首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The steady-state potential of the oocyte, resistance between the ooplasm and the medium, and electronic coupling between oocytes in adjacent follicles were examined in vitellogenic ovarioles of Hyalophora cecropia. The steady-state potential had a constant value of ?40 mV throughout the 100-fold volume increase accompanying yolk deposition, while membrane resistance decreased gradually with increasing size. Resistance rose steeply with the onset of chorion deposition, but did not detectably change with either nurse cell collapse or termination of vitellogenesis. Nonrectified electrical coupling was found between oocytes in adjacent follicles, and fluorescein ions injected into the ooplasm moved readily from follicle to follicle. Large surface area and low membrane resistance made coupling difficult to detect electrically between more mature oocytes, but interfollicular fluorescein migration was found to persist until the end of vitellogenesis. Migration of fluorescein from the oocyte to the follicular epithelium could also be visualized and fingers of ooplasm that cross the vitelline envelope and terminate in dome-shaped attachments to the epithelial cells were implicated in this transfer. The termination of interfollicular coupling coincided with the termination of epithelial-oocyte coupling, and is proposed to result from thickening of the vitelline envelope and withdrawal of the ooplasmic processes.  相似文献   

2.
Summary Distribution of rhodamine-conjugated lysozyme injected into the sixteen-cell syncytium comprising the germ-line portion of theDrosophila follicle is shown to be affected by charge. Positive molecules are able to migrate through intercellular bridges from the oocyte to the nurse cells, but are unable to migrate detectably from nurse cells to the oocyte. Their negatively charged counterparts can move from the nurse cells to the oocyte, but are unable to traverse the intercellular bridges in the counter direction. This charge-dependent movement of molecules is accompanied by an electrical potential difference, focused across the nurse cell-oocyte bridges, which makes the nurse cells negatively charged to the oocyte. The addition of insect hemolymph to the physiological salt solution in which the experiments were performed resulted in only a small increase in the transmembrane resistance, but enhanced the potential difference between oocyte and nurse cells from 0.2±0.3 (SE) mV (nurse cells negative) to 2.3±0.45 (SE) mV (nurse cells negative). Supported by NSF Grant # DB-18617  相似文献   

3.
In vitellogenic ovarian follicles of Actis luna, internal Ca(2+) activity currents create an electrical gradient which influences the distribution of charged macromolecules between nurse cells and oocyte. We show that, between oocyte and nurse cells, there is an ionic gradient of 1-12 mV with the nurse cells being more electronegative than the oocyte by an average 3.5+/-0.2 mV(s.e.)(p<0.001). As previously reported for another saturniid, Hyalophora cecropia, the transbridge ionic gradient of luna: (1) is focused across the intercellular bridges, (2) is abolished by 200 &mgr;M vanadate and (3) includes a [Ca(2+)](i) gradient. Endogenous soluble proteins collected from control and from vanadate treated populations of nurse cells and oocytes were separated by two-dimensional (2-D) gel electrophoresis and visualized with sliver stain. Densitometric analysis showed that 14 out of the 19 acidic proteins and six of the eight basic proteins studied, changed their oocyte-to-nurse cell distribution in consort with change in the transbridge ionic gradient. This suggests that a transbridge ionic gradient may be, at least within the saturniidae, a method for maintaining different molecular concentrations in nurse cells compared to oocytes. Copyright 1997 Elsevier Science Ltd. All rights reserved  相似文献   

4.
In ovarian follicles of Drosophila, soluble endogenous charged proteins are asymmetrically distributed dependent upon their ionic charge. Reversal of the normal ionic difference across the intercellular bridges which connect nurse cells to their oocyte results in a redistribution of these proteins. Twelve soluble endogenous acidic proteins were identified by 2-D gel electrophoresis as being present in both oocytes and nurse cells in samples run on four or more gels. Of these, following osmotically induced reversal of the electrical transbridge gradient the concentration of seven proteins decreased in the oocyte while nurse cell concentrations of all twelve proteins increased. Of seven basic proteins analyzed, following reversal of the electrical gradient the concentration of all seven increased in oocytes. Four of these decreased in nurse cells, while nurse cell concentrations of the remaining three basic proteins also appeared to decrease, but yielded spots too faint for measurement. Data presented here demonstrate that, as in the Saturniidae, the ionic gradient across the nurse cell-oocyte intercellular bridges of the dipteran, Drosophila, can influence the distribution of soluble endogenous charged molecules.  相似文献   

