首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
Clostridium botulinum type A spores were inoculated at a level of 10(7) spores per ml into sterile beef media with protein concentrations of 1, 2, 3, 4, or 6% and acidified to pH values of 2.01 to 4.75 with hydrochloric acid or 4.19 to 4.60 with citric acid. All experimental manipulations, including blending, acidification, inoculation, incubation (30 degrees C), and analyses, were conducted in an anaerobic chamber-incubator in which atmospheric oxygen levels were maintained below 2 ppm (2 microliters/liter). Under these strict anaerobic conditions (oxidation-reduction values in media ranging from -370 to -391 mV), C. botulinum spores were consistently found to germinate, grow, and produce toxin below pH 4.6. The boundary between toxic and atoxic samples in HC1-acidified beef media was mediated by titratable acidity, pH, and protein concentration. A limiting acidity was not established for the citrate-acidified samples; all blends tested (1, 2, 3, and 4% protein and titratable acidities of 0.091 to 0.453%) became toxic within 5 weeks. At the same pH and protein concentration, citric acid was less effective than HC1 in preventing the germination of C. botulinum spores. Higher levels of cell proliferation in the beef protein, as well as enhanced gas production and putrefactive degradation, indicated that beef was a better substrate than soy for C. botulinum spores under these conditions. Reducing the inoculum to 10(4) delayed but did not prevent spore outgrowth and toxin release at pH levels below 4.6.  相似文献   

2.
The anaerobic film pouch was demonstrated to be an effective device for the primary isolation of Clostridium botulinum types A and B spores from raw pork, beef, and chicken. Optimal pasteurization of these meats (for reduction of nonspore microflora without affecting indigenous putrefactive anaerobic spore levels) was 50 min at 60 C. C. botulinum spores were recovered with good precision from meat samples inoculated with mixtures of C. botulinum and Putrefactive Anaerobe 3679 at 1:1 and at 1:99 ratios. Verification of C. botulinum isolates was accomplished by protection testing of subcultures in mice.  相似文献   

3.
The effect of combinations of temperature (2°, 3°, 4°, 5°, 8° and 10°C), pH (5·0–7·2) and NaCl (0·1–5·0% w/w) on growth from spores of non-proteolytic Clostridium botulinum types B, E and F was determined using a strictly anaerobic medium. Inoculated media were observed weekly for turbidity, and tests were made for the presence of toxin in conditions that approached the limits of growth. Growth and toxin production were detected at 3°C in 5 weeks, at 4°C in 3/4 weeks and at 5°C in 2/3 weeks. The resulting data define growth/no growth boundaries with respect to low temperature, pH, NaCl and incubation time. This is important in assessment of the risk of growth and toxin production by non-proteolytic Cl. botulinum in minimally processed chilled foods.  相似文献   

4.
Toxin production by Clostridium botulinum was studied in a model cured beef sausage containing decolourized dried bovine red blood cells (RBC), including intact RBC, acetone-treated RBC, enzyme-treated RBC, peroxide-treated RCB or plasma. Samples were formulated with beef shoulder, curing agents and spores of proteolytic strains of Clostridium botulinum. Vacuum packaged samples were heated to 72°C, stored at 28°C, and tested weekly. Sausages contained iron levels proportional to the iron in the blood fraction. Residual nitrite levels varied between < 10–40 μg g-1. Toxin was detected earlier in samples containing higher levels of iron except for acetone-treated RBC. Higher pH values were associated with shorter times to toxin detection. We conclude that the RBC decolourization method can significantly modulate Cl. botulinum growth and toxigenesis.  相似文献   

5.
AIMS: Limited information is available on the germination triggers for spores of non-proteolytic Clostridium botulinum. An automated system was used to study the effect of a large number of potential germinants, of temperature and pH, and aerobic and anaerobic conditions, on germination of spores of non-proteolytic Cl. botulinum types B, E and F. METHODS AND RESULTS: A Bioscreen analyser was used to measure germination by decrease in optical density. Results were confirmed by phase-contrast light microscopy. Spores of strains producing type B, E and F toxin gave similar results. Optimum germination occurred in L-alanine/L-lactate, L-cysteine/L-lactate and L-serine/L-lactate (50 mmol l(-1) of each). A further 12 combinations of factors induced germination. Sodium bicarbonate, sodium thioglycollate and heat shock each enhanced germination, but were not essential. Germination was similar in aerobic and anaerobic conditions. The optimum pH range was 5.5-8.0, germination occurred at 1-40 degrees C, but not at 50 degrees C, and was optimal at 20-25 degrees C. CONCLUSIONS: The automated system enabled a systematic study of germination requirements, and provided an insight into germination in spores of non-proteolytic Cl. botulinum. SIGNIFICANCE AND IMPACT OF THE STUDY: The results extend understanding of germination of non-proteolytic Cl. botulinum spores, and provide a basis for improving detection of viable spores.  相似文献   

