首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Chemically synthesized 2-azaadenosine 5'-diphosphate (n2ADP) and 2-azainosine 5'-diphosphate (n2IDP) were polymerized to yield poly(2-azaadenylic acid), poly(n2A), and poly(2-azainosinic acid), poly(n2I), using Escherichia coli polynucleotide phosphorylase. In neutral solution, poly(n2A) and poly(n2I) had hypochromicities of 32 and 5.5%, respectively. Poly(n2A) formed an ordered structure, which had a melting temperature (Rm) of 20 degrees C at 0.15 M salt concentration. Upon mixing with poly(U), poly(n2A) formed a 1 : 2 complex with Tm of 41 degrees C at 0.15 M salt concentration. Poly(n2A) and poly(n2I) formed three-stranded complexes with poly(I), and poly(A), respectively. Poly(n2A) . 2poly(I), poly(A) . 2poly(n2I), and poly(n2A) . 2poly(n2I) complexes had Tm values of 23, 48, and 31 degrees C at 0.15 M salt concentration, respectively. Poly(n2I) formed a double-stranded complex with poly(C), but its Tm was very low.  相似文献   

2.
The interactions of amino acid esters with poly(A)x2poly(U) and poly(A)xpoly(U) have been investigated by means of thermal denaturation of these polynucleotides. The esters under consideration raised the melting point, revealing the preferable binding to helical polynucleotide structures. The melting point shifts demonstrate the following sequence of the stabilities of these complexes: Arg greater than Lys much greater than His greater than Met greater than Ser greater than Gly. The same stability order is observed when studying the polynucleotide renaturation in the presence of esters. This order coincides with that previously obtained for the nucleotide base--amino acid ester complexes excepting basic amino acid esters. The ester interactions with poly(A) and poly(U) also reveal the specificity of monomer--monomer interactions. Some dynamic contributions into the studied specificity are also discussed.  相似文献   

3.
4.
5.
The binding parameters (K, omega) and the free energy (DeltaG(0)) of triple helix formation have been estimated for complexes of oligo(U)(n) (n = 5, 7-10) with poly(A) . poly(U) on the basis of hypochromicity measurements. The data were treated according to the formula of McGhee and von Hippel [J. Mol. Biol. 86 (1974) 469] by a computer program ALAU [H. Schütz et al., Stud. Biophys. 104 (1984) 23] which takes absorbancies and total concentrations as input. In 1 mM cacodylate buffer pH 7.0 with 10 mM NaCl and 10 mM MgCl(2) at 5 degrees C the free energy of contiguous binding was found to be a linear function of the oligomer length with a slope of DeltaG(c,U)(0) = -0.72 (+/-0.03) kcal x mol(-1) per nucleotide. The mean cooperativity coefficient (omega) was 24.5 (+/- 5.6), and the corresponding free energy of interaction between the neighbouring oligonucleotides in the third strand was DeltaG(0(omega)) = -1.74 (+/-0.13) kcal x mol(-1).  相似文献   

6.
Mixing curve experiments and melting curve analyses have shown that poly(m2A) forms complexes with poly(br5U) with stoichiometries of either 1:1 or 1:2 in high ionic strengths. CD spectra of poly(m2A).poly(br5U) and poly(m2A).2 poly(br5U) both resemble quite well to those of poly(A). poly(br5U) and poly(A).2poly(br5U), respectively. This suggests that the corresponding complexes are closely related in the structural details. Significant similarities of the CD spectra were observed for poly(m2A).2poly(br5U) and complexes between 2,9-dimethyladenine or 2-methyladenosine and poly(br5U) in the presence of spermine, indicating also the 1:2 stoichiometry. Thus, a methyl group at the position 2 of adenine ring is not necessarily hindering a formation of the Watson-Crick type base pairings.  相似文献   

7.
M Hattori  J Frazier  H T Miles 《Biochemistry》1975,14(23):5033-5045
Poly(8-aminoguanylic acid) has in neutral solution a novel ordered structure of high stability. The 8-amino group permits formation of three hydrogen bonds between two residues along the "top", or long axis, of the purines. The usual hydrogen bonding protons and Watson-Crick pairing sites are not involved in the association. The bonding scheme has a twofold rotation axis and is hemiprotonated at N(7). Poly(8NH2G) is converted by alkaline titration (pK = 9.7) to a quite different ordered structure, which is the favored form over the range approximately pH 10-11. The bonding scheme appears to be composed of a planar, tetrameric array of guanine residues, in which the 8-amino group does not participate in interbase hydrogen bonding. Poly (8NH2G) does not interact with poly(C) in neutral solution because of the high stability of the hemiprotonated G-G self-structure. Titration to the alkaline plateau, however, permits ready formation of a two-stranded Watson-Crick helix. In contrast to the monomer 8NH2GMP, poly(8NH2G) does not form a triple helix with poly(C) under any conditions. The properties of the ordered structures are interpreted in terms of a strong tendency of the 8-amino group to form a third interbase hydrogen bond, when this possibility is not prevented by high pH.  相似文献   

