首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Charcot-Marie-Tooth (CMT) disease type 1a has been previously localized to chromosome 17 using the markers D17S58 and D17S71. In that report we were unable to provide unequivocal localization of the CMT1A gene on either the proximal p or the q arm. Therefore, data from one additional CMT1A family and typing of other probes spanning the pericentromeric region of chromosome 17 (D17S73, D17S58, D17S122, D17S125, D17S124) were analyzed. Multipoint analysis demonstrates convincing evidence (log likelihood difference greater than 5) that the CMT1A gene lies within 17p11.2 and most likely between the flanking markers D17S122 and D17S124.  相似文献   

2.
Five Italian families with recurrence of cases of Charcot-Marie-Tooth disease (type Ia) were analysed using three closely linked DNA probes that detect polymorphisms in the region 17p11.2. The probe pVAW409R3 detected the presence of a duplication in all the affected subjects, but not in the subjects with normal electromyographic (EMG) findings. This observation confirms previous data indicating the association of the duplication with the disease, suggesting that, at least in populations of European origin, the duplication might be the molecular feature diagnostic of the pathological trait.  相似文献   

3.
Charcot-Marie-Tooth disease type 1a (CMT 1a) is an autosomal dominant peripheral neuropathy linked to the DNA markers D17S58 and D17S71, located in the pericentromeric region of the chromosome 17p arm. We analyzed an extended 5-generation Belgian family, multiply affected with CMT 1a, for linkage with eight chromosome 17 markers. The results indicated that the CMT 1a mutation is localized in the chromosomal region 17p11.2-p12 between the marker D17S71 and the gene for myosin heavy polypeptide 2 of adult skeletal muscle.  相似文献   

4.
DNA duplication associated with Charcot-Marie-Tooth disease type 1A.   总被引:72,自引:0,他引:72  
Charcot-Marie-tooth disease type 1A (CMT1A) was localized by genetic mapping to a 3 cM interval on human chromosome 17p. DNA markers within this interval revealed a duplication that is completely linked and associated with CMT1A. The duplication was demonstrated in affected individuals by the presence of three alleles at a highly polymorphic locus, by dosage differences at RFLP alleles, and by two-color fluorescence in situ hybridization. Pulsed-field gel electrophoresis of genomic DNA from patients of different ethnic origins showed a novel SacII fragment of 500 kb associated with CMT1A. A severely affected CMT1A offspring from a mating between two affected individuals was demonstrated to have this duplication present on each chromosome 17. We have demonstrated that failure to recognize the molecular duplication can lead to misinterpretation of marker genotypes for affected individuals, identification of false recombinants, and incorrect localization of the disease locus.  相似文献   

5.
The presence of 17p11.2 duplication in CMT 1 Italian families was studied. Fourteen families were tested with pVAW409R3a probe which detects the duplication at D17S122 locus. The duplication was found in all affected individuals, but not in the unaffected relatives and in the unrelated spouses. Also two sporadic cases were investigated: the duplication was present in both patients confirming this mutation as cause of the disease.  相似文献   

6.
Charcot-Marie-Tooth neuropathy (CMT) is one of the most common hereditary disorders, affecting 1:2500 individuals. CMT is a heterogeneous group of disorders characterized by chronic peripheral motor and sensory neuropathy. We have performed the detection of 1.5 Mb CMT1A tandem duplication in 17p11.2-12 chromosome region for autosome-dominant CMT1 patients and their relatives using the analysis of two (CA)n polymorphic microsatellite loci: 17S921 and 17S1358 localised in the duplication region. CMT1A duplication was found in three of five autosome-dominant CMT1 families. It has been shown that CMT1A duplication analysis is important for early differential diagnosis of CMT including prenatal diagnosis and genetic consulting in high risk families.  相似文献   