6.
In strictly anaerobic conditions in a culture medium adjusted to pH 5.2 with HCl and incubated at 30 degrees C, inocula containing less than 10 vegetative bacteria of Clostridium botulinum ZK3 (type A) multiplied to give greater than 10(8) bacteria per ml in 3 d. Growth from an inoculum of between 10 and 100 spores occurred after a delay of 10-20 weeks. Citric acid concentrations of 10-50 mmol/l at pH 5.2 inhibited growth from both vegetative bacteria and spore inocula, a concentration of 50 mmol/l increasing the number of vegetative bacteria or of spores required to produce growth by a factor of approximately 10(6). The citric acid also reduced the concentration of free Ca2+ in the medium. The inhibitory effect of citric acid on vegetative bacteria at pH 5.2 could be prevented by the addition of Ca2+ or Mg2+ and greatly reduced by Fe2+ and Mn2+. The addition of Ca2+, but not of the remaining divalent metal ions, restored the concentration of free Ca2+ in the medium to that in the citrate-free medium. The inhibitory effect of citric acid on growth from a spore inoculum was only partially prevented by Ca2+. Citric acid (50 mmol/l) did not inhibit growth of strain ZK3 at pH 6 despite the greater chelating activity of citrate at pH 6 than at pH 5.2. The effect of citric acid and Ca2+ at pH 5.2 on vegetative bacteria of strains VL1 (type A) and 2346 and B6 (proteolytic type B) was similar to that on strain ZK3.  相似文献   

7.
The ability of spores of one type A and one type B strain of Clostridium botulinum to grow and produce toxin in tomato juice was investigated. The type A strain grew at pH 4.9, but not at pH 4.8; the type B strain grew at pH 5.1, but not at pH 5.0. Aspergillus gracilis was inoculated along with C. botulinum spores into pH 4.2 tomato juice; in a nonhermetic unit, a pH gradient developed under the mycelial mat, resulting in C. botulinum growth and toxin production. In a hermetic unit, mold growth was reduced, and no pH gradient was detected; however, C. botulinum growth and low levels of toxin production (less than 10 50% lethal doses per ml) still occurred and were associated with the mycelial mat. The results of tests to find filterable or dialyzable growth factors were negative. It was demonstrated that for toxin production C. botulinum and the mold had to occupy the same environment.  相似文献   

8.
The ability of spores of one type A and one type B strain of Clostridium botulinum to grow and produce toxin in tomato juice was investigated. The type A strain grew at pH 4.9, but not at pH 4.8; the type B strain grew at pH 5.1, but not at pH 5.0. Aspergillus gracilis was inoculated along with C. botulinum spores into pH 4.2 tomato juice; in a nonhermetic unit, a pH gradient developed under the mycelial mat, resulting in C. botulinum growth and toxin production. In a hermetic unit, mold growth was reduced, and no pH gradient was detected; however, C. botulinum growth and low levels of toxin production (less than 10 50% lethal doses per ml) still occurred and were associated with the mycelial mat. The results of tests to find filterable or dialyzable growth factors were negative. It was demonstrated that for toxin production C. botulinum and the mold had to occupy the same environment.  相似文献   

9.
Growth and toxin formation by Clostridium botulinum at low pH values   总被引:10,自引:6,他引:4  
Spores of Clostridium botulinum were found to initiate growth and to produce toxin in aqueous suspensions of soya protein at pH values as low as 4-2 and in skimmed milk at pH 4.4. Most of the experiments were done with mixed cultures of CI. botulinum types A and B in the presence of two strains of Bacillus subtilis. The role of the latter organism was concluded to be to lower the oxygen content and the Eh of the suspensions. Toxin was produced at pH 4-4 after 4 weeks of incubation at 30oC when either hydrochloric or citric acids were used as the acidulant and after 12 and 14 weeks when, respectively, lactic and acetic acids were used. Thus, amongst other factors the nature of the acid and not solely the pH value is an important factor in controlling the growth of Cl. botulinum at low pH. Pure cultures of Cl botulinum type A grew at 30oC under strictly anaerobic conditions and produced toxin at pH 4-3 in the presence of hydrochloric acid.  相似文献   

10.
The metabiotic effect of Bacillus licheniformis on Clostridium botulinum was examined. B. licheniformis elevated the pH of a model system with an initial pH of 4.4 so that C. botulinum grew and produced toxin. Toxin production was observed when spores from both species were coinoculated at levels as low as 10 spores per ml. When pint jars of tomatoes were used, canner size contributed to a 10,000-fold difference in the lethality of a boiling water bath process on B. licheniformis spores. Botulinal toxin was not detected in pH-elevated jars of tomatoes containing C. botulinum spores.  相似文献   

