首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Extracellular matrix proteins and their proteolytic products have been shown to modulate cell motility. We have found that certain tumor cells display a chemotactic response to degradation products of the matrix protein elastin, and to an elastin-derived peptide, VGVAPG. The hexapeptide VGVAPG is a particularly potent chemotaxin for lung-colonizing Lewis lung carcinoma cells (line M27), with 5 nM VGVAPG eliciting maximal chemotactic response when assayed in 48-microwell chemotaxis chambers. Binding of the elastin-derived peptide to M27 cells was studied using a tyrosinated analog (Y-VGVAPG) to allow iodination. Scatchard analysis of [125I]Y-VGVAPG binding to viable M27 tumor cells at both 37 and 4 degrees C indicates the presence of a single class of high affinity binding sites. The dissociation constant obtained from these studies (2.7 X 10(-9) M) is equivalent to the concentration of VGVAPG required for chemotactic activity. The receptor molecule was identified as an Mr 59,000 species by covalent cross-linking of the radiolabeled ligand to the M27 tumor cell surface and subsequent analysis of the cross-linked material by electrophoresis and size-exclusion high performance liquid chromatography. These results suggest that M27 tumor cell chemotaxis to VGVAPG is initiated by high affinity binding of the peptide to a distinct cell surface receptor.  相似文献   

2.
Digitonin was found to be the only detergent (out of 24 tested) capable of solubilising the chemotactic formyl peptide receptor from rabbit neutrophil membranes in a form which retained its [3H]fMet-Leu-Phe binding activity. The solubilised material retained many of the characteristics of the membrane-bound receptor. [3H]fMet-Leu-Phe binding to the digitonin extract was measured at 4 degrees C using an equilibrium dialysis assay. Binding was saturable and of high affinity (Kd = 3.5 +/- 0.7 nM). The potencies of a series of synthetic peptides as inhibitors of [3H]fMet-Leu-Phe binding to the soluble receptor showed the same rank order as for inhibition of the membrane-bound receptor. In addition, binding to both preparations was sulphydryl dependent showing a parallel inhibition by p-chloromercuribenzene sulphonate which could be partially reversed by subsequent incubation with dithiothreitol.  相似文献   

3.
L D McVittie  D R Sibley 《Life sciences》1989,44(23):1793-1802
A phencyclidine (PCP) receptor binding site has been solubilized in an active ligand-binding state from rat cerebral cortical membranes with sodium deoxycholate. Optimal receptor solubilization occurs at a detergent/protein ratio of 0.5 (w/w); for 5 mg protein/ml solubilized with 0.25% sodium deoxycholate, about 60% of the protein and 25% of the receptor is solubilized. Specific binding of either [3H]-N-[1-(2-thienyl)cyclohexyl]piperidine ([3H]TCP) or [3H]MK-801 is measurable by filtration through Sephadex G-50 columns or glass fiber filters; more than 60% of the binding activity is stable after 48 h at 4 degrees C. In the presence of detergent, [3H]TCP binding exhibits a Kd of 250 nM, a Bmax of 0.56 pmol/mg protein, and a pharmacological profile consistent with that of the membrane-bound PCP receptor, although most drugs bind with affinities 2 to 8 fold lower than in membranes. Upon reduction of detergent concentration, binding parameters approximate those for the membrane-bound receptor ([3H]TCP binding: Kd = 48 nM, Bmax = 1.13 pmol/mg protein).  相似文献   

4.
Trypsinization of rat brain protein kinase C (80 kDa) into 50- and 32-kDa fragments occurred without inhibition of [3H]phorbol dibutyrate ([3H]PDBu) binding activity. The 50-kDa fragment, the catalytic domain (Inoue, M., Kishimoto, A., Takai, Y., and Nishizuka, Y. (1977) J. Biol. Chem. 252, 7610-7616), was further degraded by trypsin, whereas the 32-kDa fragment was resistant. Protein kinase activity and the [3H]PDBu binding activity were completely separated upon gel filtration of a solution containing Triton X-100/phosphatidylserine mixed micelles and trypsinized protein kinase C. Pooled fractions of the [3H]PDBu binding activity contained a 32-kDa fragment exclusively. The binding of [3H]PDBu to this fragment was dependent on calcium and phosphatidylserine and was of high affinity (Kd = 2.8 nM) and of essentially identical specificity to that of native protein kinase C. It is concluded that the 32-kDa fragment represents a lipid binding, regulatory domain of protein kinase C.  相似文献   

