首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We present data on diving pattern and performance (dive depth, duration, frequency and organization during the foraging trip) in gentoo penguins Pygoscelis papua , obtained using time-depth recorders ( n = 9 birds, 99 foraging trips). These data are used to estimate various parameters of foraging activity, e.g. foraging range, prey capture rates, and are compared in relation to breeding chronology. Foraging trip duration was 6 h and 10 h, and trip frequency 1.0/day and 0.96/day, during the brooding and creche periods, respectively. Birds spent on average 52%of each foraging trip diving. Dive depth and duration were highly bimodal: shallow dives (< 21 m) averaged 4 m and 0.23 min, and deep dives (> 30 m) 80 m and 2.5 min, respectively. Birds spent on average 71%and 25%of total diving time in deep and shallow dives, respectively. For deep dives, dive duration exceeded the subsequent surface interval, but shallow dives were followed by surface intervals 2–3 times dive duration. We suggest that most shallow dives are searching/exploratory dives and most deep dives are feeding dives. Deep dives showed clear diel patterns averaging 40 m at dawn and dusk and 80–90 m at midday. Estimated foraging ranges were 2.3 km and 4.1 km during the brood and creche period, respectively. Foraging trip duration increased by 4 h between the brood and creche periods but total time spent in deep dives (i.e. time spent feeding) was the same (3 h). Of 99 foraging trips, 56%consisted of only one dive bout and 44%of 2–4 bouts delimited by extended surface intervals > 10 min. We suggest that this pattern of diving activity reflects variation in spatial distribution of prey rather than the effect of physiological constraints on diving ability.  相似文献   

2.
Information on dive and pause times and the numbers of dives in a sequence were obtained for six guillemots and single razorbill and puffin. There were marked differences in diving performance between the species with the order of ranking, in descending order of dive and pause duration, being guillemot, razorbill and puffin. For guillemots, 80% of dives were of 20–119 sec duration and 80% of pauses were 0–59 sec; the maximum dive lasted 202 sec. Puffin dives and pauses were much shorter, with 81% of dives lasting 0–39 sec and 95% of pauses being less than 20 sec, the longest dive was 115 sec. Comparisons of diving sequences made by the same individual indicated some flexibility in all aspects of the sequence but there were broad interspecific differences in the organization of the sequence. The puffin generally made a large number of relatively short dives separated by very short pauses which resulted in a high diving rate (1–5 dives/min) and the bird spending 78% of its time underwater. In contrast, guillemots had much shorter sequences with a few long dives and pauses and lower rates of diving (0–5-0-6 dives/min) and proportions of time underwater (61–65%). Guillemots and puffins may forage at different depths and have different foraging strategies.  相似文献   

3.
Diving behavior of 2 breeding Chinstrap penguins (Pygoscelis antarctica) was studied focusing first and primarily on dive bouts rather than dives themselves. Analysis of dive bout organization revealed (1) though there are differences between solitary dives and dive bouts in dive duration and dive depth, the first dives of dive bouts do not differ from solitary dives in the dive parameters, (2) mean dive duration during bout correlates positively to both mean dive depth during bout and mean surface interval during bout, while number of dives during bout negatively correlates to both cost (consumed energy) and duration of a dive cycle during bout. These findings suggest the following possibilities on foraging behavior of penguins: (1) their decision to repeat diving depends on the result of the first dive at a site, and the first dives of bouts would tend to be searching or evaluating dives though they would be also successful foraging dives, (2) they repeat diving at a foraging patch until foraging efficiency decrease to a threshold of diminishing returns.  相似文献   

4.
Many air-breathing aquatic foragers may be killed by aerial or subsurface predators while recovering oxygen at the surface; yet the influence of predation risk on time allocation during dive cycles is little known in spite of numerous studies on optimal diving. We modeled diving behavior under the risk of predation at the surface. The relationship between time spent at the surface and the risk of death is predicted to influence the optimal surface interval, regardless of whether foragers accumulate energy at a constant rate while at the food patch, deplete food resources over the course of the dive, or must search for food during the dive. When instantaneous predation risk during a single surface interval decreases with time spent at the surface, a diver should increase its surface interval relative to that which maximizes energy intake, thereby increasing dive durations and reducing the number of surfacings per foraging bout. When instantaneous risk over a single surface interval does not change or increases with increasing time at the surface, divers should decrease their surface interval (and consequently their dive duration) relative to that which maximizes energy intake resulting in more dives per foraging bout. The fitness consequences of selecting a suboptimal surface interval vary with the risk function and the way divers harvest energy when at depth. Finally, predation risk during surface intervals should have important consequences for habitat selection and other aspects of the behavioral ecology of air-breathing aquatic organisms.  相似文献   

