首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 425 毫秒
1.
In the animal kingdom the enzymes that catalyze the formation of alpha1,4 fucosylated-glycoconjugates are known only in apes (chimpanzee) and humans. They are encoded by FUT3 and FUT5 genes, two members of the Lewis FUT5-FUT3-FUT6 gene cluster, which had originated by duplications of an alpha3 ancestor gene. In order to explore more precisely the emergence of the alpha1,4 fucosylation, new Lewis-like fucosyltransferase genes were studied in species belonging to the three main primate groups. Two Lewis-like genes were found in brown and ruffed lemurs (prosimians) as well as in squirrel monkey (New World monkey). In the latter, one gene encodes an enzyme which transfers fucose only in alpha1,3 linkage, whereas the other is a pseudogene. Three genes homologous to chimpanzee and human Lewis genes were identified in rhesus macaque (Old World monkey), and only one encodes an alpha3/4-fucosyltransferase. The ability of new primate enzymes to transfer fucose in alpha1,3 or alpha1,3/4 linkage confirms that the amino acid R or W in the acceptor-binding motif "HH(R/W)(D/E)" is required for the type 1/type 2 acceptor specificity. Expression of rhesus macaque genes proved that fucose transfer in alpha1,4 linkage is not restricted to the hominoid family and may be extended to other Old World monkeys. Moreover, the presence of only one enzyme supporting the alpha1,4 fucosylation in rhesus macaque versus two enzymes in hominoids suggests that this function occurred twice independently during primate evolution.  相似文献   

2.
Alignment of 15 vertebrate alpha1,3-fucosyltransferases revealed one arginine conserved in all the enzymes employing exclusively type 2 acceptor substrates. At the equivalent position, a tryptophan was found in FUT3-encoded Lewis alpha1,3/1,4-fucosyltransferase (Fuc-TIII) and FUT5-encoded alpha1,3/1,4-fucosyltransferase, the only fucosyltransferases that can also transfer fucose in alpha1, 4-linkage. The single amino acid substitution Trp111 --> Arg in Fuc-TIII was sufficient to change the specificity of fucose transfer from H-type 1 to H-type 2 acceptors. The additional mutation of Asp112 --> Glu increased the type 2 activity of the double mutant Fuc-TIII enzyme, but the single substitution of the acidic residue Asp112 in Fuc-TIII by Glu decreased the activity of the enzyme and did not interfere with H-type 1/H-type 2 specificity. In contrast, substitution of Arg115 in bovine futb-encoded alpha1, 3-fucosyltransferase (Fuc-Tb) by Trp generated a protein unable to transfer fucose either on H-type 1 or H-type 2 acceptors. However, the double mutation Arg115 --> Trp/Glu116 --> Asp of Fuc-Tb slightly increased H-type 1 activity. The acidic residue adjacent to the candidate amino acid Trp/Arg seems to modulate the relative type 1/type 2 acceptor specificity, and its presence is necessary for enzyme activity since its substitution by the corresponding amide inactivated both Fuc-TIII and Fuc-Tb enzymes.  相似文献   

3.
The alpha1,3/4 fucosyltransferase (FucT) enzyme from Helicobacter pylori catalyzes fucose transfer from donor GDP-beta-l-fucose to the GlcNAc group of two series of acceptor substrates in H. pylori lipopolysaccharide: betaGal1,3betaGlcNAc (Type I) or betaGal1,4betaGlcNAc (Type II). Fucose is added either in alpha1,3 linkage of Type II acceptor to produce Lewis X or in alpha1,4 linkage of Type I acceptor to produce Lewis A, respectively. H. pylori FucTs from different strains have distinct Type I or Type II substrate specificities. FucT in H. pylori strain NCTC11639 has an exclusive alpha1,3 activity because it recognizes only Type II substrates, whereas FucT in H. pylori strain UA948 can utilize both Type II and Type I acceptors; thus it has both alpha1,3 and alpha1,4 activity, respectively. To identify elements conferring substrate specificity, 12 chimeric FucTs were constructed by domain swapping between 11639FucT and UA948FucT and characterized for their ability to transfer fucose to Type I and Type II acceptors. Our results indicate that the C-terminal region of H. pylori FucTs controls Type I and Type II acceptor specificity. In particular, the highly divergent C-terminal portion, seven amino acids DNPFIFC at positions 347-353 in 11639FucT, and the corresponding 10 amino acids CNDAHYSALH at positions 345-354 in UA948FucT, controls the Type I and Type II acceptor recognition. This is the opposite of mammalian FucTs where acceptor preference is determined primarily by the N-terminal residues in the hypervariable stem domain.  相似文献   