5.
Isolated human polymorphonuclear (PMN) leukocyte plasma membranes express high affinity (mean Kd = 0.12 nM) and low affinity (mean Kd = 50 nM) receptors for the chemotactic factor leukotriene B4 (5(S),12(R)-dihydroxy-eicosa-6,14 cis-8,10 trans-tetraenoic acid; LTB4) that are similar to those on intact PMN leukocytes. A portion of high affinity LTB4-R on PMN leukocyte membranes were converted to the low affinity state by GTP (mean +/- SE = 28.6 +/- 14.0%) and nonhydrolyzable GTP analogues, such as 5'-guanylylimidodiphosphate (GMP-PNP), in a concentration-dependent, nucleotide-specific, and reversible manner, without altering the intrinsic binding affinities of either class. [3H]GMP-PNP bound specifically to one class of receptors (mean Kd = 13 nM) on PMN leukocyte membranes. The interdependence of the LTB4-binding membrane protein and guanine nucleotide-binding protein was suggested by the capacity of LTB4 to enhance by a maximum of 150% the binding of [3H]GMP-PNP to PMN leukocyte membranes by increasing the number, but not altering the affinity, of receptors for GMP-PNP. Pertussis toxin, but not cholera toxin, reversed the enhancement of binding of [3H]GMP-PNP produced by LTB4. Guanine nucleotide-binding proteins and high affinity LTB4-R thus exhibit a mutual regulation that differs mechanistically from that of peptide chemotactic factor receptors on PMN leukocytes.  相似文献   

6.
Endothelial cells from brain microvessels (BCEC) express high affinity receptor sites for endothelin-1 that recognize endothelin-3 with a low affinity (Vigne, P., Marsault, R., Breittmayer, J.P. & Frelin, C. (1990) Biochem. J. 266, 415-420). Binding experiments using 125I-endothelin-3 showed the presence in BCEC of a new class of receptor sites that had a high affinity for endothelin-3 (Kd = 0.8 nM), endothelin-1 (Kd = 0.8 nM), and sarafotoxin S6b (Kd = 0.3 nM). Endothelins activated phospholipase C in BCEC and produced transient increases in intracellular Ca2+ with properties of a low affinity endothelin-3 receptor. Endothelins also increased 22Na+ uptake via the Na+/H+ antiporter in BCEC. Concentrations for half-maximum activation (endothelin-1, 0.5 nM; sarafotoxin S6b, 1 nM; endothelin-3, 2 nM) were close to the Kd values determined in 125I-endothelin-3-binding experiments. The action of endothelins on Na+/H+ exchange was not mimicked by phorbol myristate acetate, it was not reversed by staurosporine, and it did not correlate with the phosphorylation of the 80-kDa protein. These results indicated that the action of endothelins on Na+/H+ exchange did not involve protein kinase C. It is concluded that BCEC coexpress two types of functional receptor sites for endothelins: (i) a high affinity endothelin-1, low affinity endothelin-3 receptor that is coupled to phospholipase C and to intracellular Ca2+ mobilization, and (ii) a high affinity endothelin-1, high affinity endothelin-3 receptor that controls Na+/H+ exchange activity via a protein kinase C-independent mechanism.  相似文献   