5.
Drosophila oocytes develop together with 15 sister germline nurse cells (NCs), which pass products to the oocyte through intercellular bridges. The NCs are completely eliminated during stages 12–14, but we discovered that at stage 10B, two specific NCs fuse with the oocyte and extrude their nuclei through a channel that opens in the anterior face of the oocyte. These nuclei extinguish in the ooplasm, leaving 2 enucleated and 13 nucleated NCs. At stage 11, the cell boundaries of the oocyte are mostly restored. Oocytes in egg chambers that fail to eliminate NC nuclei at stage 10B develop with abnormal morphology. These findings show that stage 10B NCs are distinguished by position and identity, and that NC elimination proceeds in two stages: first at stage 10B and later at stages 12–14.  相似文献   

6.
Roles of cell-to-cell communication in development   总被引:3,自引:0,他引:3  
Possible roles of cell-to-cell communication mediated by intercellular bridges and gap junctions in development of the female gamete and embryo are discussed. Synchronization of cell cycle events is presumably a role for intercellular bridges between germ cells. The follicle of the Cecropia moth reveals that an electrical polarity exists between nurse cells and oocytes which are connected by intercellular bridges and this polarity may generate differences that result in differentiation of the oogonia to become either the oocyte or nurse cells. Gap junction-mediated transfer of cyclic AMP, made in response to gonadotropin stimulation, between granulosa cells is discussed as a mechanism that allows cells within a tissue to respond to an external stimulus even though all cells in that tissue may not be exposed to the stimulus. A nutritional role for heterologous cell communication between follicle cells and the oocyte in oocyte growth is presented as an example of how gap junction-mediated communication can allow one cell type to influence the behavior of another cell type. During development, a restriction in communication between differentiating cells is frequently observed. Examples of this phenomenon in a mammal and an insect are presented.  相似文献   

7.
In Hirudo medicinalis and Haemopis sanguisuga, two convoluted ovary cords are found within each ovary. Each ovary cord is a polarized structure composed of germ cells (oogonia, developing oocytes, nurse cells) and somatic cells (apical cell, follicular cells). One end of the ovary cord is club-shaped and comprises one huge apical cell, numerous oogonia, and small cysts (clusters) of interconnected germ cells. The main part of the cord contains fully developed cysts composed of numerous nurse cells connected via intercellular bridges with the cytophore, which in turn is connected by a cytoplasmic bridge with the growing oocyte. The opposite end of the cord degenerates. Cord integrity is ensured by flattened follicular cells enveloping the cord; moreover, inside the cord, some follicular cells (internal follicular cells) are distributed among germ cells. As oogenesis progresses, the growing oocytes gradually protrude into the ovary lumen; as a result, fully developed oocytes arrested in meiotic metaphase I float freely in the ovary lumen. This paper describes the successive stages of oogenesis of H. medicinalis in detail. Ovary organization in Hirudinea was classified within four different types: non-polarized ovary cords were found in glossiphoniids, egg follicles were described in piscicolids, ovarian bodies were found characteristic for erpobdellids, and polarized ovary cords in hirudiniforms. Ovaries with polarized structures equipped with apical cell (i.e. polarized ovary cords and ovarian bodies) (as found in arhynchobdellids) are considered as primary for Hirudinea while non-polarized ovary cords and the occurrence of egg follicles (rhynchobdellids) represent derived condition.  相似文献   

8.
Transmission electronmicroscopic (TEM) observations demonstrated that the most superficial region of quail oocytes during the prelampbrush stage differs locally from the deeper ooplasm and is an active zone which forms exooplasmic cones, ridges or knob-like protrusions in the direction of/or in the granulosa cells. This exooplasm, in which no mitochondria were seen, is separated from the endooplasm, by a narrow interrupted filamentous layer. Using a lipid-preserving method of fixation, morphological evidence was found for the transport of lipid material from the granulosa cells into the exooplasm of the oocyte. Open intercellular bridges between exooplasm and granulosa cell cytoplasm were also seen. Differences between the electronmicroscopic aspect of clear and dark granulosa cells have been described.  相似文献   