4.
5.
Li M  Liu XW  Shao J  Shen J  Jia Q  Yi W  Song JK  Woodward R  Chow CS  Wang PG 《Biochemistry》2008,47(1):378-387
The wbsJ gene from Escherichia coli O128:B12 encodes an alpha1,2-fucosyltransferase responsible for adding a fucose onto the galactose residue of the O-antigen repeating unit via an alpha1,2 linkage. The wbsJ gene was overexpressed in E. coli BL21 (DE3) as a fusion protein with glutathione S-transferase (GST) at its N-terminus. GST-WbsJ fusion protein was purified to homogeneity via GST affinity chromatography followed by size exclusion chromatography. The enzyme showed broad acceptor specificity with Galbeta1,3GalNAc (T antigen), Galbeta1,4Man and Galbeta1,4Glc (lactose) being better acceptors than Galbeta-O-Me and galactose. Galbeta1,4Fru (lactulose), a natural sugar, was furthermore found to be the best acceptor for GST-WbsJ with a reaction rate four times faster than that of lactose. Kinetic studies showed that GST-WbsJ has a higher affinity for lactose than lactulose with apparent Km values of 7.81 mM and 13.26 mM, respectively. However, the kcat/appKm value of lactose (6.36 M(-1) x min(-1)) is two times lower than that of lactulose (13.39 M(-1) x min(-1)). In addition, the alpha1,2-fucosyltransferase activity of GST-WbsJ was found to be independent of divalent metal ions such as Mn2+ or Mg2+. This activity was competitively inhibited by GDP with a Ki value of 1.41 mM. Site-directed mutagenesis and a GDP-bead binding assay were also performed to investigate the functions of the highly conserved motif H152xR154R155xD157. In contrast to alpha1,6-fucosyltransferases, none of the mutants of WbsJ within this motif exhibited a complete loss of enzyme activity. However, residues R154 and D157 were found to play critical roles in donor binding and enzyme activity. The results suggest that the common motif shared by both alpha1,2-fucosyltransferases and alpha1,6-fucosyltransferases have similar functions. Enzymatic synthesis of fucosylated sugars in milligram scale was successfully performed using Galbeta-O-Me and Galbeta1,4Glcbeta-N3 as acceptors.  相似文献   

6.
To investigate the synthesis of alpha2-fucosylated epitopes in the bovine species, we have characterized cDNAs from various tissues. We found three distinct alpha2-fucosyltransferase genes, named bovine fut1, fut2, and sec1 which are homologous to human FUT1, FUT2, and Sec1 genes, respectively. Their open reading frames (ORF) encode polypeptides of 360 (bovine H), 344 (bovine Se), and 368 (bovine Sec1) amino acids, respectively. These enzymes transfer fucose in alpha1,2 linkage to ganglioside GM(1)and galacto- N -biose, but not to the phenyl-beta-D-galactoside, type 1 or type 2 acceptors, suggesting that their substrate specificity is different and more restricted than the other cloned mammalian alpha2-fucosyltransferases. Southern blot analyses detected four related alpha2-fucosyltransferase sequences in the bovine genome while only three have been described in other species. The supernumerary entity seems to be related to the alpha2-fucosyltransferase activity which can also use type 1 and phenyl-beta-D-galactoside substrate acceptors. It was exclusively found in bovine intestinal tract. Our results show that, at least in one mammalian species, four alpha2-fucosyltransferases are present, three adding a fucose on alpha1,2 linkage on type 3/4 acceptor (Galbeta1-3GalNAc) and another able to transfer also fucose on phenyl-beta-D-galactoside and type 1 (Galbeta1-3GlcNAc) acceptors. The phylogenetic tree of the enzymes homologous to those encoded by the bovine fut1, fut2, and sec1 genes revealed two main families, one containing all the H-like proteins and the second containing all the Se-like and Sec1-like proteins. The Sec1-like family had a higher evolutionary rate than the Se-like family.  相似文献   