7.
The incubation of HL-60 human promyelocytic leukemia cells for 7 days with 100 nM 1 alpha,25-dihydroxyvitamin D3 [1,25(OH)2D3] induced differentiation into monocyte-like cells, as assessed by morphologic and biochemical characteristics. Stereospecific receptors for leukotriene B4 (LTB4) developed on the surface of the HL-60 cell-derived monocytes that had the capacity to transduce LTB4 stimulation of a transient increase in the cytosolic concentration of calcium ([Ca+2]in). HL-60 cell-derived monocytes, but not undifferentiated HL-60 cells, expressed a high affinity subset of 6400 +/- 3700 receptors per cell with a dissociation constant (Kd) of 2.3 +/- 1 nM (mean +/- SD, n = 3) and a low affinity subset of approximately 2.2 X 10(6) receptors per cell with an apparent Kd of 680 +/- 410 nM. Derivatives of LTB4 inhibited the binding of [3H]LTB4 to HL-60 cell-derived monocytes with a rank order of potency of LTB4 greater than 20-OH-LTB4 greater than 3-aminopropyl amide-LTB4, which is similar to the order for LTB4 receptors of human blood PMNL. In contrast, leukotrienes C4 and D4 and formyl-methionyl chemotactic peptides did not inhibit the binding of [3H] LTB4, which demonstrates the specificity of these receptors for isomers of 5,12-dihydroxy-eicosatetraenoic acid. LTB4 stimulated an increase in [Ca+2]in in HL-60 cell-derived monocytes which reached 50% of the maximal level at an LTB4 concentration of 0.5 nM (EC50). Preincubation of HL-60 cell-derived monocytes with 10 nM LTB4 resulted in a selective loss of high affinity receptors, as assessed by binding of [3H]LTB4, and a 200-fold increase in the EC50 for stimulation by LTB4 of increases in [Ca+2]in, without alterations in either the low affinity receptors for LTB4 or the responsiveness of [Ca+2]in to formyl-methionyl chemotactic peptides. HL-60 cells that are induced to differentiate into monocytes thus develop stereospecific receptors for LTB4 with binding and transductional characteristics similar to those of human blood PMNL.  相似文献   

8.
Biochemical evidence for a third chain of the interleukin-2 receptor   总被引:6,自引:0,他引:6  
Two receptor proteins that specifically bind interleukin-2 (IL-2) have been identified previously. The L (Tac or alpha) chain can bind IL-2 with a Kd value of 10 nM (low affinity). Although the H (beta) chain expressed on lymphocytes can bind IL-2 with a Kd value of 1 nM (intermediate affinity), transfected fibroblasts expressing the H chain cannot bind IL-2, suggesting the involvement of other lymphocyte-specific factors for the function of the H chain. To obtain direct evidence for the presence of a third component of the IL-2 receptor, we examined the IL-2 binding activity of detergent-solubilized cell membrane preparations. We found that lysates of transfected Cos7 cells expressing H chains can bind IL-2 when mixed with lysates from lymphocytes that cannot bind IL-2. Chemical cross-linking of 125I-IL-2-bound lysate mixture and subsequent immunoprecipitation with a noncompetitive anti-H chain antibody gave rise to two 125I-IL-2-bound proteins, a 56-kDa protein (p56) and the H chain, although neither the H chain nor p56 alone is able to bind IL-2. These results indicate that p56 is the IL-2 receptor third chain that is required for IL-2 binding to the H chain. A similar lysate mixing experiment also showed that p56 is involved in IL-2 binding to the high affinity IL-2 receptor by forming the quaternary complex of IL-2, p56, L chain, and H chain.  相似文献   

9.
Recent studies have demonstrated that tropoelastin and elastin-derived peptides are chemotactic for fibroblasts and monocytes. To identify the chemotactic sites on elastin, we examined the chemotactic activity of Val-Gly-Val-Ala-Pro-Gly (VGVAPG), a repeating peptide in tropoelastin. We observed that VGVAPG was chemotactic for fibroblasts and monocytes, with optimal activity at approximately 10(-8) M, and that the chemotactic activity of VGVAPG was substantial (half or greater) relative to the maximum responses to other chemotactic factors such as platelet-derived growth factor for fibroblasts and formyl-methionyl-leucyl-phenylalanine for monocytes. The possibility that at least part of the chemotactic activity in tropoelastin and elastin peptides is contained in VGVAPG sequences was supported by the following: (a) polyclonal antibody to bovine elastin selectively blocked the fibroblast and monocyte chemotactic activity of both elastin-derived peptides and VGVAPG; (b) monocyte chemotaxis to VGVAPG was selectively blocked by preexposing the cells to elastin peptides; and (c) undifferentiated (nonelastin producing) bovine ligament fibroblasts, capable of chemotaxis to platelet-derived growth factor, did not show chemotactic responsiveness to either VGVAPG or elastin peptides until after matrix-induced differentiation and the onset of elastin synthesis. These studies suggest that small synthetic peptides may be able to reproduce the chemotactic activity associated with elastin-derived peptides and tropoelastin.  相似文献   