11.
Oxidation of Acetate by Various Strains of Bacillus popilliae   总被引:5,自引:3,他引:2       下载免费PDF全文
A number of strains of Bacillus popilliae were examined for their ability to oxidize acetate. Some of these would not sporulate in vitro, and some were oligosporogenous. The ability to oxidize acetate varied widely among the strains tested. A culture derived from spores of the parent strain produced in vivo and one of the asporogenous strains derived from it failed to produce any significant levels of (14)CO(2) from [(14)C]acetate. Oligosporogenous strains derived from the same parent culture all produced (14)CO(2) from both [1-(14)C] and [2-(14)C]acetate but at relatively low rates. The highest rates of acetate oxidation were observed with three strains which did not produce spores in vitro. When cultured under appropriate conditions, one of these strains displayed a secondary growth response concomitant with a decrease in the titratable acidity and an increase in the pH of the medium. The data indicate that B. popilliae has a complete citric acid cycle but that the activity of the cycle is strongly repressed in wild-type strains under the usual conditions used for in vitro cultivation.  相似文献   

12.
This study was conducted to examine the effects of 0.3-Mrad irradiation on growth and toxigenicity of Clostridium botulinum types A and B on chicken skins. Irradiation followed by aerobic or anaerobic incubation at 30 degrees C extended the shelf life of skin samples and delayed growth and toxin production by C. botulinum. During 2 weeks of incubation at 10 degrees C, the irradiated and nonirradiated C. botulinum spores failed to grow or produce toxin.  相似文献   

13.
This study was conducted to examine the effects of 0.3-Mrad irradiation on growth and toxigenicity of Clostridium botulinum types A and B on chicken skins. Irradiation followed by aerobic or anaerobic incubation at 30 degrees C extended the shelf life of skin samples and delayed growth and toxin production by C. botulinum. During 2 weeks of incubation at 10 degrees C, the irradiated and nonirradiated C. botulinum spores failed to grow or produce toxin.  相似文献   

14.
The combined effect of water activity (aw) and pH on growth and toxin production by Clostridium botulinum type G strain 89 was investigated. The minimum aw at which growth and toxin formation occurred was 0.965, for media in which the pH was adjusted with either sodium chloride or sucrose. The minimum pH (at the optimum aw) for growth and toxin production of C. botulinum type G was found to be 5.6. Optimum conditions for toxin activation were a trypsin concentration of 0.1%, a pH of the medium of 6.5, and an incubation for 45 min at 37 degrees C. These data did not show evidence of heat-labile spores, since a heat shock of 75 degrees C for 10 min did not significantly decrease the spore count of strain 89G in media at pH 7.0 or 5.6. It was frequently observed that cells grown at reduced aw or pH experienced severe morphological changes.  相似文献   

15.
The combined effect of water activity (aw) and pH on growth and toxin production by Clostridium botulinum type G strain 89 was investigated. The minimum aw at which growth and toxin formation occurred was 0.965, for media in which the pH was adjusted with either sodium chloride or sucrose. The minimum pH (at the optimum aw) for growth and toxin production of C. botulinum type G was found to be 5.6. Optimum conditions for toxin activation were a trypsin concentration of 0.1%, a pH of the medium of 6.5, and an incubation for 45 min at 37 degrees C. These data did not show evidence of heat-labile spores, since a heat shock of 75 degrees C for 10 min did not significantly decrease the spore count of strain 89G in media at pH 7.0 or 5.6. It was frequently observed that cells grown at reduced aw or pH experienced severe morphological changes.  相似文献   

16.
Minimal growth temperatures of four marine and two terrestrial strains of Clostridium botulinum type C were determined in a laboratory culture medium, fortified egg meat medium (FEM), and in ground haddock. The inoculum equaled 2 × 106 viable spores per tube with five-tube replicate sets. The spores were preheated in aqueous suspension at 71 C for 15 min prior to inoculation to reduce toxin carry-over. Similar results were obtained in both substrates. Both the marine and the terrestrial strains grew at 15.6 C, but only the terrestrial strains grew at 12.8 C. None of the strains grew at 10 C during prolonged incubation. The sodium chloride tolerance and the pH sensitivity of the marine and the terrestrial strains were determined at 30 C. The basal medium consisted of beef infusion broth. The inoculum level equaled 2 × 106 unheated spores per replicate. Growth was inhibited at salt concentrations from 2.5 to 3.0%. The terrestrial strains were more pH-sensitive than the marine strains. Whereas the terrestrial strains failed to grow below pH 5.62, three of the marine strains grew at pH 5.10, but not at pH 4.96, during extended incubation. One marine strain grew at pH 5.25, but not below. FEM and proteose peptone-Trypticase-yeast extract-glucose medium permitted the production of high levels of botulinum toxin among four media tested. Toxin produced by the marine and terrestrial strains showed no increase in toxicity after incubation with trypsin.  相似文献   