7.
Several N-acetyllactosamine (LacNAc) derivatives were tested as acceptors for alpha 1,3-L-fucosyltransferase present in human ovarian cancer sera and ovarian tumor. The enzyme of the soluble fraction of tumor was purified to apparent homogeneity by chromatography on bovine IgG glycopeptide-Sepharose followed by Sephacryl S-200 (M(r) < 67,000). As compared with 2'-methyl LacNAc, 3'-sulfo LacNAc was about 5-fold more sensitive in measuring alpha 1,3-fucosyltransferase in sera (Km, 3'-sulfo LacNAc, 0.12 mM; 2'-methyl LacNAc, 6.67 mM). When ovarian cancer serum was the enzyme source, either the sulfate group or a sialyl moiety at C-3' of LacNAc enhanced the acceptor ability (341 and 242%, respectively), whereas the sulfate group at C-2' or C-6' reduced the activity (22-36%); sulfate at C-6 or fucose at C-2' increased the activity (172 and 253%). The beta-benzylation of the reducing end, in general, increased the activity 2-3-fold. The enzyme of the soluble fraction of tumor exhibited more activity toward 3'-sulfo LacNAc (447%), 2'-fucosyl-LacNAc (436%), and 6-sulfo LacNAc (272%). Very low activity was observed with 3'-sialyl LacNAc (12.4%), 2'-sulfo LacNAc (33%), and 6'-sulfo LacNAc (5%); Fuc alpha 1,2Gal beta 1,3GlcNAc beta-O-p-nitrophenyl (166%), 2-methyl Gal beta 1,3GlcNAc beta-O-benzyl (204%), and 3-sulfo Gal beta 1,3GlcNAc (415%) also acted as acceptors, indicating the coexistence of alpha 1,3- and alpha 1,4-fucosyltransferase. The tumor particulate enzyme behaved entirely different, exhibiting low activity with 3'-sulfo LacNAc (39%) and 2'-fucosyl-LacNAc (148%); 3'-sialyl, 6'-sulfo, 6-sulfo, or 2'-sulfo LacNAc were 3, 43, 53, and 10% active, respectively. Thus, the ovarian cancer serum alpha 1,3-fucosyltransferase acts equally well on H-type 2,3'-sialyl LacNAc and 3'-sulfo LacNAc, but not on H-type 1. The enzyme of soluble tumor fraction acts on H-type 2,3'-sulfo LacNAc as well as H-type 1 but poorly on 3'-sialyl LacNAc. The tumor particulate enzyme acts on H-type 2 but poorly on 3'-sulfo or 3'-sialyl LacNAc and is inactive with H-type 1. When normal serum was examined with synthetic acceptors, > 80% activity was found as alpha 1,2-fucosyltransferase and the rest as alpha 1,3-fucosyltransferase. A screening of 21 ovarian cancer and 3 normal sera (3'-sulfo LacNAc as acceptor) showed 17-572% increase (average increase, 188%) of alpha 1,3-fucosyltransferase activity in cancer.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