9.
The polychaete Ophryotrocha does not show a distinct breeding season. Egg masses are produced throughout the year (continuous breeder sensu Olive and Clark, 1978). A female specimen may contain up to three different generations of oocytes with oocyte growth and maturation in each batch being well synchronized. Oogenesis takes about 18 days from proliferation of the oogonia to mature eggs. In each segment pairs of sister cells interconnected by cytoplasmic bridges are located in outpocketings of the ventral mesentery which form the gonad wall. Presumptive oocytes and nurse cells are not easily distinguished at that time. Vitellogenesis is initiated while both oocytes and nurse cells are still in the ovary. Mitochondria, multivesicular bodies (transformed mitochondria ?), dense bodies, preformed yolk bodies of smaller size and lipid droplets are probably passed through the cytoplasmic bridge from the nurse cell to the oocyte. Yolk formation includes different mechanisms and materials of different origin. Autosynthetic yolk formation predominates during the first intraovarial growth phase. After detachment of oocyte-nurse cell-complexes from the gonad pinocytotic activity of nurse cells and particularly oocytes, increases considerably. The existence of coated vesicles suggests that external sources of yolk precursors contribute to yolk formation. Prior to oocyte maturation the remnants of the nurse cell are incorporated by oocytes.  相似文献   

10.
Germ line cell cluster formation in ovarioles of three different stages, each from a different mayfly species, was studied using ultra-thin serial sectioning. In the analysed ovariole of Cloeön sp., only one linear, zigzag germ line cell cluster was found, consisting of sibling cells connected by intercellular bridges which represent remnants of preceding synchronized mitotic cycles followed by incomplete cytokinesis. A polyfusome stretched through all sibling cells. At the tip of the ovariole, cytokinesis occurred without preceding division of nuclei; thus, intercellular bridges were lined up but the remaining cytoplasm between the bridges had no nuclei. The analysed Siphlonurus armatus vitellarium contained five oocytes at different stages of development. Each oocyte in the vitellarium was connected via a nutritive cord to the linear cluster of its sibling cells in the terminal trophic chamber. Each cluster had the same architecture as was found in Cloëon. The 3-dimensional arrangement and distribution of closed intercellular bridges strongly suggest that all five clusters are derived from a single primary clone. The position of oocytes within each cluster is random. However, each oocyte is embraced by follicular or prefollicular cells whilst all other sibling cells are enclosed by somatic inner sheath cells, clearly distinguishable from prefollicular cells. In the analysed ovariole of Ephemerella ignita, two small linear clusters were found in the tropharium beside two single cells, two isolated cytoplasmic bags with intercellular bridges but no nuclei, and some degenerating aggregates. One cluster was still connected to a growing oocyte via a nutritive cord. In all species the nurse cells remained small and no indications of polyploidization were found. We suggest that this ancient and previously unknown telotrophic meroistic ovary has evolved directly from panoistic ancestors.  相似文献   

11.
The behavior of glycogen particles during oogenesis in the sea urchin was studied by electron microscopy. Before the beginning of oogenesis the nurse cells include many glycogen particles, which are spherical or multiangular in shape and about 600 A in diameter, lying within the vesicle of the large granules and also in the cytoplasm among the granules. There are few glycogen particles in the spaces among the oocytes and the nurse cells. At the early stage of oogenesis the limiting membrane of the large granule breaks locally and the glycogen particles in the vesicle are dispersed into the cytoplasm. The plasma membrane of the nurse cell also breaks in places and glycogen particles are spread throughout the intercellular space. At the beginning of vitellogenesis, β-pinosomes begin to be formed at the periphery of the oocyte; these take in glycogen particles from the outside which are progressively broken into smaller units.  相似文献   

12.
The nurse cells in insect ovarioles supply the developing oocytes with various cellular components, including mRNAs, which pass from one cell to the other through intercellular bridges traversed by microtubules. Best studied of these mRNAs are those that encode the axis-determining factors in Drosophila embryos. These mRNAs are further translocated and localized within the oocyte to sites where the products of their translation will ultimately function. This article explores the evidence supportive of a role for microtubules and motor proteins in these processes.  相似文献   