17.
Growth initiated from detoxified spores of Clostridium botulinum 62A resulted in toxin production of 50 to 10,000 mouse lethal doses (MLD) per gram of processed soft surface-ripened cheese. Regular assays during subsequent storage of toxic samples at 2 to 4 C revealed a characteristic two- to fivefold increase in toxin titer during the initial 1 week to 12 months of storage. Thereafter, the toxin titer remained constant for 2 to 4 years, after which the toxicity declined rapidly. At the end of 6 years of storage at 2 to 4 C, the samples still contained 20 to 5,000 MLD of toxin per gram, with the usual toxin level at 200 to 500 MLD. Toxic culture filtrates of C. botulinum incorporated into cheese and stored at 30 C for 60 days showed no decline in toxin in processed type I cheese, but toxin decreased slightly in processed type II and type III cheese. The surface flora of these cheeses did not attack but, on the contrary, protected C. botulinum toxin during storage at 30 C. Initial difficulties in recovering C. botulinum organisms from type I cheese were traced to growth inhibitory activity which could be removed by washing with distilled water in a centrifuge. Viable spores or vegetative cells could be recovered from all samples after 4 to 5 years of storage at 2 to 4 C. After 6 years, organisms were recovered from all except three samples of type I cheese. Two other samples showed a large decrease in viable organisms. In type III cheese, spores remained remarkably stable for 6 years at the level of the initial inoculum, i.e., approximately 10(5) spores per gram.  相似文献   

18.
A number of lipids known to be constituents of nerve-ending membranes were tested for their ability to inactivate botulinum toxin. Inactivation of the toxin by a lipid was taken as presumptive evidence that the lipid might be the in vivo receptor for the toxin. Several sphingolipids (sphingosine, galactosylceramide, glucosylceramide, lactosylceramide, cytolipin K and cytolipin R), steroids (cholesterol and deoxycholic acid) and fatty acids (palmitic acid, stearic acid, prostaglandin E1) did not affect the potency of botulinum toxin, and thus were discounted as potential toxin receptors. However, the gangliosides did inactivate botulinum toxin rapidly (in less than 5 min), within a temperature range of 2°-40°C, and at ionic strengths of 0.05-0.40. Inactivation diminished as pH fell below 6. The activity of gangliosides in suppressing the potency of botulinum toxin was a function of the number of sialic acid residues in the lipid. Thus, the data suggest that a molecule containing sialic acid may be the receptor for the toxin.  相似文献   

19.
The isolation of Clostridium botulinum from honey samples is described. Botulism is characterized as an intoxication provoked by ingestion of contaminated foods with this toxin. Infant botulism happens by the ingestion of spores of C. botulinum together with food that in special conditions of the intestinal tract, such as those present in babies of less than 1 year old, will allow the germination and colonization of the intestine with production and absorption of botulinic toxin. The samples were subjected to dilution and to a thermal shock and cultivated in modified CMM (Difco). Cultures were subjected to Gram smears and toxicity tests in mice. The toxic cultures were purified in RFCA (Oxoid) plates and incubated in anaerobic jars. Positive samples were typed using the mouse assay neutralization test. From the 85 honey samples analyzed, six were positive for C. botulinum (7.06%), and identified as producers of type A, B, and D toxins.  相似文献   

20.
Vegetative cells and spores of 10 strains of Clostridium botulinum representing types A, B, and E were grown in Trypticase-peptone-sucrose-yeast extract (TPSY) medium. Five type E strains were also grown in Multipeptone-sucrose-Nutramino acids (MSN) medium. Lyophilized samples were subjected to pyrolysis-gas-liquid chromatography (PGLC) analysis, and the resulting pyrograms were examined for variations in elution patterns between spores and vegetative cells of types A, B, and E grown in the TPSY medium and spores and vegetative cells of type E grown in the TPSY medium and spores and vegetative cells of type E grown in TPSY and MSN media. Growth and toxin production of all 10 strains of C. botulinum were investigated by using a modified dialysis sac culture technique. The dialysate supernatant fluid (DSF) obtained after centrifugation of the 5-day-old cultures from the dialysate was also subjected to PGLC analysis. Control samples consisting of (i) noninoculated DSF, (ii) noninoculated DSF plus partially purified toxin, and (iii) 1.0 mg of partially purified toxin were also analyzed by PGLC. Differences between pyrograms of cultures were suitable for positive identification at the type level but not at the strain level. Pyrograms permitting differentiation were also obtained between spores and vegetative cells as well as between the same cultures grown in different media. The dialysis sac technique was useful in detecting growth but not toxin production of C. botulinum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号