首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Root-colonizing, saprophytic fluorescent pseudomonads of the Pseudomonas putida-P. fluorescens group express similar levels of catalase and superoxide dismutase activities during growth on a sucrose- and amino acid-rich medium. Increased specific activities of catalase but not superoxide dismutase were observed during growth of these bacteria on components washed from root surfaces. The specific activities of both enzymes were also regulated during contact of these bacteria with intact bean roots. Increased superoxide dismutase and decreased catalase activities were observed rapidly, by 10 min upon inoculation of cells onto intact bean roots. Catalase specific activity increased with time to peak at 12 h before declining. By 48 h, the cells displayed this low catalase but maintained high superoxide dismutase specific activities. Catalase with a low specific activity and a high superoxide dismutase activity also were present in extracts of cells obtained from 7-day-old roots colonized from inoculum applied to seed. This specific activity of superoxide dismutase of root-contacted cells was about fourfold-higher in comparison to cells grown on rich medium, whereas the specific activity for catalase was reduced about fivefold. A single catalase isozyme, isozyme A, and one isozyme of superoxide dismutase, isozyme 1, were detected during growth of the bacteria on root surface components and during exposure of cells to intact bean roots for 1 h. An additional catalase, isozyme B, was detected from bacteria after exposure to the intact bean roots for 12 h. Catalase isozyme A and superoxide dismutase isozyme 1 were located in the cytoplasm and catalase band B was located in the membrane of P. putida.  相似文献   

2.
Leishmania tropica promastigotes stimulate macrophages to produce activated oxygen as measured by luminol-enhanced chemiluminescence. Exogenous superoxide dismutase and catalase inhibit this by 95%, implying that both superoxide and hydrogen peroxide are generated. Whereas leishmania have undetectable levels of catalase, and very little glutathione peroxidase, they have relatively high amcunts of superoxide dismutase (23 units/mg protein). The leishmanial superoxide dismutase is cyanide-insensitive but azide- and peroxide-sensitive, suggesting that the enzyme may be iron-containing. Furthermore, the leishmanial superoxide dismutase is insensitive to diethyldithiocarbamate, which inhibits vertebrate enzymes. Thus, leishmania may contain a superoxide dismutase which is different from its host's enzyme. A specific inhibitor of this enzyme might serve as an antileishmanial agent.  相似文献   

3.
The effects of ozone at 0.25, 0.40, and 1.00 ppm on Listeria monocytogenes were evaluated in distilled water and phosphate-buffered saline. Differences in sensitivity to ozone were found to exist among the six strains examined. Greater cell death was found following exposure at lower temperatures. Early stationary-phase cells were less sensitive to ozone than mid-exponential- and late stationary-phase cells. Ozonation at 1.00 ppm of cabbage inoculated with L. monocytogenes effectively inactivated all cells after 5 min. The abilities of in vivo catalase and superoxide dismutase to protect the cells from ozone were also examined. Three listerial test strains were inactivated rapidly upon exposure to ozone. Both catalase and superoxide dismutase were found to protect listerial cells from ozone attack, with superoxide dismutase being more important than catalase in this protection.  相似文献   

4.
Dystrophin is a protein found at the plasmatic membrane in muscle and postsynaptic membrane of some neurons, where it plays an important role on synaptic transmission and plasticity. Its absence is associated with Duchenne's muscular dystrophy (DMD), in which cognitive impairment is found. Oxidative stress appears to be involved in the physiopathology of DMD and its cognitive dysfunction. In this regard, the present study investigated oxidative parameters (lipid and protein peroxidation) and antioxidant enzymes activities (superoxide dismutase and catalase) in prefrontal cortex, cerebellum, hippocampus, striatum and cortex tissues from male dystrophic mdx and normal C57BL10 mice. We observed (1) reduced lipid peroxidation in striatum and protein peroxidation in cerebellum and prefrontal cortex; (2) increased superoxide dismutase activity in cerebellum, prefrontal cortex, hippocampus and striatum; and (3) reduced catalase activity in striatum. It seems by our results, that the superoxide dismutase antioxidant mechanism is playing a protective role against lipid and protein peroxidation in mdx mouse brain.  相似文献   

5.
A. R. McEuen  H. A. O. Hill 《Planta》1982,154(4):295-297
The possible involvement of superoxide and hydrogen peroxide in the oxidative gelling of phloem exudate from Cucurbita pepo. was investigated. Neither superoxide dismutase (EC 1.15.1.1) nor catalase (EC 1.11.1.6) inhibited the reaction. Although catalase could not be detected in exudate, both peroxidase (EC. 1.11.1.7) and superoxide dismutase were present in reasonable amounts. Polyacrylamide gel electrophoresis revealed one major and one minor isozyme of superoxide dismutase, both of which were adjudged to contain copper and zinc as their prosthetic metals, on the basis of cyanide inhibition and molecular weight.Abbreviations SOD superoxide dismutase  相似文献   