13.
Piscicola has a pair of elongated sac-shaped ovaries. Inside the ovaries are numerous small somatic cells and regularly spherical egg follicles. Each follicle is composed of three types of cells: many (average 30) germ cells (cystocytes) interconnected by intercellular bridges in clones (cysts), one intermediate cell, and three to five outer follicle cells (envelope cells). Each germ cell in a clone has one intercellular bridge connecting it to the central anucleate cytoplasmic mass, the cytophore. Each cluster of germ cells is completely embedded inside a single huge somatic follicle cell, the intermediate (interstitial) cell. The most spectacular feature of the intermediate cell is its development of a system of intracytoplasmic canals apparently formed of invaginations of its cell membrane. Initially the complex of germ cell cluster + intermediate cell is enclosed within an envelope composed of squamous cells. As oogenesis progresses the envelope cells gradually degenerate. All the germ cells that have terminated their mitotic divisions are of similar size and enter meiotic prophase, but one of the cystocytes promptly starts to grow faster and differentiates into the oocyte, whereas the remaining cystocytes withdraw from meiosis and become nurse cells (trophocytes). Numerous mitochondria, ER, and a vast amount of ribosomes are transferred from the trophocytes via the cytophore toward the oocyte. Eventually the oocyte ingests all the content of the cytophore, and the trophocytes degenerate. Little vitellogenesis takes place; the oocyte gathers nutrients in the form of small lipid droplets. At the end of oogenesis, an electron-dense fibrous vitelline envelope appears around the oocyte, among short microvilli. At the same time, electron-dense cortical granules occur in the oocyte cortical cytoplasm; at the end of oogenesis they are numerous, but after fertilization they disappear from the ooplasm. In the present article we point out many differences in the course of oogenesis in two related families of rhynchobdellids: piscicolids and glossiphoniids.  相似文献   

14.
《Biophysical journal》2021,120(19):4242-4251
Problems with networks of coupled oscillators arise in multiple contexts, commonly leading to the question about the dependence of network dynamics on network structure. Previous work has addressed this question in Drosophila oogenesis, in which stable cytoplasmic bridges connect the future oocyte to the supporting nurse cells that supply the oocyte with molecules and organelles needed for its development. To increase their biosynthetic capacity, nurse cells enter the endoreplication program, a special form of the cell cycle formed by the iterated repetition of growth and synthesis phases without mitosis. Recent studies have revealed that the oocyte orchestrates nurse cell endoreplication cycles, based on retrograde (oocyte to nurse cells) transport of a cell cycle inhibitor produced by the nurse cells and localized to the oocyte. Furthermore, the joint dynamics of endocycles has been proposed to depend on the intercellular connectivity within the oocyte-nurse cell cluster. We use a computational model to argue that this connectivity guides, but does not uniquely determine the collective dynamics and identify several oscillatory regimes, depending on the timescale of intercellular transport. Our results provide insights into collective dynamics of coupled cell cycles and motivate future quantitative studies of intercellular communication in the germline cell clusters.  相似文献   

15.
16.
Intracellular activities of K+, H+, Mg2+, Ca2+, and Cl?, measured with ion selective microelectrodes in the oocyte and the nurse cells in ovarian follicles of Hyalophora cecropia, indicated that a Ca2+ current is a key component of the electrical potential that is maintained across the intercellular bridges connecting these two cells. In vitellogenic follicles, Ca2+ activity averaged 650 nM in the oocyte and 190 nM in the nurse cells, whereas activities of the other ions studied differed between these cells by no more than 6%. Incubation in 200 μM ammonium vanadate caused a reversal of electrical potential from 8.3 mV, nurse cell negative, to 3.0 mV, oocyte negative, and at the same time the Ca2+ gradient was reversed: activities rose to an average 3.0 μM in the nurse cells and 1.6 μM in the oocyte, whereas transbridge ratios of the other cations remained at 0–3%. In immature follicles that had not yet initiated their transbridge potentials, Ca2+ activities averaged ~? 2 μM in both oocyte and nurse cells. The results suggest that vitellogenic follicles possess a vanadatesensitive Ca2+ extrusion mechanism that is more powerful in the nurse cells than in the oocyte. © 1994 Wiley-Liss, Inc.  相似文献   