5.
Diving birds have to overcome buoyancy, especially when diving in shallow water. Darters and anhingas (Anhingidae) are specialist shallow-water divers, with adaptations for reducing their buoyancy. Compared to closely-related cormorants (Phalacrocoracidae), darters have fully wettable plumage, smaller air sacs and denser bones. A previous study of darter diving behaviour reported no relationship between dive duration and water depth, contrary to optimal dive models. In this study I provide more extensive observations of African darters Anhinga melanogaster rufa diving in water<5 m deep at two sites. Dive duration increases with water depth at both sites, but the relationship is weak. Dives were longer than dives by cormorants in water of similar depth (max 108 s in water 2.5 m deep), with dives of up to 68 s observed in water<0.5 m deep. Initial dives in a bout were shorter than expected, possibly because their plumage was not fully saturated. Dive efficiency (dive:rest ratio) was 5–6, greater than cormorants (2.7±0.4 for 18 species) and other families of diving birds (average 0.2–4.3). Post-dive recovery periods increased with dive duration, but only slowly, resulting in a strong increase in efficiency with dive duration. All dives are likely to fall within the theoretical anaerobic dive limit. Foraging bouts were short (17.8±4.3 min) compared to cormorants, with birds spending 80±5% of time underwater. Darters take advantage of their low buoyancy to forage efficiently in shallow water, and their slow, stealthy dives are qualitatively different from those of other diving birds. However, they are forced to limit the duration of foraging bouts by increased thermoregulatory costs associated with wettable plumage.  相似文献   

6.
Sexual differences in food provisioning rates of monomorphic seabirds are well known but poorly understood. Here, we address three hypotheses that attempt to explain female-biased food provisioning in common guillemots Uria aalge : (1) males spend more time in nest defence, (2) females have greater foraging efficiency, and (3) males allocate a greater proportion of foraging effort to self-maintenance. We found that males spent no more time with chicks than females but made longer trips and travelled further from the colony. There was extensive overlap between sexes in core foraging areas, indicating that females were not excluding males from feeding opportunities close to the colony. However, as a result of their longer trips, the total foraging areas of males were much greater than those of females. There was no difference between sexes in overall dive rate per hour at sea, in behaviour during individual dives or in a number of other measures of foraging efficiency including the frequency, depth and duration of dives and the dive: pause ratio during the final dive bout of each trip, which was presumably used by both sexes to obtain prey for the chick. These data strongly suggest that sexes did not differ in their ability to locate and capture prey. Yet males made almost twice as many dives per trip as females, suggesting that males made more dives than females for their own benefit. These results support the hypothesis that female-biased food provisioning arose from a difference between sexes in the allocation of foraging effort between parents and offspring, in anticipation of a prolonged period of male-only post-fledging care of the chick, and not from differences in foraging efficiency or time spent in nest defence.  相似文献   

7.
We investigated the diving behaviour, the time allocation of the dive cycle and the behavioural aerobic dive limit (ADL) of platypuses (Ornithorhynchus anatinus) living at a sub-alpine Tasmanian lake. Individual platypuses were equipped with combined data logger-transmitter packages measuring dive depth. Mean dive duration was 31.3 s with 72% of all dives lasting between 18 and 40 s. Mean surface duration was 10.1 s. Mean dive depth was 1.28 m with a maximum of 8.77 m. Platypuses performed up to 1600 dives per foraging trip with a mean of 75 dives per hour. ADL was estimated by consideration of post-dive surface intervals vs. dive durations. Only 15% of all dives were found to exceed the estimated ADL of 40 s, indicating mainly aerobic diving in the species. Foraging platypuses followed a model of optimised recovery time, the optimal breathing theory. Total bottom duration or total foraging duration per day is proposed as a useful indicator of foraging efficiency and hence habitat quality in the species.  相似文献   