8.
Alpha1-->3/4fucosyltransferases (FucTs) from several species contain a highly conserved His-His motif adjacent to an enzyme region correlating with the ability to catalyze fucose transfer to type 1 chain acceptors. Site-directed mutagenesis has been employed to analyze structure-function relationships of this His-His motif in human FucT-IV. The results indicate that most changes of His(113) and His(114) and nearby residues of FucT-IV reduced the specific activity of the enzymes. Analysis of acceptor properties demonstrated close similarity of most mutants with wild-type FucT-IV, whereas an apparent preference for the H-type II acceptor was observed for the His(114) mutants. Kinetic studies demonstrated that mutants of His(114) had a substantially increased K(m) for acceptor compared to other enzymes tested. The dramatic increase in acceptor K(m) for the His(114) mutants, particularly for the nonfucosylated acceptor, suggests that this His-His motif is involved in acceptor binding and perhaps interacts with GlcNAc residues of type 2 acceptors. The presence of fucose in acceptor substrates may promote more efficient substrate binding and presumably partially overcomes the weaker interaction with GlcNAc caused by the mutation.  相似文献   

9.
Based on PCR strategies and expression studies, we define the genomic organization of the FUT8b gene. This gene encodes the only known mammalian enzyme transferring fucose in an alpha1-->6 linkage on the asparagine-branched GlcNAc residue of the chitobiose unit of complex N:-glycans. The intron/exon organization of the bovine coding sequence determines five successive functional domains. The first exon encodes a domain homologous to cytoskeleton proteins, the second presents a proline-rich region including a motif XPXPPYXP similar to the peptide ligand of the SH3-domain proteins, the third encodes a gyrase-like domain (an enzyme which can bind nucleotides), and the fourth encodes a peptide sequence homologous to the catalytic domain of proteins transferring sugars. Finally, the last exon encodes a domain homologous to the SH3 conserved motif of the SH2-SH3 protein family. This organization suggests that intramolecular interactions might give a tulip-shaped scaffolding, including the catalytic pocket of the enzyme in the Golgi lumen. Deduced from the published sequence of chromosome 14 (AL109847), the human gene organization of FUT8 seems to be similar to that of bovine FUT8b, although the exon partition is more pronounced (bovine exons 1 and 2 correspond to human exons 1-6). The mosaicism and phylogenetic positions of the alpha6-fucosyltransferase genes are compared with those of other fucosyltransferase genes.  相似文献   

10.
Ihara H  Ikeda Y  Taniguchi N 《Glycobiology》2006,16(4):333-342
FUT8, mammalian 1,6-fucosyltransferase, catalyzes the transferof a fucose residue from the donor substrate, guanosine 5'-diphosphate(GDP)-ß-L-fucose, to the reducing terminal GlcNAcof the core structure of asparagine-linked oligosaccharide viaan 1,6-linkage. FUT8 is a typical type II membrane protein,which is localized in the Golgi apparatus. We have previouslyshown that two neighboring arginine residues that are conservedamong 1,2-, 1,6-, and protein O-fucosyltransferases play animportant role in donor substrate binding. However, detailsof the catalytic and reaction mechanisms and the ternary structureof FUT8 are not understood except for the substrate specificityof the acceptor. To develop a better understanding of FUT8,we established a large-scale production system for recombinanthuman FUT8, in which the enzyme is produced in soluble formby baculovirus-infected insect cells. Kinetic analyses and inhibitionstudies using derivatives of GDP-ß-L-fucose revealedthat FUT8 catalyzes the reaction which depends on a rapid equilibriumrandom mechanism and strongly recognizes the base portion anddiphosphoryl group of GDP-ß-L-fucose. These resultsmay also be applicable to other fucosyltransferases and glycosyltransferases.  相似文献   