10.
Insulin-like growth factors stimulate chemotaxis in human melanoma cells   总被引:7,自引:0,他引:7  
Insulin and insulin-like growth factors stimulate motility in the highly metastatic human melanoma cell line, A2058. Insulin-like growth factor-I (IGF-I) is the most potent with a maximal response at a concentration of 10 nM compared to the activities of insulin and insulin-like growth factor-II (IGF-II) which peak at 300-400 nM. Using checkerboard analysis, the responses to IGF-I and insulin are predominantly chemotactic, although insulin had a significant chemokinetic component. Pertussis toxin does not inhibit the response to any of these polypeptides. However, in previous studies, it was shown that the motile response to autocrine motility factor from these same A2058 cells was markedly inhibited by pertussis toxin. 125I-labelled IGF-I binds saturably and specifically to the A2058 cells. Scatchard analysis indicates a high binding affinity (Kd approximately 3 x 10(-10) M) and an estimated 5000 receptors/cell. These studies indicate that in addition to their mitogenic properties, certain growth factors may profoundly enhance metastasis of tumor cells by their ability to induce motility.  相似文献   

11.
We investigated the effects of benzodiazepines on [3H]muscimol binding to rat brain membranes and on heat inactivation of GABA receptors. Scatchard analysis of [3H]muscimol binding to frozen and 0.05% Triton X-100 treated membranes revealed two components; a higher affinity (Kd=2.2 nM, Bmax=1.2 pmol/mg protein) and a lower affinity component (Kd=15.9 nM, Bmax=4.4 pmol/mg protein). Diazepam and flurazepam (3 μM) increased significantly the specific binding of 40 nM but not of 2 nM [3H]muscimol. This stimulation was attributed to an increase in the affinity of the lower affinity component for GABA receptors. The time course of heat inactivation of GABA receptors revealed rapidly and then slowly denaturating Phases. These observations would suggest that there are multiple GABA receptors with different sensitivities to the heat treatment. Diazepam depressed remarkably the slowly denaturating phase(s). After heat treatment for 50 min, the single component of GABA receptors with Kd of 14.3 nM and Bmax of 0.6 pmol/mg protein survived, whereas in the membranes preincubated with 3 μM diazepam, the Kd and Bmax of the still viable GABA receptors were 14.8 nM and 1.14 pmol/mg protein, respectively. In light of these findings, the stimulation of the lower affinity component of GABA receptors may be related to the protective effect of these drugs against heat inactivation.  相似文献   

12.
The tritium-labeled dipeptide bestim (gamma-D-Glu-L-Trp) with a specific activity of 45 Ci/mmol was obtained by high-temperature solid-state catalytic isotope exchange. It was found that [3H]bestim binds with a high affinity to murine peritoneal macrophages (Kd 2.1 +/- 0.1 nM) and thymocytes (Kd 3.1 +/- 0.2 nM), as well as with plasma membranes isolated from these cells (Kd 18.6 +/- 0.2 and 16.7 +/- 0.3 nM, respectively). The specific binding of [3H]bestim to macrophages and thymocytes was inhibited by the unlabeled dipeptide thymogen (L-Glu-L-Trp) (Ki 0.9 +/- 0.1 and 1.1 +/- 0.1 nM, respectively). After treatment with trypsin, macrophages and thymocytes lost the ability to bind [3H]bestim. Bestim in the concentration range of 10(-10) to 10(-6) M reduced the adenylate cyclase activity in the membranes of murine macrophages and thymocytes.  相似文献   