8.
Cormorants hunt both benthic (sedentary) and pelagic (motile) prey but it is not known if the energy costs of foraging on these prey differ. We used respirometry to measure the costs of diving in double-crested cormorants (Phalacrocorax auritus) foraging either for sedentary (fish pieces) or motile (juvenile salmon) prey in a deep dive tank. Short dives for sedentary prey were more expensive than dives of similar duration for motile prey (e.g. 20% higher for a 10s dive) whereas the reverse was true for long dives (i.e. long dives for motile prey were more expensive than for sedentary prey). Across dives of all durations, the foraging phase of the dive was more expensive when the birds hunted motile prey, presumably due to pursuit costs. The period of descent in all the dives undertaken appears to have been more expensive when the birds foraged on sedentary prey, probably due to a higher swimming speed during this period.  相似文献   

9.
Many diving seabirds and marine mammals have been found to regularly exceed their theoretical aerobic dive limit (TADL). No animals have been found to dive for durations that are consistently shorter than their TADL. We attached time-depth recorders to 7 blue whales and 15 fin whales (family Balaenopteridae). The diving behavior of both species was similar, and we distinguished between foraging and traveling dives. Foraging dives in both species were deeper, longer in duration and distinguished by a series of vertical excursions where lunge feeding presumably occurred. Foraging blue whales lunged 2.4 (+/-1.13) times per dive, with a maximum of six times and average vertical excursion of 30.2 (+/-10.04) m. Foraging fin whales lunged 1.7 (+/-0.88) times per dive, with a maximum of eight times and average vertical excursion of 21.2 (+/-4.35) m. The maximum rate of ascent of lunges was higher than the maximum rate of descent in both species, indicating that feeding lunges occurred on ascent. Foraging dives were deeper and longer than non-feeding dives in both species. On average, blue whales dived to 140.0 (+/-46.01) m and 7.8 (+/-1.89) min when foraging, and 67.6 (+/-51.46) m and 4.9 (+/-2.53) min when not foraging. Fin whales dived to 97.9 (+/-32.59) m and 6.3 (+/-1.53) min when foraging and to 59.3 (+/-29.67) m and 4.2 (+/-1.67) min when not foraging. The longest dives recorded for both species, 14.7 min for blue whales and 16.9 min for fin whales, were considerably shorter than the TADL of 31.2 and 28.6 min, respectively. An allometric comparison of seven families diving to an average depth of 80-150 m showed a significant relationship between body mass and dive duration once Balaenopteridae whales, with a mean dive duration of 6.8 min, were excluded from the analysis. Thus, the short dive durations of blue whales and fin whales cannot be explained by the shallow distribution of their prey. We propose instead that short duration diving in large whales results from either: (1) dispersal behavior of prey; or (2) a high energetic cost of foraging.  相似文献   

10.
SUMMER DIVING BEHAVIOR OF MALE WALRUSES IN BRISTOL BAY, ALASKA   总被引:1,自引:0,他引:1  
Pacific walruses ( Odobenus rosmarus divergens ) make trips from ice or land haul-out sites to forage for benthic prey. We describe dive and trip characteristics from time-depth-recorder data collected over a one-month period during summer from four male Pacific walruses in Bristol Bay, Alaska. Dives were classified into four types. Shallow (4 m), short (2.7 min), square-shaped dives accounted for 11% of trip time, and many were probably associated with traveling. Shallow (2 m) and very short (0.5 min) dives composed only 1% of trip time. Deep (41 m), long (7.2 min), square-shaped dives accounted for 46% of trip time and were undoubtedly associated with benthic foraging. V-shaped dives ranged widely in depth, were of moderate duration (4.7 min), and composed 3% of trip time. These dives may have been associated with navigation or exploration of the seafloor for potential prey habitat. Surface intervals between dives were similar among dive types, and generally lasted 1–2 min. Total foraging time was strongly correlated with trip duration and there was no apparent diel pattern of diving in any dive type among animals. We found no correlation between dive duration and postdive surface interval within dive types, suggesting that diving occurred within aerobic dive limits. Trip duration varied considerably within and among walruses (0.3–9.4 d), and there was evidence that some of the very short trips were unrelated to foraging. Overall, walruses were in the water for 76.6% of the time, of which 60.3% was spent diving.  相似文献   