7.
A female patient with clinical signs and symptoms of a demyelinating neuropathy was shown to have a duplication of the 1.5-Mb region on chromosome 17p11.2, typical of the great majority of cases of Charcot-Marie-Tooth disease type 1A (CMT1A). However, analysis of DNA extracted from peripheral blood revealed a 2:2.4 instead of the usual 2:3 ratio between the 7.8- and 6.0-kb EcoRI fragments in the proximal and distal repetitive extragenic palindromic (REP) elements of CMT1A. Detection of a 3.2-kb EcoRI/SacI kb junction fragment with probe pLR7.8 confirmed the CMT1A duplication. The dosage of this junction fragment, compared with a 2.8-kb EcoRI/SacI fragment of the proximal REP elements of CMT1A, was 2:0.58 instead of the expected 2:1 dosage for heterozygous CMT1A duplications. We hypothesized that the lower dosages of these restriction fragments specific for the CMT1A duplication were due to mosaicism; this was confirmed by fluorescence in situ hybridization analysis with the D17S122-specific probe pVAW409R1. In peripheral blood lymphocytes the percentage of interphase nuclei with a duplication in 17p11.2 was 49%. In interphase nuclei extracted from buccal mucosa, hair-root cells or paraffin-embedded nervous tissue the duplication was detectable in 51%, 66% and 74%, respectively. This is the first report of mosaicism in a patient with a CMT1A duplication identified by three different and independent techniques. Received: 14 November 1995 / Revised: 13 February 1996  相似文献   

8.
9.
Two intercomplementary methods of 17p11.2 duplication/deletion identification have been elaborated: STR allelic variants analysis and direct PMP22 gene dosage measuring by means of quantitative Real-Time PCR. It has been carried out detection and analysis of 17p11.2 chromosome region rearrangements in CMT1 patients from Ukraine. It has been registered the high level of de novo cases with 17p11.2-duplication. It has been shown the 17p11.2 chromosome region duplication/deletion association with CMT1A and HNPP clinical phenotypes which may be used in differential diagnosis of this type of CMT polyneuropathy. The article is published in the original.  相似文献   

10.
Smith-Magenis syndrome (SMS) is caused by an approximately 4-Mb heterozygous interstitial deletion on chromosome 17p11.2 in approximately 80%-90% of affected patients. Three large ( approximately 200 kb), complex, and highly homologous ( approximately 98%) low-copy repeats (LCRs) are located inside or flanking the SMS common deletion. These repeats, also known as "SMS-REPs," are termed "distal," "middle," and "proximal." The directly oriented distal and proximal copies act as substrates for nonallelic homologous recombination resulting in both the deletion associated with SMS and the reciprocal duplication: dup(17)(p11.2p11.2). Using restriction enzyme cis-morphism analyses and direct sequencing, we mapped the regions of strand exchange in 16 somatic-cell hybrids that harbor only the recombinant SMS-REP. Our studies showed that the sites of crossovers were distributed throughout the region of homology between the distal and proximal SMS-REPs. However, despite approximately 170 kb of high homology, 50% of the recombinant junctions occurred in a 12.0-kb region within the KER gene clusters. DNA sequencing of this hotspot (positional preference for strand exchange) in seven recombinant SMS-REPs narrowed the crossovers to an approximately 8-kb interval. Four of them occurred in a 1,655-bp region rich in polymorphic nucleotides that could potentially reflect frequent gene conversion. For further evaluation of the strand exchange frequency in patients with SMS, novel junction fragments from the recombinant SMS-REPs were identified. As predicted by the reciprocal-recombination model, junction fragments were also identified from this hotspot region in patients with dup(17)(p11.2p11.2), documenting reciprocity of the positional preference for strand exchange. Several potential cis-acting recombination-promoting sequences were identified within the hotspot. It is interesting that we found 2.1-kb AT-rich inverted repeats flanking the proximal and middle KER gene clusters but not the distal one. The role of any or all of these in stimulating double-strand breaks around this positional recombination hotspot remains to be explored.  相似文献   

11.
Dominant intermediate Charcot-Marie-Tooth (DI-CMT) neuropathy is a genetic and phenotypic variant of classical CMT, characterized by intermediate nerve conduction velocities and histological evidence of both axonal and demyelinating features. We report two unrelated families with intermediate CMT linked to a novel locus on chromosome 1p34-p35 (DI-CMTC). The combined haplotype analysis in both families localized the DI-CMTC gene within a 6.3-cM linkage interval flanked by markers D1S2787 and D1S2830. The functional and positional candidate genes, Syndecan 3 (SDC3), and lysosomal-associated multispanning membrane protein 5 (LAPTM5) were excluded for pathogenic mutations.  相似文献   