13.
Mycoplasmataceae are known to express various proteins that are similar to those present in mammals. We report a strain of Mycoplasma hyorhinis isolated from opossum kidney cells with specific, high-affinity binding sites for human angiotensin II (Kd = 5.1 +/- 1.9 nM). In contrast, two strains of M. hominis revealed no specific binding. These binding sites resembled mammalian angiotensin II receptors by their high affinity and by their sensitivity to dithiothreitol. However, they are different from mammalian angiotensin II receptors in that they bind angiotensin I with high affinity (Kd = 1.6 +/- 0.29 nM) but not angiotensin III (Kd approximately 330,000 nM). [125I]-angiotensin II binding was not inhibited by angiotensin receptor subtype antagonists DuP 753 and CGP 42112A but it was sensitive to bacitracin and aprotinin. Positions Asp1, Ile5, His6 and Pro7 were essential for binding to M. hyorhinis as deletion of these residues led to a more than 10,000-fold decrease in affinity.  相似文献   

14.
An amiloride binding protein in adult rat and rabbit alveolar type II (ATII) cells was characterized using three different antibodies against epithelial Na+ channel proteins. We found that 1) polyclonal antibodies raised against epithelial Na+ channel proteins from bovine kidney cross-react with a 135-kDa protein in ATII membrane vesicles on Western blots; 2) using the photoreactive amiloride analog, 2'-methoxy-5'-nitrobenzamil (NMBA), in combination with anti-amiloride antibodies, we found that NMBA specifically labeled the same M(r) protein; and 3) monoclonal anti-idiotypic antibodies directed against anti-amiloride antibodies also recognized this same M(r) protein on Western blots. We also demonstrated a low benzamil affinity binding site (apparent Kd = 370 nM) in rabbit ATII cell membranes and both high and low benzamil affinity binding sites (apparent Kd = 6 nM and 230 nM) in bovine kidney membranes using [3H]Br-benzamil as a ligand. Pharmacological inhibitory profiles for displacing bound [3H]Br-benzamil were also different between ATII cells and bovine kidneys. These observations indicate that adult ATII pneumocytes express a population of epithelial Na+ channels having a low affinity to benzamil and amiloride and a pharmacological inhibitory profile different from that in bovine kidney.  相似文献   

15.
Calmodulin has been shown to interact with high affinity with muscle phosphofructokinase (Mayr, G. W. (1984) Eur. J. Biochem. 143, 513-520, 521-529). In this study, direct binding measurements indicated that each of the two subunits of dimeric phosphofructokinase bound two calmodulins with Kd values of about 3 nM and 1 microM, respectively, in a strictly Ca2+-dependent way. To get more detailed information about this interaction, calmodulin-binding fragments were isolated from a CNBr digest of phosphofructokinase using affinity chromatography on calmodulin-agarose. Two fragments, M11 (Mr 3080) and M22 (Mr 8060), formed a 1:1 stoichiometric complex with Ca2+-calmodulin. The amino acid sequences of these fragments were determined, and their positions in the three-dimensional structure-model of phosphofructokinase are proposed. Fragment M11, which binds to calmodulin with the higher affinity (Kd 11.4 nM), is located in a region of the subunit where two dimers have been proposed to make contacts if associating to active tetrameric enzyme. A stabilization of the dimeric form of the enzyme by binding of calmodulin supports this location of M11. The weaker binding fragment M22 (Kd 198 nM) corresponds to the C-terminal part of the polypeptide and contains the site which is phosphorylated by cAMP-dependent protein kinase. Both fragments have structural properties in common with the isolated calmodulin-binding domains of myosin light chain kinase: two cationic segments rich in hydrophobic residues, one constantly possessing a tryptophan, and the other exhibiting an amino acid sequence resembling sites phosphorylated by cAMP-dependent protein kinase.  相似文献   