6.
Glutathione peroxidase (GSH-Px; glutathione: hydrogen peroxide oxidoreductase; EC 1.11.1.9), catalase (H2O2: H2O2 oxidoreductase; EC 1.11.1.6) and superoxide dismutase (superoxide: superoxide oxidoreductase; EC 1.15.1.1) were coisolated from human erythrocyte lysate by chromatography on DEAE-cellulose. Glutathione peroxidase was separated from superoxide dismutase and catalase by thiol-disulfide exchange chromatography and then purified to approximately 90% homogeneity by gel permeation chromatography and dye-ligand affinity chromatography. Catalase and superoxide dismutase were separated from each other and purified further by gel permeation chromatography. Catalase was then purified to approximately 90% homogeneity by ammonium sulfate precipitation and superoxide dismutase was purified to apparent homogeneity by hydrophobic interaction chromatography. The results for glutathione peroxidase represent an improvement of approximately 10-fold in yield and 3-fold in specific activity compared with the established method for the purification of this enzyme. The yields for superoxide dismutase and catalase were high (45 mg and 232 mg, respectively, from 820 ml of washed packed cells), and the specific activities of both enzymes were comparable to values found in the literature.  相似文献   

7.
The activities of phenolase, peroxidase, cytochrome oxidase, catalase and superoxide dismutase, as well as the levels of lipid peroxides, were measured in plerocercoids of S. solidus taken from the body cavity of the fish (unactivated) and in plerocercoids which had been cultured in vitro, either under air, or under 95% N2, 5% CO2. When cultured anaerobically, the activities of phenolase, peroxidase and cytochrome oxidase all increased dramatically. Aerobically, only phenolase activity increased. Lipid peroxide levels and superoxide dismutase activity was similar at all stages and catalase could not be detected. It is suggested that the increased activity of oxidative enzymes in anaerobically cultured worms is an attempt to compensate for the reduced environmental pO2.  相似文献   

8.
Bougainvillea xbuttiana antiviral proteins (AVPs) exhibited high antioxidant activity as measured by ferric reducing / antioxidant (FRAP) power assay. These AVPs were also found to modify activities of antioxidant enzymes like superoxide dismutase, peroxidase and catalase. The activities of superoxide dismutase and peroxidase increased, while the activity of catalase decreased in Tobacco mosaic virus (TMV) infected tobacco leaves. The trend was reversed when the leaves were treated with AVP alone. However, in TMV + AVP treated leaves, the activities of all the three enzymes were found to be midway between the activities obtained with other two treatments. It is therefore, suggested that Bougainvillea AVPs might be controlling viral diseases by scavenging reactive oxygen species as well as by altering host plant cell metabolism to maintain its antioxidant status.  相似文献   

9.
Superoxide dismutase and catalase activity has been studied in isogenous strains of various radioresistance bacteria. In mutants Micrococcus radiodurans having defects in the systems of DNA repair the superoxide dismutase activity is lower than in cells of wild type. The changes of catalase and superoxide dismutase activity have not been revealed in investigated strains Escherichia coli differing in radioresistance. It has been concluded that the survival of bacteria exposed to ionizing radiation is determined by the effectiveness of DNA repair systems realiability of which depends on the catalase and superoxide dismutase activity.  相似文献   

10.
Duckweed Lemna minor L. was grown on Wang culture medium supplemented with lead ions for 24 hours. Metal was tested at 1.5, 3 and 6 mg·dm−3 concentrations. The response of antioxidant enzymes, such as superoxide dismutase, catalase and peroxidase in lead-treated roots of duckweed was investigated. Lead ions had no effect on the spectrum of catalase and peroxidase isoenzymes while a new isoform of superoxide dismutase appeared on the Pb treated roots. A lead-depended increase in activities of superoxide dismutase and peroxidase was observed, whereas catalase activity was maintained at relatively constant values at lower lead concentrations and then decreased markedly below control level.  相似文献   

11.
Superoxide dismutase and catalase activities were studied in Azotobacter vinelandii grown diazotrophically at different ambient oxygen concentrations in continuous culture. Activities were expressed either as specific activity or activity per cell. Specific superoxide dismutase activity increased by a factor of 1.6 with increasing oxygen concentration from about 1% to 90% air saturation of the growth medium whereas specific catalase activity increased only slightly, if at all. Since cell volumes increased in parallel to increases in the oxygen concentration cellular superoxide dismutase activities increased by a factor of 4.3 while cellular catalase activities increased by a factor of 3.3. Under all conditions only the Fe-containing form of superoxide dismutase was detected. The possible function of these enzymes in the protection nitrogenase from oxygen damage is discussed.Abbreviation SOD superoxide dismutase  相似文献   