11.
Sialyl Lewis A (SLe(a)), Lewis A (Le(a)), and Lewis B (Le(b)) have been studied in many different biological contexts, for example in microbial adhesion and cancer. Their biosynthesis is complex and involves beta1,3-galactosyltransferases (beta3Gal-Ts) and a combined action of alpha2- and/or alpha4-fucosyltransferases (Fuc-Ts). Further, O-glycans with different core structures have been identified, and the ability of beta3Gal-Ts and Fuc-Ts to use these as substrates has not been resolved. Therefore, to examine the in vivo specificity of enzymes involved in SLe(a), Le(a), and Le(b) synthesis, we have transiently transfected CHO-K1 cells with relevant human glycosyltransferases and, on secreted reporter proteins, detected the resulting Lewis antigens on N- and O-linked glycans using western blotting and Le-specific antibodies. beta3Gal-T1, -T2, and -T5 could synthesize type 1 chains on N-linked glycans, but only beta3Gal-T5 worked on O-linked glycans. The latter enzyme could use both core 2 and core 3 precursor structures. Furthermore, the specificity of FUT5 and FUT3 in Le(a) and Le(b) synthesis was different, with FUT5 fucosylating H type 1 only on core 2, but FUT3 fucosylating H type 1 much more efficient on core 3 than on core 2. Finally, FUT1 and FUT2 were both found to direct alpha2-fucosylation on type 1 chains on both N- and O-linked structures. This knowledge enables us to engineer recombinant glycoproteins with glycan- and core chain-specific Lewis antigen substitution. Such tools will be important for investigations on the fine carbohydrate specificity of Le(b)-binding lectins, such as Helicobacter pylori adhesins and DC-SIGN, and may also prove useful as therapeutics.  相似文献   

12.
Our work with almond peptide N-glycosidase A made us interested also in the alpha1,3/4-fucosidase which is used as a specific reagent for glycoconjugate analysis. The enzyme was purified to presumed homogeneity by a series of chromatographic steps including dye affinity and fast-performance anion exchange chromatography. The 63 kDa band was analyzed by tandem mass spectrometry which yielded several partial sequences. A homology search retrieved the hypothetical protein Q8GW72 from Arabidopsis thaliana. This protein has recently been described as being specific for alpha1,2-linkages. However, cDNA cloning and expression in Pichia pastoris of the A. thaliana fucosidase showed that it hydrolyzed fucose in 3- and 4-linkage to GlcNAc in Lewis determinants whereas neither 2-linked fucose nor fucose in 3-linkage to the innermost GlcNAc residue were attacked. This first cloning of a plant alpha1,3/4-fucosidase also confirmed the identity of the purified almond enzyme and thus settles the notorious uncertainty about its molecular mass. The alpha1,3/4-fucosidase from Arabidopsis exhibited striking sequence similarity with an enzyme of similar substrate specificity from Streptomyces sp. (Q9Z4I9) and with putative proteins from rice.  相似文献   

13.
Mammalian alpha1,6-fucosyltransferase (FUT8) catalyses the transfer of a fucose residue from a donor substrate, guanosine 5'-diphosphate-beta-L-fucose to the reducing terminal N-acetylglucosamine (GlcNAc) of the core structure of an asparagine-linked oligosaccharide. Alpha1,6-fucosylation, also referred to as core fucosylation, plays an essential role in various pathophysiological events. Our group reported that FUT8 null mice showed severe growth retardation and emphysema-like lung-destruction as a result of the dysfunction of epidermal growth factor and transforming growth factor-beta receptors. To elucidate the molecular basis of FUT8 with respect to pathophysiology, the crystal structure of human FUT8 was determined at 2.6 A resolution. The overall structure of FUT8 was found to consist of three domains: an N-terminal coiled-coil domain, a catalytic domain, and a C-terminal SH3 domain. The catalytic region appears to be similar to GT-B glycosyltransferases rather than GT-A. The C-terminal part of the catalytic domain of FUT8 includes a Rossmann fold with three regions that are conserved in alpha1,6-, alpha1,2-, and protein O-fucosyltransferases. The SH3 domain of FUT8 is similar to other SH3 domain-containing proteins, although the significance of this domain remains to be elucidated. The present findings of FUT8 suggest that the conserved residues in the three conserved regions participate in the Rossmann fold and act as the donor binding site, or in catalysis, thus playing key roles in the fucose-transferring reaction.  相似文献   