11.
Synchronizing behavior with other conspecifics has been suggested as serving a function of increased foraging efficiency. However, the potential costs associated with synchronization of behavior have rarely been studied. Adélie penguins Pygoscelis adeliae sometimes dive synchronously in small open waters surrounded by fast sea ice. We examined the diving behavior of three couples and one trio, which were observed to dive synchronously among groups of 12–47 birds for 1.7–4.5 h duration, with time-depth recorders. Timing of diving and surfacing differed slightly between individuals, and one bird tended to initiate diving earlier than the other. Although the duration of the dives differed only slightly between these birds, the maximum depth of the dives differed to a large extent, with one member tending to dive consistently deeper than the other bird in two out of the four cases. Vertical distances between tagged birds in the undulatory phases of the dives (presumed feeding time) were greater than those in the descent and ascent phases, suggesting independent foraging by group members. Duration of the undulatory phase of the dives tended to be shorter in deeper-diving individuals than the others in the synchronously diving group, suggesting a potential cost of reduced feeding time to synchronize diving and surfacing with other birds. A digital video image relating to the article is available at .  相似文献   

12.
Aquatic birds have access to limited amounts of usable oxygen when they forage (dive) underwater, so the major physiological constraint to their behaviour is the need to periodically visit the water surface to replenish these stores and remove accumulated carbon dioxide. The size of the oxygen stores and the rate at which they are used (V dot o2) or carbon dioxide accumulates are the ultimate determinants of the duration that aquatic birds can remain feeding underwater. However, the assumption that the decision to terminate a dive is governed solely by the level of the respiratory stores is not always valid. Quantification of an optimal diving model for tufted ducks (Aythya fuligula) shows that while they dive efficiently by spending a minimum amount of time on the surface to replenish the oxygen used during a dive, they dive with nearly full oxygen stores and surface well before these stores are exhausted. The rates of carbon dioxide production during dives and removal during surface intervals are likely to be at least as important a constraint as oxygen; thus, further developments of optimal diving models should account for their effects. In the field, diving birds will adapt to changing environmental conditions and often maximise the time spent submerged during diving bouts. However, other factors influence the diving depths and durations of aquatic birds, and in some circumstances they are unable to forage sufficiently well to provide food for their offspring. The latest developments in telemetry have demonstrated how diving birds can make physiological decisions based on complex environmental factors. Diving penguins can control their inhaled air volume to match the expected depth, likely prey encounter rate, and buoyancy challenges of the following dive.  相似文献   

13.
The diving behaviour of 15 dugongs (Dugong dugon) was documented using time-depth recorders (TDRs), which logged a total of 39,507 dives. The TDRs were deployed on dugongs caught at three study sites in northern Australia: Shark Bay, the Gulf of Carpentaria and Shoalwater Bay. The average time for which the dive data were collected per dugong was 10.4±1.1 (S.E.) days. Overall, these dugongs spent 47% of their daily activities within 1.5 m of the sea surface and 72% less than 3 m from the sea surface. Their mean maximum dive depth was 4.8±0.4 m (S.E.), mean dive duration was 2.7±0.17 min and the number of dives per hour averaged 11.8±1.2. The maximum dive depth recorded was 20.5 m; the maximum dive time in water >1.5 m deep was 12.3 min. The effects of dugong sex, location (study site), time of day and tidal cycle on diving rates (dives per hour), mean maximum dive depths, durations of dives, and time spent ≤1.5 m from the surface were investigated using weighted split-plot analysis of variance. The dugongs exhibited substantial interindividual variation in all dive parameters. The interaction between location and time of day was significant for diving rates, mean maximum dive depths and time spent within 1.5 m of the surface. In all these cases, there was substantial variation among individuals within locations among times of day. Thus, it was the variation among individuals that dominated all other effects. Dives were categorised into five types based on the shape of the time-depth profile. Of these, 67% of dives were interpreted as feeding dives (square and U-shaped), 8% as exploratory dives (V-shaped), 22% as travelling dives (shallow-erratic) and 3% as shallow resting dives. There was systematic variation in the distribution of dive types among the factors examined. Most of this variation was among individuals, but this differed across both time of day and tidal state. Not surprisingly, there was a positive relationship between dive duration and depth and a negative relationship between the number of dives per hour and the time spent within 1.5 m of the surface after a dive.  相似文献   

14.
Swim velocities at 15-sec intervals and maximum depth per dive were recorded by microprocessor units on two "mixed diver" adult female northern fur seals during summer foraging trips. These records allowed comparison of swim velocities of deep (>75 m) and shallow (<75 m) dives.
Deep dives averaged 120 m depth and 3 min duration; shallow dives averaged 30 m and 1.2 min. Mean swim velocities on deep dives were 1.8 and 1.5 m/sec for the two animals; mean swim velocities on shallow dives were 1.5 and 1.2 m/sec. The number of minutes per hour spent diving during the deep and shallow dive patterns were 11 and 27 min, respectively.
Swim velocity, and hence, relative metabolic rate, did not account for the differences in dive durations between deep and shallow dives. The long surface durations associated with deep dives, and estimates of metabolic rates for the observed swim velocities, suggest that deep dives involve significant anaerobic metabolism.  相似文献   