12.
Reactive oxygen species play a key role in cancer development by inducing and maintaining the oncogenic phenotypes of cancer cells. In this study, we examined lipid peroxidation and antioxidant enzymes activities in the blood and in the tumor of nasopharyngeal carcinoma patients. Plasma malondialdehyde, conjugated dienes, erythrocytes catalase, and superoxide dismutase activities have been measured in 30 untreated nasopharyngeal carcinoma patients and 30 controls on one hand. On the other hand, tumor malondialdehyde level, catalase, and superoxide dismutase activities have been measured in five nasopharyngeal carcinoma patients and compared with four controls. The lipid peroxidation was confirmed in the plasma by the high levels of malondialdehyde and conjugated dienes (p?<?0.001, respectively). Additionally, significantly higher concentrations of malondialdehyde were found in biopsies compared to the control group (p?<?0.001). In erythrocytes, superoxide dismutase activity was higher in patients than in controls (p?<?0.05), while it was unchanged in the tumor (p?>?0.05). Both erythrocytes and tumor catalase activities were significantly lower in patients than in controls (p?<?0.001, respectively). Statistical studies have shown a positive correlation between malondialdehyde level and IgA antibodies level against Epstein–Barr virus capsid antigen (p?<?0.05). In conclusion, we reported the presence of an oxidative stress in the blood and in the biopsies of nasopharyngeal carcinoma patients where Epstein–Barr virus seems to play a role.  相似文献   

13.
Response of Plant-Colonizing Pseudomonads to Hydrogen Peroxide   总被引:5,自引:2,他引:5       下载免费PDF全文
Colonization of plant root surfaces by Pseudomonas putida may require mechanisms that protect this bacterium against superoxide anion and hydrogen peroxide produced by the root. Catalase and superoxide dismutase may be important in this bacterial defense system. Stationary-phase cells of P. putida were not killed by hydrogen peroxide (H2O2) at concentrations up to 10 mM, and extracts from these cells possessed three isozymic bands (A, B, and C) of catalase activity in native polyacrylamide gel electrophoresis. Logarithmic-phase cells exposed directly to hydrogen peroxide concentrations above 1 mM were killed. Extracts of logarithmic-phase cells displayed only band A catalase activity. Protection against 5 mM H2O2 was apparent after previous exposure of the logarithmic-phase cells to nonlethal concentrations (30 to 300 μM) of H2O2. Extracts of these protected cells possessed enhanced catalase activity of band A and small amounts of bands B and C. A single form of superoxide dismutase and isoforms of catalase were apparent in extracts from a foliar intercellular pathogen, Pseudomonas syringae pv. phaseolicola. The mobilities of these P. syringae enzymes were distinct from those of enzymes in P. putida extracts.  相似文献   

14.
The physiological roles of polyphosphates (poly P) recently found in arthropod mitochondria remain obscure. Here, the possible involvement of poly P with reactive oxygen species generation in mitochondria of Rhipicephalus microplus embryos was investigated. Mitochondrial hexokinase and scavenger antioxidant enzymes, such as superoxide dismutase, catalase, and glutathione reductase were assayed during embryogenesis of R. microplus. The influence of poly P3 and poly P15 were analyzed during the period of higher enzymatic activity during embryogenesis. Both poly Ps inhibited hexokinase activity by up to 90% and, interestingly, the mitochondrial membrane exopolyphosphatase activity was stimulated by the hexokinase reaction product, glucose-6-phosphate. Poly P increased hydrogen peroxide generation in mitochondria in a situation where mitochondrial hexokinase is also active. The superoxide dismutase, catalase and glutathione reductase activities were higher during embryo cellularization, at the end of embryogenesis and during embryo segmentation, respectively. All of the enzymes were stimulated by poly P3. However, superoxide dismutase was not affected by poly P15, catalase activity was stimulated only at high concentrations and glutathione reductase was the only enzyme that was stimulated in the same way by both poly Ps. Altogether, our results indicate that inorganic polyphosphate and mitochondrial membrane exopolyphosphatase regulation can be correlated with the generation of reactive oxygen species in the mitochondria of R. microplus embryos.  相似文献   

