grants from the VA Medical Research Service, the Diabetes Association of Greater Cleveland, and the National Institutes of Health (HD25299), Bethesda, MD. Portions of the work presented here were presented at the 71st meeting of the Endocrine Society, Seattle, WA.  相似文献   

3.
Riboflavin deficiency in rats caused a decrease in the activities of hepatic succinate dehydrogenase (50 %), L-α-glycerophosphate dehydrogenase (50 %) and xanthine oxidase (70 %). It also reduced to 50 % the rate of mitochondrial oxidation of succinate, β-hydroxybutyrate, α-ketoglutarate, glutamate, pyruvate and malate without changing ADP : O ratios, thus showing that riboflavin deficiency interferes with electron transport along the respiratory chain without noticably affecting phosphorylation.  相似文献   

4.
Choline deficiency and treatment with methotrexate (MTX) both are associated with fatty infiltration of the liver. Choline, methionine, and folate metabolism are interrelated and converge at the regeneration of methionine from homocysteine. MTX perturbs folate metabolism, and it is possible that it also influences choline metabolism. We fed rats a choline deficient diet for 2 weeks and/or treated them with methotrexate (MTX; 0.1 mg/kg daily). Choline deficiency lowered hepatic concentrations of choline (to 43% control), phosphocholine (PCho; to 18% control), glycerophosphocholine (GroPCho; to 46% control), betaine (to 30% control), phosphatidylcholine (PtdCho; to 62% control), methionine (to 80% control), and S-adenosylmethionine (AdoMet; to 57% control), while S-adenosylhomocysteine (AdoHcy) and triacylglycerol concentrations increased (to 126% and 319% control, respectively). MTX treatment alone lowered hepatic concentrations of PCho (to 48% control), GroPCho (to 69% control), betaine (to 55% control), and AdoMet (to 75% control). The addition of MTX treatment to choline deficiency resulted in a larger decrease in AdoMet concentrations (to 75% control) and larger increases in AdoHcy and triacylglycerol concentrations (to 150% and 500% control, respectively) than was observed in choline deficiency alone. Livers from MTX-treated animals used radiolabeled choline to make the same metabolites as did livers from controls (most of the label was converted to PCho and betaine). In choline deficient animals, most of the labeled choline was converted to PtdCho. Therefore, MTX depleted hepatic PCho, GroPCho, and betaine by a mechanism that was different from that of choline deficiency. MTX increased the extent of fatty infiltration of the liver in choline deficient rats, and choline deficiency and MTX treatment damaged hepatocytes as measured by leakage of alanine aminotransferase activity. Our data are consistent with the hypothesis that the fatty infiltration of the liver associated with MTX treatment occurs because of a disturbance in choline metabolism.  相似文献   

5.
Rats were maintained on a riboflavin-deficient diet or on a diet containing clofibrate (0.5%, w/w). The activities of the mitochondrial FAD-dependent straight-chain acyl-CoA dehydrogenases (butyryl-CoA, octanoyl-CoA and palmitoyl-CoA) and the branched-chain acyl-CoA dehydrogenases (isovaleryl-CoA and isobutyryl-CoA) involved in the degradation of branched-chain acyl-CoA esters derived from branched-chain amino acids were assayed in liver mitochondrial extracts prepared in the absence and presence of exogenous FAD. These activities were low in livers from riboflavin-deficient rats (11, 28, 16, 6 and less than 2% of controls respectively) when prepared in the absence of exogenous FAD, and were not restored to control values when prepared in 25 microM-FAD (29, 47, 28, 7 and 17%). Clofibrate feeding increased the activities of butyryl-CoA, octanoyl-CoA and palmitoyl-CoA dehydrogenases (by 48, 116 and 98% of controls respectively), but not, by contrast, the activities of isovaleryl-CoA and isobutyryl-CoA dehydrogenases (62 and 102% of controls respectively). The mitochondrial fractions from riboflavin-deficient and from clofibrate-fed rats oxidized palmitoylcarnitine in State 3 at rates of 32 and 163% respectively of those from control rats.  相似文献   

6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
Dietary riboflavin intake of the people in Taiwan has been inadequate, while the fat intake has been increasing remarkably in recent years. Therefore, the effects of a moderate riboflavin deficiency on lipid metabolism in growing young rats fed diets containing 10, 25, or 40 percent calories of fat for 5 weeks were studied. The riboflavin deficiency status of the rats was certified by increased activity coefficients of erythrocyte glutathione reductase. Serum total lipids and cholesterol levels were significantly lower (P less than 0.05) in the medium fat-riboflavin deficient group. In the high fat-riboflavin deficient group, the growth and dietary intake were depressed and the liver weight/100 g body weight increased markedly (P less than 0.001). The liver total lipids, triglycerides, cholesterol and lipid peroxides of the high fat-riboflavin deficient group showed significant increases (P less than 0.025, P less than 0.025, P less than 0.05 and P less than 0.025 respectively), as compared with the pair-fed control groups. However, the increases were not significant in the medium fat and the low fat groups. The present study indicates that a high fat-riboflavin deficient diet would have adverse effects on lipid metabolism.  相似文献   

16.
Effects of vitamin E deficiency and its restoration on biochemical characteristics of hepatic peroxisomes were studied. Rats were maintained on the vitamin E-deficient diet for 25 weeks and then on a diet supplemented with vitamin E for 5 weeks. Blood hemolysis by hydrogen peroxide and lipid peroxidation in the liver increased markedly in vitamin E-deficient rats. The former returned to the control level after the resupplying of vitamin E, but the latter did not. Of liver peroxisomal enzymes, the activities of catalase, D-amino-acid oxidase and urate oxidase decreased in vitamin E-deficient rats. On the other hand, activities of fatty acyl-CoA oxidase and carnitine acetyltransferase increased significantly in vitamin E-deficient rats. All activities of these peroxisomal enzymes were restored to the control levels in vitamin E-supplemented rats. The activities of the mitochondrial, lysosomal and microsomal enzymes tested showed no apparent change except that the change of mitochondrial palmitoyltransferase was shown to be similar to that of peroxisomal fatty acid oxidation. These results were also supported by cell fractionation techniques. Following the methods of aqueous polymer two-phase systems, the characteristics of peroxisomal surface membranes altered in respect of their hydrophobicity, but not in respect of the surface charge of peroxisomal membranes. These results indicate that peroxisomal functions, especially those of the fatty acid oxidation system, change their activities more sensitively than other intracellular organelles in response to the condition of vitamin E deficiency.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号