8.
Poly (2'-amino-2'-deoxyadenylic acid) [poly (Aa)] was prepared from chemically synthesized 2'-amino-2'-deoxy-ADP by the catalysis of polynucleotide phosphorylase. Poly (Aa) showed a similar UV absorption spectra to poly (A), but quite different CD spectra at pH 7.0 and 5.7. At the former pH it showed a single negative Cotton band and at the latter a curve with a large splitting of bands. Acid titration of poly (Aa) suggested protonated form below pH 7.0. Temperature absorption profiles and their dependency on sodium ion concentration suggested an ordered structure for poly (Aa) which is stabilized by stacking of bases and intrastrand interaction between 2'-amino and internucleotidic phosphate groups. Poly (Aa) forms a 1:2 complex with poly (U) at neutrality and its Tm was 45 degrees in the presence of 0.15M sodium ion.  相似文献   

9.
Using Raman spectroscopy, we examined the ribose-phosphate backbone conformation, the hydrogen bonding interactions, and the stacking of the bases of the poly(U).poly(A).poly(U) triple helix. We compared the Raman spectra of poly(U).poly(A).poly(U) in H2O and D2O with those obtained for single-stranded poly(A) and poly(U) and for double-stranded poly(A).poly(U). The presence of a Raman band at 863 cm-1 indicated that the backbone conformations of the two poly(U) chains are different in the triple helix. The sugar conformation of the poly(U) chain held to the poly(A) by Watson-Crick base pairing is C3' endo; that of the second poly(U) chain may be C2' endo. Raman hypochromism of the bands associated with base vibrations demonstrated that uracil residues stack to the same extent in double helical poly(A).poly(U) and in the triple-stranded structure. An increase in the Raman hypochromism of the bands associated with adenine bases indicated that the stacking of adenine residues is greater in the triple helix than in the double helical form. Our data further suggest that the environment of the carbonyls of the uracil residues is different for the different strands.  相似文献   

10.
K B Roy  J Frazier  H T Miles 《Biopolymers》1983,22(9):2021-2034
Interaction of poly(X) with poly(U) to form a regular, ordered structure has been investigated by uv, CD, and ir spectroscopy. The XU complex exhibits a marked dependence of Tm on the nature of the alkali metal ion present in solution. Stability of the complex is surprisingly high and increases with ionization of X residues at N3. The ir evidence shows the U residues are present as the diketo form and X residues as the 6-keto-2-enolate anion and indicates that the X and U carbonyl groups are vibrationally coupled. A mixing curve exhibits a single minimum, at 1:1, but we conclude that the actual combining ratio is twice this value and that the formula of the complex is X2U2. We propose a model based on a four-standard helix with size-specific alkali metal complexing to X and U carbonyl oxygens in the axial channel of the helix. This model and previously suggested two-stranded structures are evaluated in terms of the physical and chemical properties of the complex.  相似文献   

11.
Most duplex DNAs that are in the "B" conformation are not immunogenic. One important exception is poly(dG) X poly(dC), which produces a good immune response even though, by many criteria, it adopts a conventional right-handed helix. In order to investigate what features are being recognized, monoclonal antibodies were prepared against poly(dG) X poly(dC) and the related polymer poly(dG) X poly(dm5C). Jel 72, which is an immunoglobulin G, binds only to poly(dG) X poly(dC), while Jel 68, which is an immunoglobulin M, binds approximately 10-fold more strongly to poly(dG) X poly(dm5C) than to poly(dG) X poly(dC). For both antibodies, no significant interaction could be detected with any other synthetic DNA duplexes including poly[d(Gm5C)] X poly[d(Gm5C)] in both the "B" and "Z" forms, poly[d(Tm5Cm5C)] X poly[d(GGA)], and poly[d(TCC)] X poly[d(GGA)], poly(dI) X poly(dC), or poly(dI) X poly(dm5C). The binding to poly(dG) X poly(dC) was inhibited by ethidium and by disruption of the DNA duplex, confirming that the antibodies were not recognizing single-stranded or multistranded structures. Furthermore, Jel 68 binds significantly to phage XP-12 DNA, which contains only m5C residues and will precipitate this DNA in the absence of a second antibody. The results suggest that (dG)n X (dm5C)n sequences in natural DNA exist in recognizably distinct conformations.  相似文献   