17.
Abstract. Ovarian ultrastructure and oogenesis in two pycnogonid species, Cilunculus armatus and Ammothella biunguiculata , were investigated. The ovary is morphologically and functionally divided into trunk and pedal parts. The former represents the germarium and contains very young germ cells in a pachytene or postpachytene phase, whereas the latter houses developing previtellogenic and vitellogenic oocytes and represents the vitellarium. Intercellular bridges were occasionally found between young (trunk) germ cells. This indicates that in pycnogonids, as in other animal groups, at the onset of oogenesis clusters of germ cells are generated. As nurse cells are absent in the ovaries of investigated species, the clusters must secondarily split into individual oocytes. In the vitellarium, the oocytes are located outside the ovary. Each oocyte is connected to the ovarian tissue by a stalk composed of several somatic cells. The stalk cells directly associated with the oocyte are equipped with irregular projections that reach the oocyte plasma membrane. This observation suggests that the stalk cells may play a nutritive role. The ooplasm of vitellogenic oocytes comprises mitochondria, free ribosomes, stacks of annulate lamellae, active Golgi complexes, and vesicles derived from these complexes. Within the latter, numerous electron-dense bodies are present. We suggest that these bodies contribute to yolk formation.  相似文献   

18.
Intercellular coupling between cumulus cells and oocytes persists after oocyte meiotic maturation has been initiated. The experiments described here focus on the relationship between oocyte-cumulus cell intercellular coupling during maturation and the subsequent embryonic development of spontaneous mouse parthenotes. Several lines of evidence suggest that this coupling during oocyte maturation is required for the acquisition of the capacity for spontaneous mouse parthenotes to develop embryologically. First, the period of time that LT/Sv oocytes remained coupled to cumulus cells during oocyte maturation in vivo corresponded to that required for the acquisition of the capacity for parthenogenetic embryonic development. Second, the longer that cumulus cells were present during Fpontaneous oocyte maturation in vitro, the higher was the percentageofova undergoing subsequent parthenogenetic development. Third, cumulus cell-free oocytes cocultured with cumulus cell-enclosed oocytes during the maturation period in vitro did not develop embryologically. Fourth, intercellular coupling between cumulus cells and oocytes persisted throughout the oocyte maturation period in vitro. Fifth, incubation of oocyte-cumulus cell complexes in medium containing follicle-stimulating hormone (FSH) promoted uncoupling and decreased the percentage of ova undergoing parthenogenetic development. Thus, cell-to-cell communication, mediated via the intercellular coupling pathway between cumulus cells and oocytes, plays an important role during oocyte maturation and relates to subsequent preimplantation development.  相似文献   

19.
Summary Each ovarian follicle of Triops cancriformis is four-celled; these cells (one oocyte and three nurse cells) are interconnected by cytoplasmic bridges. In the course of differentiation, the nurse cells are early recognizable; they increase in size more than the oocyte and their nuclei contain many nucleoli. For the first time in Arthropoda, yolk globules are reported to be present in nurse cell cytoplasm; these globules arise from the smooth endoplasmic reticulum. The functional significance of the intercellular bridges and the trophic role of the nurse cells are discussed.The authors are grateful to Dr. Bruno Sabelli for his support and to Mr. Francesco Monte for his technical assistance  相似文献   

20.
The vasa gene, first identified in Drosophila, is a key determinant for germline formation in eukaryotes. Homologs of vasa have been identified and linked to germline development, in many invertebrates and vertebrates. Here, we analyze the distribution of Vasa in early germ cells (oogonia and oocytes) and previtellogenic ovarian follicles of the lizard Podarcis sicula. During most of its previtellogenic growth, the oocyte in this lizard species is structurally and functionally integrated through intercellular bridges with special follicle cells called pyriform cells. The pyriform cells function similarly to Drosophila nurse cells, but are somatic in origin. In the oogenesis of P. sicula, Vasa is initially highly detected in the oogonia, but its levels decrease in early stage oocytes before the onset of pyriform cell differentiation. In the later stages of oogenesis, the high level of Vasa is related with the nurse function of the pyriform follicle cells. These observations suggest that cells of somatic origin are engaged in the synthesis of Vasa in the oogenesis of this lizard.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号