14.
The gastric pathogen Helicobacter pylori can express the histo blood group antigens, which are on the surface of many human cells. Most H. pylori strains express the type II carbohydrates, Lewis X and Y, whereas a small population express the type I carbohydrates, Lewis A and B. The expression of Lewis A and Lewis X, as in the case of H. pylori strain UA948, requires the addition of fucose in alpha1,4 and alpha1,3 linkages to type I or type II carbohydrate backbones, respectively. This work describes the cloning and characterization of a single H. pylori fucosyltransferase (FucT) enzyme, which has the ability to transfer fucose to both of the aforementioned linkages in a manner similar to the human fucosyltransferase V (Fuc-TV). Two homologous copies of the fucT gene have been identified in each of the genomes sequenced. The characteristic adenosine and cytosine tracts in the amino terminus and repeated regions in the carboxyl terminus are present in the DNA encoding the two UA948fucT genes, but these genes also contain differences when compared with previously identified H. pylori fucTs. The UA948fucTa gene encodes an approximately 52-kDa protein containing 475 amino acids, whereas UA948fucTb does not encode a full-length FucT protein. In vitro, UA948FucTa appears to add fucose with a greater than 5-fold preference for type II chains but still retains significant activity using type I acceptors. The addition of the fucose to the type II carbohydrate acceptors, by UA948FucTa, does not appear to be affected by fucosylation at other sites on the carbohydrate acceptor, but the rate of fucose transfer is affected by terminal fucosylation of type I acceptors. Through mutational analysis we demonstrate that only FucTa is active in this H. pylori isolate and that inactivation of this enzyme eliminates expression of all Lewis antigens.  相似文献   

15.
Fucosyltransferases (FucT) from different Helicobacter pylori strains display distinct Type I (Galbeta1,3GlcNAc) or Type II (Galbeta1,4GlcNAc) substrate specificity. FucT from strain UA948 can transfer fucose to the OH-3 of Type II acceptors as well as to the OH-4 of Type I acceptors on the GlcNAc moiety, so it has both alpha1,3 and alpha1,4 activities. In contrast, FucT from strain NCTC11639 has exclusive alpha1,3 activity. Our domain swapping study (Ma, B., Wang, G., Palcic, M. M., Hazes, B., and Taylor, D. E. (2003) J. Biol. Chem. 278, 21893-21900) demonstrated that exchange of the hypervariable loops, (347)DNPFIFC(353) in 11639FucT and (345)CNDAHYSALH(354) in UA948FucT, were sufficient to either confer or abolish alpha1,4 activity. Here we performed alanine scanning site-directed mutagenesis to identify which amino acids within (345)CNDAHYSALH(354) of UA948FucT confer Type I substrate specificity. The Tyr(350) --> Ala mutation dramatically reduced alpha1,4 activity without lowering alpha1,3 activity. None of the other alanine substitutions selectively eliminated alpha1,4 activity. To elucidate how Tyr(350) determines alpha1,4 specificity, mutants Tyr(350) --> Phe, Tyr(350) --> Trp, and Tyr(350) --> Gly were constructed in UA948FucT. These mutations did not decrease alpha1,3 activity but reduced the alpha1,4 activity to 66.9, 55.6, and 3.1% [corrected] of wild type level, respectively. Apparently the aromatic nature, but not the hydroxyl group of Tyr(350), is essential for alpha1,4 activity. Our data demonstrate that a single amino acid (Tyr(350)) in the C-terminal hypervariable region of UA948FucT determines Type I acceptor specificity. Notably, a single aromatic residue (Trp) has also been implicated in controlling Type I acceptor preference for human FucT III, but it is located in an N-terminal hypervariable stem domain.  相似文献   