12.
The technique of photoaffinity labeling has been applied to the double-stranded RNA (dsRNA)-dependent enzyme 2',5'-oligoadenylate (2-5A) synthetase to provide a means for the examination of RNA-protein interaction(s) in the dsRNA allosteric binding domain of this enzyme. The synthesis, characterization, and biological properties of the photoaffinity probe poly[( 32P]I,8-azidoI).poly(C) and its mismatched analog poly[( 32P]I,8-azidoI).poly(C12U), which mimic the parent molecules poly(I).poly(C) and poly(I).poly(C12U), are described. The efficacy of poly[( 32P]I,8-azidoI).poly(C) and poly[( 32P]I,8-azidoI).poly(C12U) as allosteric site-directed activators is demonstrated using highly purified 2-5A synthetase from rabbit reticulocyte lysates and from extracts of interferon-treated HeLa cells. The dsRNA photoprobes activate these two 2-5A synthetases. Saturation of 2-5A synthetase is observed at 6 x 10(-4) g/ml poly[( 32P]I,8-azidoI).poly(C) following photolysis for 20 s at 0 degrees C. The photoincorporation of poly[( 32P]I,8-azidoI).poly(C) is specific, as demonstrated by the prevention of photoincorporation by native poly(I).poly(C). DNA, poly(I), and poly(C) are not competitors of poly[( 32P]I,8-azidoI).poly(C). Following UV irradiation of 2-5A synthetase with poly[( 32P]I,8-azidoI).poly(C), the reaction mixture is treated with micrococcal nuclease to hydrolyze azido dsRNA that is not cross-linked to the enzyme. A radioactive band of 110 kDa (the same as that reported for native rabbit reticulocyte lysate 2-5A synthetase) is observed following sodium dodecyl sulfate-polyacrylamide gel electrophoresis and autoradiography. The specific photolabeling of the 2-5A synthetase suggests that the azido dsRNA is intrinsic to the allosteric binding domain. The utility of poly[( 32P]I,8-azidoI).poly(C) for the detection of dsRNA-dependent binding proteins and the isolation of peptides at or near the allosteric binding site is discussed.  相似文献   

13.
Poly (2'-chloro-2'-deoxyadenylic acid) and poly (2'-bromo-2'-deoxyadenylic acid) were synthesized from the corresponding diphosphates with the aid of polynucleotide phosphorylase from E. coli. UV, CD, acid titration and mixing with poly (U) were investigated. Comparing these properties with those of poly (A) and poly (2'-azido-2'-deoxyadenylic acid), it was found that 2'substituents exert significant effects on the thermal stability of these polynucleotides, though the overall conformational structure was not greatly changed.  相似文献   

14.
The molecular structure of poly (U).poly (A).poly (U) has been determined and refined using the continuous x-ray intensity data on layer lines in the diffraction pattern obtained from an oriented fiber of the RNA. The final R-value for the preferred structure is 0.24, far lower than that for the plausible alternatives. The polymer forms an 11-fold right-handed triple-helix of pitch 33.5A and each base triplet is stabilized by Crick-Watson-Hoogsteen hydrogen bonds. The ribose rings in the three strands have C3'-endo, C2'-endo and C2'-endo conformations, respectively. The helix derives additional stability through systematic interchain hydrogen bonds involving ribose hydroxyls and uracil bases. The relatively grooveless cylindrical shape of the triple-helix is consistent with the lack of lateral organization.  相似文献   