12.
Contiguous gene syndromes (CGS) are a group of disorders associated with chromosomal rearrangements of which the phenotype is thought to result from altered copy numbers of physically linked dosage-sensitive genes. Smith-Magenis syndrome (SMS) is a CGS associated with a deletion within band p11.2 of chromosome 17. Recently, patients harboring the predicted reciprocal duplication product [dup(17)(p11.2p11.2)] have been described as having a relatively mild phenotype. By chromosomal engineering, we created rearranged chromosomes carrying the deletion [Df(11)17] or duplication [Dp(11)17] of the syntenic region on mouse chromosome 11 that spans the genomic interval commonly deleted in SMS patients. Df(11)17/+ mice exhibit craniofacial abnormalities, seizures, marked obesity, and male-specific reduced fertility. Dp(11)17/+ animals are underweight and do not have seizures, craniofacial abnormalities, or reduced fertility. Examination of Df(11)17/Dp(11)17 animals suggests that most of the observed phenotypes result from gene dosage effects. Our murine models represent a powerful tool to analyze the consequences of gene dosage imbalance in this genomic interval and to investigate the molecular genetic bases of both SMS and dup(17)(p11.2p11.2).  相似文献   

13.
Phenotypic data for 71 genetic markers for members of five Caucasian kindreds were tested for linkage with the autosomal dominant mutations causing Charcot-Marie-Tooth (hereditary motor sensory) neuropathy type I, characterized by markedly reduced nerve conduction velocities. Lod score analysis gave no evidence of linkage to the closely linked chromosome 1 loci SPTA1-FY-F5-AT3 and APOA2. In contrast, these mutations were found to map closely (zeta = 10.828, theta = 0.0) to D17S58, an anonymous segment of DNA from 17p11.2-p11.1, and thus define the CMT1A locus. Segregation information data for an inferred recombinant offspring indicated that the CMT1A locus is probably proximal to MYH2, the locus encoding adult skeletal muscle myosin heavy polypeptide 2, which maps to 17p13. Analysis of the lod scores on a per kindred basis gave no evidence of genetic heterogeneity.  相似文献   

14.
A number of common contiguous gene syndromes have been shown to result from nonallelic homologous recombination (NAHR) within region-specific low-copy repeats (LCRs). The reciprocal duplications are predicted to occur at the same frequency; however, probably because of ascertainment bias and milder phenotypes, reciprocal events have been identified in only a few cases to date. We previously described seven patients with dup(17)(p11.2p11.2), the reciprocal of the Smith-Magenis syndrome (SMS) deletion, del(17)(p11.2p11.2). In >90% of patients with SMS, identical approximately 3.7-Mb deletions in 17p11.2 have been identified. These deletions are flanked by large (approximately 200 kb), highly homologous, directly oriented LCRs (i.e., proximal and distal SMS repeats [SMS-REPs]). The third (middle) SMS-REP is inverted with respect to them and maps inside the commonly deleted genomic region. To investigate the parental origin and to determine whether the common deletion and duplication arise by unequal crossovers mediated through NAHR between the proximal and distal SMS-REPs, we analyzed the haplotypes of 14 families with SMS and six families with dup(17)(p11.2p11.2), using microsatellite markers directly flanking the SMS common deletion breakpoints. Our data indicate that reciprocal deletion and duplication of 17p11.2 result from unequal meiotic crossovers. These rearrangements occur via both interchromosomal and intrachromosomal exchange events between the proximal and distal SMS-REPs, and there appears to be no parental-origin bias associated with common SMS deletions and the reciprocal duplications.  相似文献   

15.
16.
Sequences related to the neurofibromatosis type 1 (NF1) gene have been identified on several human chromosomes. In the centromeric region of chromosomes 14 and 15, two NF1 pseudogenes have been described. Sequence comparison between NF1-related exons amplified from two yeast artificial chromosome clones hybridizing to chromosomal region 15q11.2 and published NF1-related sequences localized at 15q11.2 suggested that a third NF1 pseudogene resides in this chromosomal region. The previous localization of an NF1-related locus to the telomeric part of chromosome 15 could not be confirmed by us. Our findings further support pericentromeric spreading of partial NF1 gene copies at chromosome 15q11.2 during evolution. Received: 27 January 1996 / Accepted: 26 May 1997  相似文献   