16.
In plants, the only known outer-chain elongation of complex N-glycans is the formation of Lewis a [Fuc alpha1-4(Gal beta1-3)GlcNAc-R] structures. This process involves the sequential attachment of beta1,3-galactose and alpha1,4-fucose residues by beta1,3-galactosyltransferase and alpha1,4-fucosyltransferase. However, the exact mechanism underlying the formation of Lewis a epitopes in plants is poorly understood, largely because one of the involved enzymes, beta1,3-galactosyltransferase, has not yet been identified and characterized. Here, we report the identification of an Arabidopsis thaliana beta1,3-galactosyltransferase involved in the biosynthesis of the Lewis a epitope using an expression cloning strategy. Overexpression of various candidates led to the identification of a single gene (named GALACTOSYLTRANSFERASE1 [GALT1]) that increased the originally very low Lewis a epitope levels in planta. Recombinant GALT1 protein produced in insect cells was capable of transferring beta1,3-linked galactose residues to various N-glycan acceptor substrates, and subsequent treatment of the reaction products with alpha1,4-fucosyltransferase resulted in the generation of Lewis a structures. Furthermore, transgenic Arabidopsis plants lacking a functional GALT1 mRNA did not show any detectable amounts of Lewis a epitopes on endogenous glycoproteins. Taken together, our results demonstrate that GALT1 is both sufficient and essential for the addition of beta1,3-linked galactose residues to N-glycans and thus is required for the biosynthesis of Lewis a structures in Arabidopsis. Moreover, cell biological characterization of a transiently expressed GALT1-fluorescent protein fusion using confocal laser scanning microscopy revealed the exclusive location of GALT1 within the Golgi apparatus, which is in good agreement with the proposed physiological action of the enzyme.  相似文献   

17.
18.
Alpha 1,3-fucosyltransferases (FucT) share a conserved amino acid sequence designated the alpha 1,3 FucT motif that has been proposed to be important for nucleotide sugar binding. To evaluate the importance of the amino acids in this motif, each of the alpha 1,3 FucT motif amino acids was replaced with alanine (alanine scanning mutagenesis) in human FucT VI, and the resulting mutant proteins were analyzed for enzyme activity and kinetically characterized in those cases in which the mutant protein had sufficient activity. Two of the mutant proteins were inactive, six had less than 1% of wild-type activity, and four had approximately 10-50% of wild-type enzyme activity. Three of the mutant proteins with significant enzyme activity had substantially larger Km (5 to 15 times) for GDP-fucose than FucT VI wild-type enzyme. The fourth mutant protein with significant enzyme activity (S249A) had a Km at least 10 times larger than wild-type FucT VI for the acceptor substrate, with only a slightly larger (2-3 times) Km for GDP-fucose. Thus mutation of any of the amino acids within the alpha 1,3 FucT motif to Ala affects alpha 1,3-FucT activity, and substitution of Ala for some of the alpha 1,3 FucT motif amino acids results in proteins with altered kinetic constants for both the acceptor and donor substrates. Secondary structure prediction suggests a helix-loop-helix fold for the alpha 1,3 FucT motif, which can be used to rationalize the effects of mutations in terms of 3D structure.  相似文献   

19.
We previously reported that cultured cells incubated with beta-xylosides synthesized alpha-GalNAc-capped GAG-related xylosides, GalNAc alpha GlcA beta Gal beta Gal beta Xyl beta-R and GalNAc alpha GlcA beta GalNAc beta GlcA beta Gal beta Gal beta Xyl beta-R, where R is 4-methylumbelliferyl or p-nitrophenyl (Manzi et al., 1995; Miura and Freeze, 1998). In this study, we characterized an alpha-N-acetylgalactosaminyltransferase (alpha-GalNAc-T) that probably adds the alpha-GalNAc residue to the above xylosides. Microsomes from several animal cells and mouse brain contained the enzyme activity which requires divalent cations, and has a relatively broad pH optimal range around neutral. The apparent K(m) values were in the submillimolar range for the acceptors tested, and 19 microM for UDP-GalNAc. 1H-NMR analysis of the GlcA-beta-MU acceptor product showed the GalNAc residue is transferred in alpha 1,4-linkage to the glucuronide, which is consistent with previous results reported on alpha-GalNAc-capped Xyl-MU (Manzi et al., 1995). Various artificial glucuronides were tested as acceptors to assess the influence of the aglycone. Glucuronides with a bicyclic aromatic ring, such as 4-methylumbelliferyl beta-D-glucuronide (GlcA-beta-MU) and alpha-naphthyl beta-D-glucuronide, were the best acceptors. Interestingly, a synthetic acceptor that resembles the HNK-1 carbohydrate epitope but lacking the sulfate group, GlcA beta 1,3Gal beta 1,4GlcNAc beta-O-octyl (delta SHNK-C8), was a better acceptor for alpha-GalNAc-T than the glycosaminoglycan-protein linkage region tetrasaccharyl xyloside, GlcA beta 1,3Gal beta 1,3Gal beta 1,4Xyl beta-MU. GlcA-beta-MU and delta SHNK-C8 competed for the alpha-GalNAc-T activity, suggesting that the same activity catalyzes the transfer of the GalNAc residue to both acceptors. Taken together, the results show that the alpha-GalNAc-T described here is not restricted to GAG-type oligosaccharide acceptors, but rather is a UDP-GalNAc:glucuronide alpha 1-4-N-acetylgalactosaminyltransferase.  相似文献   