15.
J. D. UTTLEY  P. WALTON  P. MONAGHAN  G. AUSTIN 《Ibis》1994,136(2):205-213
The breeding performance, food fed to chicks and adult time budgets of Guillemots Uria aalge were examined in a year of high and a year of low food availabiIity. There was no difference between the 2 years in reproductive success, although the rate of chick feeding, chick weight and fledging success were greater in the year of high food availability. On average, chick prey items were larger in the poor food year, but this was insufficient to compensate for the lower feeding frequency. Chick feeding frequency did not differ between days in the good year but did increase later in the season in the poor food year. Compared with the high food availability year, adult Guillemots in the year of low food availability spent much less time resting at the breeding colony. and their foraging trips were twice as long. Foraging birds tended to make several successive trips before resuming brooding duties from their mates when food supplies were good, but in the low food availability year single trips were the norm. These results demonstrate that predators experiencing reduced food supply may mitigate the effects on their reproductive output by shifting their time allocation such that more time is available for foraging.  相似文献   

16.
J. P. Croxall    D. R. Briggs    A. Kato    Y. Naito    Y. Watanuki    T. D. Williams 《Journal of Zoology》1993,230(1):31-47
The pattern and characteristics of diving in two female macaroni penguins Eudyptes chrysolophus was studied, during the brooding period, using continuous-recording time-depth recorders, for a total of I8 days (15 consecutive days) during which the depth, duration and timing of 4876 dives were recorded. Diving in the first 11 days was exclusively diurnal, averaging 244 dives on trips lasting 12 hours. Near the end of the brooding period trips were longer and included diving at night. About half of all trips (except those involving continuous night-time diving) was spent in diving and dive rate averaged 14–25 dives per hour (42 per hour at night). The duration of day time dives varied between trips, and averaged 1.4–1.7 min, with a subsequent surface interval of 0.5–0.9 min. Dive duration was significantly directly related to depth, the latter accounting for 53% of the variation. The average depths of daytime dives were 20–35 m (maximum depth 11 5 m). Dives at night were shorter (average duration 0.9 min) and much shallower (maximum 11 m); depth accounted for only 6% of the variation in duration. Estimates of potential prey capture rates (3–5 krill per dive; one krill every 17–20 s) are made. Daily weight changes in chicks were directly related to number of dives, but not to foraging trip duration nor time spent diving. Of the other species at the same site which live by diving to catch krill, gentoo penguins forage exclusively diurnally, making longer. deeper dives; Antarctic fur seals, which dive to similar depths as macaroni penguins, do so mainly at night.  相似文献   

17.
Deep-diving foraging behaviour of sperm whales (Physeter macrocephalus)   总被引:1,自引:1,他引:0  
1. Digital tags were used to describe diving and vocal behaviour of sperm whales during 198 complete and partial foraging dives made by 37 individual sperm whales in the Atlantic Ocean, the Gulf of Mexico and the Ligurian Sea. 2. The maximum depth of dive averaged by individual differed across the three regions and was 985 m (SD = 124.3), 644 m (123.4) and 827 m (60.3), respectively. An average dive cycle consisted of a 45 min (6.3) dive with a 9 min (3.0) surface interval, with no significant differences among regions. On average, whales spent greater than 72% of their time in foraging dive cycles. 3. Whales produced regular clicks for 81% (4.1) of a dive and 64% (14.6) of the descent phase. The occurrence of buzz vocalizations (also called 'creaks') as an indicator of the foraging phase of a dive showed no difference in mean prey capture attempts per dive between regions [18 buzzes/dive (7.6)]. Sperm whales descended a mean of 392 m (144) from the start of regular clicking to the first buzz, which supports the hypothesis that regular clicks function as a long-range biosonar. 4. There were no significant differences in the duration of the foraging phase [28 min (6.0)] or percentage of the dive duration in the foraging phase [62% (7.3)] between the three regions, with an overall average proportion of time spent actively encountering prey during dive cycles of 0.53 (0.05). Whales maintained their time in the foraging phase by decreasing transit time for deeper foraging dives. 5. Similarity in foraging behaviour in the three regions and high diving efficiencies suggest that the success of sperm whales as mesopelagic predators is due in part to long-range echolocation of deep prey patches, efficient locomotion and a large aerobic capacity during diving.  相似文献   