17.
Smith-Magenis syndrome (SMS) and duplication 17p11.2 (dup17p11.2) syndrome are multiple congenital anomalies/mental retardation disorders resulting from either a deletion or duplication of the 17p11.2 region, respectively. The retinoic acid induced 1 (RAI1) gene is the causative gene for SMS and is included in the 17p11.2 region of dup17p11.2 syndrome. Currently SMS and dup17p11.2 syndrome are diagnosed using a combination of clinically recognized phenotypes and molecular cytogenetic analyses such as fluorescent in situ hybridization (FISH). However, these methods have proven to be highly expensive, time consuming, and dependent upon the low resolving capabilities of the assay. To address the need for improved diagnostic methods for SMS and dup17p11.2 syndrome, we designed a quantitative real-time PCR (Q-PCR) assay that measures RAI1 copy number using the comparative C(t) method, DeltaDeltaC(t). We tested our assay with samples blinded to their previous SMS or dup17p11.2 syndrome status. In all cases, we were able to determine RAI1 copy number status and render a correct diagnosis accordingly. We validated these results by both FISH and multiplex ligation-dependent probe amplification (MLPA). We conclude that Q-PCR is an accurate, reproducible, low-cost, and reliable assay that can be employed for routine use in SMS and dup17p11.2 diagnosis.  相似文献   

18.
Both J  Wu T  Bras J  Schaap GR  Baas F  Hulsebos TJ 《PloS one》2012,7(1):e30907
Osteosarcoma is the most common primary malignancy of bone. The tumours are characterized by high genomic instability, including the occurrence of multiple regions of amplifications and deletions. Chromosome region 17p11.2-p12 is amplified in about 25% of cases. In previous studies, COPS3 and PMP22 have been identified as candidate oncogenes in this region. Considering the complexity and variation of the amplification profiles for this segment, the involvement of additional causative oncogenes is to be expected. The aim of the present investigation is to identify novel candidate oncogenes in 17p11.2-p12. We selected 26 of in total 85 osteosarcoma samples (31%) with amplification events in 17p11.2-p12, using quantitative PCR for 8 marker genes. These were subjected to high-resolution SNP array analysis and subsequent GISTIC analysis to identify the most significantly amplified regions. Two major amplification peaks were found in the 17p11.2-p12 region. Overexpression as a consequence of gene amplification is a major mechanism for oncogene activation in tumours. Therefore, to identify the causative oncogenes, we next determined expression levels of all genes within the two segments using expression array data that could be generated for 20 of the selected samples. We identified 11 genes that were overexpressed through amplification in at least 50% of cases. Nine of these, c17orf39, RICH2, c17orf45, TOP3A, COPS3, SHMT1, PRPSAP2, PMP22, and RASD1, demonstrated a significant association between copy number and expression level. We conclude that these genes, including COPS3 and PMP22, are candidate oncogenes in 17p11.2-p12 of importance in osteosarcoma tumourigenesis.  相似文献   

19.
We report the isolation of a new marker (S6.1) from band p11.2 of human chromosome 17 by differential Alu-polymerase chain reaction (Alu-PCR) of both a monochromosomal hybrid retaining a single human chromosome 17 and a hybrid retaining a del(17)(p11.2p11.2) in addition to other human chromosomes. The method is based on the preferential PCR amplification of human DNA in rodent/human hybrids when primers specific to the human Alu repeat element are used. MspI and SstI RFLPs associated with S6.1 were identified and used in linkage analysis of both a previously reported and a newly identified French-Acadian kindred segregating autosomal dominant Charcot-Marie-Tooth disease (CMT). A cumulative peak lod score of 3.41 at a peak recombination fraction of .12 indicates that this marker is linked to the CMT 1A locus but is at a distance from the disease gene. Thus, the marker S6.1 will be useful in further delineating the candidate region for the CMT gene when its location with respect to pA10-41 and 1516, two other markers from 17p11.2 which have previously demonstrated close linkage to the CMT locus, has been determined.  相似文献   

20.
Modi WS 《Genomics》2004,83(4):735-738
Sixteen CC chemokine genes localize to a 2.06-Mb interval at 17q11.2-q12 on genomic contig NT_010799.13. Four of these genes comprise two closely related paralogous pairs: CCL3-CCL3L1 and CCL4-CCL4L1. Members within each pair share 95% sequence identity at both the genomic and the amino acid levels. One BAC clone (AC131056.5) on the contig with substantial internal sequence duplication contains two complete copies of CCL3L1 and CCL4L1 and one truncated copy of CCL3L1, while a partially overlapping clone (AC003976.1) contains one copy each of CCL3 and CCL4. Dot-matrix comparison of the regions of AC131056.5 with those of AC003976.1 containing the four genes reveals 90% sequence similarity over 37 kb. These observations support the idea that the multiple copies of CCL3L1 and CCL4L1 present in a single diploid genome are the result of segmental duplication.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号