20.
Human lung tumor alpha1,3/4-L-fucosyltransferase (FT) was purified (2000-fold, 29% recovery) from 290 g of tissue by including a chromatography step on Affinity Gel-GDP. Two molecular forms (FTA, larger size carrying 15% alpha1,4-FT activity; FTB, the major form with 85% activity) were separated by further fractionation on a Sephacryl S-100 HR column. A difference in the electrophoretic mobilities of these two activities was also found on native polyacrylamide gel electrophoresis (PAGE). Both forms were devoid of typical alpha1,2-fucosylating activity but were associated with the novel alpha1,2-fucosylating ability of converting the Lewis a determinant to Lewis b. Based on percentage activity toward 2-O-MeGalbeta1,3GlcNAcbeta-O-Bn, both forms exhibited the same extent of activity toward various acceptors, which included sulfated, sialylated, or methylated LacNAc type 1 or type 2 as well as mucin core 2 acceptors. However, FTA and FTB exhibited a difference in their ability to act on mucin core 2 3'-sialyl LacNAc (activities 24.2% and 40.8%, respectively, as compared to 2-O-MeGalbeta1,3GlcNAcbeta-O-Bn). The unsubstituted LacNAc type 1 acceptors were 15-20 times as active as the corresponding LacNAc type 2 acceptors. The 3-O-substitution on the beta1,4-linked Gal (methyl, sulfate, or sialyl) in mucin core 2 acceptors increased the efficiency of these acceptors five- to eightfold. The most efficient acceptor for FTA and FTB was 3-O-sulfoGalbeta1,3GlcNAcbeta-O-Al (K(m) 100 and 47 microM, respectively). The K(m) (mM) values for 2-O-methyl Galbeta1,3GlcNAcbeta-O-Bn and 3-O-sialyl Galbeta1,3GlcNAcbeta-O-Bn were 0.40 and 2.5 (FTA) and 0.16 and 0.67 (FTB), respectively. The 35-kDa glycoprotein ancrod (from Malayan pit viper venom) containing 36% complex N-glycans with the antennae NeuAcalpha2,3Galbeta1,3GlcNAcbeta- acted as the best macromolecular acceptor substrate (K(m): 45 microM), as examined with FTB. On desialylation the acceptor efficiency dropped to approximately 50% (K(m) for asialo ancrod: 167 microM). Sialylglycoproteins, such as carcinoembryonic antigen, fetuin, and bovine alpha(1)-acid glycoprotein, were better acceptors than asialo fetuin. On the contrary, fetuin triantennary glycopeptide containing predominantly NeuAcalpha2,3Galbeta1,4GlcNAcbeta- was only 55% active as compared to the asialo glycopeptide (K(m): 1.43 and 0.63 mM, respectively). Thus, the human lung tumor alpha1,3/4-L-FT has the potential to generate clustered sialyl Lewis a and Lewis b determinants in N-glycans and sialyl Lewis x determinant in mucin core 2 structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号