15.
The effect of ischemia-reperfusion on activity, protein and m-RNA levels of catalase, copper-zinc and manganese containing superoxide dismutases and glutathione peroxidase, the enzymes that are involved in free radical detoxification was studied in rat kidney. Ischemia alone did not alter either the activities or protein levels of superoxide dismutase and glutathione peroxidase. However, catalase activity was found to be inhibited to 82% of control. The inhibition of catalase was due to the inactivation of the enzyme as there was no significant change in enzyme protein level. Reperfusion following ischemia, however, led to a significant decrease in both the activities as well as the protein levels of all the antioxidant enzymes. The observed overall decrease in total superoxide dismutase activity was the net effect of a decrease in copper-zinc superoxide dismutase while manganese superoxide dismutase activity was found to be increased following reperfusion. This observed increased manganese superoxide dismutase activity was the result of its increased protein level. The mRNA levels for catalase, superoxide dismutases, and glutathione peroxidase were observed to be increased (100–145% of controls) following ischemia; reperfusion of ischemic kidneys, however, resulted in a significant decrease in the levels of mRNAs coding for all the enzymes except manganese superoxide dismutase which remained high. These results suggest that in tissue, the down regulation of the antioxidant enzyme system could be responsible for the pathophysiology of ischemia-reperfusion injury.  相似文献   

16.
The effect of genetically determined glutathione deficiency on the fibroblast content of CuZn superoxide dismutase, Mn superoxide dismutase, catalase and glutathione peroxidase was investigated. No significant differences between glutathione-deficient and -proficient human fibroblasts were revealed. There was a large variation in the content of the investigated enzymes in fibroblasts grown and analysed on different occasions. Whereas the contents of CuZn superoxide dismutase, catalase and glutathione peroxidase did not deviate much from what has been found in other human cell-lines and tissues, the fibroblasts were found to contain exceptional amounts of Mn superoxide dismutase.  相似文献   

17.
Variations were studied of the activity and isoenzyme patterns of soluble peroxidase, catalase, catechol oxidase and superoxide dismutase, in needles of the Balkan endemic conifer Serbian spruce, Picea omorika (Pan?.) Purkinye. The samples were collected from the natural habitat of the species, Mt. Tara. Seasonal changes were found to affect enzymatic activities and isoenzyme profiles. Total protein content was significantly lower in the summer than in other seasons. Several isoforms of peroxidase, catechol oxidase and superoxide dismutase (SOD), as well as two catalase isoenzymes were detected. The number of peroxidase isoenzymes was greatest during the vegetative season. Catalase and catechol oxidase peaked in summer and spring, respectively. Total SOD and Mn-SOD activities were significantly higher in the winter samples than the summer ones.  相似文献   

18.
19.
Activities of superoxide dismutase (superoxide:superoxide oxidoreductase, EC 1.15.1.1) and catalase (hydrogen-peroxide:hydrogen-peroxide oxidoreductase, EC 1.11.1.6) were determined during the course of incubation of red cell suspensions with 1,4-naphthoquinone-2-sulfonic acid. In the absence of glucose, incubation with napthoquinone sulfonate resulted in an inhibition of catalase and superoxide dismutase. The catalase inhibitor, 3-amino-1,2,4-triazole enhanced inactivation of catalase in the presence of naphthoquinone sulfonate and this in turn led to augmented inhibition of superoxide dismutase. The presence of glucose in the incubation medium prevented napthoquinone sulfonate-induced enzyme inhibition in the absence of aminotriazole, but had little effect in the presence of aminotriazole. The relevance of these findings to the cellular interrelationship of peroxidatic enzymes and superoxide dismutase is discussed.  相似文献   

20.
Cytokinins (CKs) as well as the antioxidant enzyme system (AES) play important roles in plant stress responses. The expression and activity of antioxidant enzymes (AE) were determined in drought, heat and combination of both stresses, comparing the response of tobacco plants overexpressing the main cytokinin degrading enzyme, cytokinin oxidase/dehydrogenase, under the control of root-specific WRKY6 promoter (W6:CKX1 plants) or constitutive promoter (35S:CKX1 plants) and the corresponding wild-type (WT). Expression levels as well as activities of cytosolic ascorbate peroxidase, catalase 3, and cytosolic superoxide dismutase were low under optimal conditions and increased after heat and combined stress in all genotypes. Unlike catalase 3, two other peroxisomal enzymes, catalase 1 and catalase 2, were transcribed extensively under control conditions. Heat stress, in contrast to drought or combined stress, increased catalase 1 and reduced catalase 2 expression in WT and W6:CKX1 plants. In 35S:CKX1, catalase 1 expression was enhanced by heat or drought, but not under combined stress conditions. Mitochondrial superoxide dismutase expression was generally higher in 35S:CKX1 plants than in WT. Genes encoding for chloroplastic AEs, stromatal ascorbate peroxidase, thylakoidal ascorbate peroxidase and chloroplastic superoxide dismutase, were strongly transcribed under control conditions. All stresses down-regulated their expression in WT and W6:CKX1, whereas more stress-tolerant 35S:CKX1 plants maintained high expression during drought and heat. The achieved data show that the effect of down-regulation of CK levels on AES may be mediated by altered habit, resulting in improved stress tolerance, which is associated with diminished stress impact on photosynthesis, and changes in source/sink relations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号