16.
The effect of the human rIL-1 alpha and rTNF-alpha on the binding of 125I-labeled epidermal growth factor ([125I]EGF) to its receptor (EGF-R) has been studied in human gingival fibroblasts (HuGi). Incubation of these cells with recombinant cytokines at 37 degrees C caused a rapid, dose-dependent decrease in their ability to subsequently bind subsaturating levels of [125I]EGF at 4 degrees C. Inhibition was evident at 5 min after addition of cytokines, reached a maximal level (60-70% reduction) after 15 to 30 min, and declined thereafter. Normal EGF binding was attained by 2 h. Half-maximal inhibition of EGF binding occurred at 10 pM IL-1 and 50 pM TNF. The two cytokines were not additive in their effect. Competition experiments at 4 degrees C showed that the cytokines did not interact directly with EGF-R; Scatchard analysis of binding of [125I]EGF to HuGi after treatment with IL-1 and TNF revealed an increase in EGF-R Kd from 0.75 nM to 2.9 nM with no change in receptor number. The effect of IL-1 and TNF on EGF-R was compared with that of the tumor-promotor PMA which is known to "transmodulate" EGF-R affinity by activating protein kinase C which then phosphorylates EGF-R. PMA caused a greater inhibition of EGF binding to HuGi (80 to 85% inhibition; ED50 = 500 pM), and recovery of binding was much slower. Importantly, in HuGi made deficient in protein kinase C by prolonged incubation with PMA, addition of fresh PMA no longer affected EGF binding, while the response to IL-1 and TNF was intact. Cytokine- but not PMA-mediated EGF-R transmodulation was partially reversed by treatment of the cells with millimolar concentrations of the kinase inhibitor amiloride. HuGi were incubated with H3 32PO4, stimulated with PMA or cytokines, and EGF-R were immunoprecipitated; IL-1 and TNF, like PMA, caused a 2- to 5-fold increase in receptor phosphorylation. We conclude that occupation of IL-1 and TNF-R activates a protein kinase, distinct from kinase C, for which EGF-R is a substrate.  相似文献   

17.
Thrombomodulin is an endothelial glycoprotein that serves as a cofactor for protein C activation. To examine the ligand specificity of human thrombomodulin, we performed equilibrium binding assays with human thrombin, thrombin S205A (wherein the active site serine is replaced by alanine), meizothrombin S205A, and human factor Xa. In competition binding assays with CV-1(18A) cells expressing cell surface recombinant human thrombomodulin, recombinant wild type thrombin and thrombin S205A inhibited 125I-diisopropyl fluorophosphate-thrombin binding with similar affinity (Kd = 6.4 +/- 0.5 and 5.3 +/- 0.3 nM, respectively). However, no binding inhibition was detected for meizothrombin S205A or human factor Xa (Kd greater than 500 nM). In direct binding assays, 125I-labeled plasma thrombin and thrombin S205A bound to thrombomodulin with Kd values of 4.0 +/- 1.9 and 6.9 +/- 1.2 nM, respectively. 125I-Labeled meizothrombin S205A and human factor Xa did not bind to thrombomodulin (Kd greater than 500 nM). We also compared the ability of thrombin and factor Xa to activate human recombinant protein C. The activation of recombinant protein C by thrombin was greatly enhanced in the presence of thrombomodulin, whereas no significant activation by factor Xa was detected with or without thrombomodulin. Similar results were obtained with thrombin and factor Xa when human umbilical vein endothelial cells were used as the source of thrombomodulin. These results suggest that human meizothrombin and factor Xa are unlikely to be important thrombomodulin-dependent protein C activators and that thrombin is the physiological ligand for human endothelial cell thrombomodulin.  相似文献   

18.
The calcium ionophore A23187 synergised with phorbol dibutyrate-induced activation of human chronic lymphatic leukaemia B-cells, as assessed by modulation of the membrane receptor for mouse erythrocytes. Thus A23187 (1 microM), which alone had no effect on expression of the receptor for mouse erythrocytes, reduced the EC50 and shortened the lag period for modulation of this receptor by phorbol dibutyrate. This action of A23187 was shown to be due to enhanced binding of [3H]phorbol dibutyrate to its receptor (phospholipid/Ca++ dependent protein kinase C) whose affinity was altered from a predominantly low affinity state (Kd 83 nM) to high affinity (Kd 9 nM). A23187 had no effect on the total number of phorbol dibutyrate receptors. EDTA abolished these actions of A23187.  相似文献   