18.
The diving ability of marine mammals is a function of how they use and store oxygen and the physiological control of ventilation, which is in turn dependent on the accumulation of CO2. To assess the influence of CO2 on physiological control of dive behaviour, we tested how increasing levels of inspired CO2 (hypercarbia) and decreasing inspired O2 (hypoxia) affected the diving metabolic rate, submergence times, and dive recovery times (time to replenish O2 stores and eliminate CO2) of freely diving Steller sea lions. We also measured changes in breathing frequency of diving and non-diving individuals. Our findings show that hypercarbia increased breathing frequency (as low as 2 % CO2), but did not affect metabolic rate, or the duration of dives or surface intervals (up to 3 % CO2). Changes in breathing rates indicated respiratory drive was altered by hypercarbia at rest, but blood CO2 levels remained below the threshold that would alter normal dive behaviour. It took the sea lions longer to remove accumulated CO2 than it did for them to replenish their O2 stores following dives (whether breathing ambient air, hypercarbia, or hypoxia). This difference between O2 and CO2 recovery times grew with increasing dive durations, increasing hypercarbia, and was greater for bout dives, suggesting there could be a build-up of CO2 load with repeated dives. Although we saw no evidence of CO2 limiting dive behaviour, the longer time required to remove CO2 may eventually exhibit control over the overall time they can spend in apnoea and overall foraging duration.  相似文献   

19.
We present data on the diving behaviour and the energetics of breeding little penguins in Tasmania, Australia. Using an 18 m long still water canal in conjunction with respirometry, we determined the energy requirements while diving. Using electronic devices measuring dive depth or swimming speed, we investigated the foraging behaviour at sea. Cost of Transport was calculated to be minimal at the speed the birds prefer at sea (1.8 m/s) and averaged 11.1 J/kg/m (power requirements at that speed: 20.0 W/kg). Metabolic rate of little penguins resting in water was found to be 8.5 W/kg. The externally-attached devices had no significant influence on the energy expenditure.
Foraging trips can be divided into four distinct phases with different diving behaviours. A mean of 500 dives was executed per foraging trip lasting about 18 hours with 60% of this time being spent swimming. The total distance travelled averaged 73 km per day, although foraging range was about 12km. Mean swimming speed of little penguins at sea was 1.8 m/s, maximum swimming speed was 3.3 m/s. More than 50% of all dives had maxima not exceeding 2 m. Maximum depth reached was 27 m. Mean dive duration was 21 s. There were inter-sex differences in diving behaviour as well as changes in foraging behaviour over the breeding period. Aerobic dive limits (ADL) in the wild were estimated between 42 and 50 s. From the swim canal experiments we derived an ADL of 44 s. Total oxygen stores were calculated to be 45 ml O2/kg. Only 2% of all dives exceeded the ADL. FMRs at sea were calculated to be between 1280 and 1500 kJ/kg/d according to chick size. The yearly food requirements of a breeding little penguin amount to 114 kg.  相似文献   

20.
J. P. Croxall    Y. Naito    A. Kato    P. Rothery    D. R. Briggs 《Journal of Zoology》1991,225(2):177-199
The pattern and characteristics of diving of two male blue-eyed shags Phalacrocorax atriceps were studied, using continuous-recording time-depth recorders, for a total of 15 consecutive days during which the depth, duration, bottom time, ascent and descent rates and surface intervals of 674 dives were recorded. Deep dives (> 35 m, averages80–90 m, max. 116 m) were twice as common (64% versus 34%) as shallow dives (< 21 m and 90% < 10 m). Deep dives were long (averages 2.7-4.1 min, max. 5.2 min) with half the time spent near maximum depth and fast travel speeds (averages 1.0-2.4 m s−1). Shallow dives were short (average 0.5 min, max. 1.3 min), without bottom time and with slow travel speeds (0.1–0.6 m s−1). The time spent at depth and the diet (mainly benthic fish and octopus) is consistent with benthic foraging; the function of shallow dives is uncertain. Male shags forage mainly in the afternoon in3–5 distinct bouts of diving. Within bouts (and shorter homogeneous sequences of diving) surface intervals are consistently2–3 times the preceding dive duration; in other shags the reverse is the case. Blue-eyed shag diving depth, duration and pattern is extreme amongst shags; and the relationship between dives and surface intervals suggests that they may regularly exceed their aerobic dive limit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号