19.
Characterization of the sulfonylurea receptor on beta cell membranes   总被引:10,自引:0,他引:10  
Specific, high affinity sulfonylurea receptors were characterized on membranes of an insulin-secreting hamster beta cell line (HIT cells). Saturable binding of the sulfonylurea, [3H]glyburide, was linear up to 0.8 mg/ml membrane protein. Scatchard analysis of equilibrium binding data at room temperature indicated the presence of a single class of saturable, high affinity binding sites with a Kd of 0.76 +/- 0.04 nM and a Bmax of 1.09 +/- 0.13 pmol/mg protein, n = 9. The insulin secretory potency of glyburide, glipizide, tolbutamide, tolazamide, and carboxytolbutamide was compared to the ability of these ligands to displace [3H]glyburide from the sulfonylurea receptor. Tolbutamide, tolazamide, and glipizide demonstrated reasonable agreement with ED50 values of 15 microM, 3 microM, and 30 nM and Ki values of 25.3 microM, 7.2 microM, and 45 nM, respectively. The inactive tolbutamide metabolite, carboxytolbutamide, at the highest concentration tested, only partially displaced [3H]glyburide from the receptor and was a very poor secretagogue. At 37 degrees C the affinity of [3H]glyburide binding, Kd = 2.0 nM, was similar to the ED50 of 5.5 nM when the free glyburide concentrations were corrected for binding of the drug to albumin. These studies suggest that sulfonylureas initiate their biologic effect through a high affinity, specific interaction with sulfonylurea receptors on the beta cell membrane.  相似文献   

20.
The existence of multiple affinity states for the opiate receptor in neuroblastoma x glioma NG108-15 hybrid cells has been demonstrated by competition binding studies with tritiated diprenorphine and [D-Ala2, D-Leu5]enkephalin (DADLE). In the presence of 10 mM Mg2+, all receptors exist in a high affinity state with Kd = 1.88 +/- 0.16 nM. Addition of 10 microM guanyl-5'-yl imidodiphosphate (Gpp(NH)p) decreased the affinity of DADLE to Kd = 8.08 +/- 0.93 nM. However, in the presence of 100 mM Na+, which is required for opiate inhibition of adenylate cyclase activity, analysis of competition binding data revealed three sites: the first, consisting of 17.5% of total receptor population has a Kd = 0.38 +/- 0.18 nM; the second, 50.6% of the population, has a Kd = 6.8 +/- 2.2 nM; and the third, 31.9% of the population, has a Kd of 410 +/- 110 nM. Thus, in the presence of sodium, a high affinity complex between receptor (R), GTP binding component (Ni), and ligand (L) was formed which was different from that formed in the absence of sodium. These multiple affinity states of receptor in the hybrid cells are agonist-specific, and the percentage of total opiate receptor in high affinity state is relatively constant in various concentrations of Na+. Multiple affinity states of opiate receptor can be demonstrated further by Scatchard analysis of saturation binding studies with [3H]DADLE. In the presence of Mg2+, or Gpp(NH)p, analysis of [3H]DADLE binding demonstrates that opiate receptor can exist in a single affinity state, with apparent Kd values of [3H]DADLE in 10 mM Mg2+ = 1.75 +/- 0.28 nM and in 10 microM Gpp(NH)p = 0.85 +/- 0.12 nM. There is a reduction of Bmax value from 0.19 +/- 0.02 nM in the presence of Mg2+ to 0.14 +/- 0.03 nM in the presence of Gpp(NH)p. In the presence of 100 mM Na+, Scatchard analysis of saturation binding of [3H]DADLE reveals nonlinear plots; two-site analysis of the curves yields Kd = 0.43 +/- 0.09 and 7.9 +/- 3.2 nM. These Kd values are analogous to that obtained with competition binding studies. Again, this conversion of single site binding Scatchard plots to multiple sites binding plots in the presence of Na+ is restricted to 3H-agonist binding only.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号