15.
The interaction of cis-dichloro-(1,2 diethyl-3-aminopyrrolidine)platinum(II) (Ptpyrr) with the polynucleotides poly(I), poly(C) and poly(I) x poly(C) acids was studied by circular dichroism, molecular fluorescence and (1)H NMR spectroscopies. Multivariate Curve Resolution, a factor analysis method, was applied for the analysis and interpretation of spectroscopic data obtained in mole ratio and kinetics studies. This procedure allows the determination of the number of different interaction complexes present during the experiments and the resolution of both concentration profiles and pure spectra for all of them. Two different interaction complexes were observed at the experimental conditions studied. The first one, at low Ptpyrr:polynucleotide ratio (r(Ptpyrr:poly)) values, corresponds to the interaction of Ptpyrr with hypoxanthine bases in the poly(I) moiety. This interaction leads to the destabilization and dissociation of the double-stranded conformation. The second complex was observed at higher r(Ptpyrr:poly) values and corresponds to the interaction of Ptpyrr to cytosine bases in poly(C) moiety. The formation of both complexes showed that the interaction of Ptpyrr with hypoxanthine bases occurred at the first stages of the reaction and with cytosine bases at longer reaction times. The results obtained show the utility of the Multivariate Curve Resolution approach for the analysis of data obtained by monitoring spectroscopically the interaction equilibria of platinum compounds with nucleic acids.  相似文献   

16.
It is demonstrated that, poly(A + U) and poly(I + C) are both formed under low ionic strength conditions. Continuous variation studies indicate the formation of copper(II) complexes of poly A, poly C, and poly I, but not of poly U. Copper(II) in a 1:1 ratio to polynucleotide prevents the formation of poly(A + U) and brings about the dissociation of the poly (A + U) complex produced in the absence of the metal. Poly (I + C) is similarly dissociated by copper(II) ions. The addition of sufficient electrolyte reverses the copper(II) induced dissociation of poly(I + C). The effect of copper(II) on ordered synthetic polynucleotides is thus very similar to its effect on DNA.  相似文献   

17.
Abstract

We report studies on the interaction of some zinc(II) and copper(II) complexes of amines and amino acids with poly(dC-dG) and poly(dm5C-dG). Of the zinc complexes the species zinc-tris(2-aminoethyl) amine is found to be the most efficient for inducing Z-DNA giving a mid point at low ionic strength of 1.4μM (poly(dC-dG)) and 44μM (poly(dm5C-dG). While an antagonistic effect on raising the ionic strength is observed, the transition occurs at only 2μM for poly(dm5C-dG) at 150mM NaCl. The most efficient copper(II) complex is that of diethylene triamine, though copper(II) complexes are generally less efficient than zinc(II) complexes. We also report kinetic and thermodynamic studies upon the B-Z transition induced by these complexes. A model is proposed for the interaction of one of the zinc complexes which involves not only direct zinc-DNA binding but also the formation of hydrogen bonds between the metal bond amine groups and the residues adjacent to the coordination site.  相似文献   

18.
A T-jump investigation of the binding of Cyan40 [3-methyl-2-(1,2,6-trimethyl-4(1H)pyridinylidenmethyl)-benzothiazolium ion] and CCyan2 [3-methyl-2-[2-methyl-3-(3-methyl-2(3H)-benzothiazolylidene)-1-propenyl]-benzothiazolium ion] with poly(dA-dT) x poly(dA-dT) and poly(dG-dC) x poly(dG-dC) is performed at I = 0.1M (NaCl), 25 degrees C and pH 7. Two kinetic effects are observed for both systems. The binding process is discussed in terms of the sequence D + P <==> P,D <==> PD(I) <==> PD(II), which leads first to fast formation of a precursor complex P,D and then to a partially intercalated complex PD(I) which converts to the fully intercalate complex PD(II). Concerning CCyan2 the rate parameters depend on the polymer nature and their analysis shows that in the case of poly(dG-dC) x poly(dG-dC) the most stable bound form is the fully intercalated complex PD(II), whereas in the case of poly(dA-dT) x poly(dA-dT) the partially intercalated complex PD(I) is the most stable species. Concerning Cyan40, the rate parameters remain unchanged on going from A-T to G-C indicating that this dye is unselective.  相似文献   

19.
A positive correlation between poly(U) misreading and efficiency of poly(dT) translation has been revealed in cell-free systems from wild-type E coli and streptomycin--resistant mutants with altered ribosomal protein S12. Different factors promoting misreading of poly(U) such as aminoglycoside antibiotics and Mg2+ ions also stimulate poly(dT) translation. The effect of the antibiotics on poly(U) translation efficiency and misreading as well as on poly(dT) decoding is characterised by the same order: neomycin greater than kanamycin greater than streptomycin. S12 mutants ribosomes are less erroneous in poly(U) translation and less efficient in poly(dT) decoding. The data obtained are in good agreement with the hypothesis of stereospecific stabilization of codon-anticodon complexes by the ribosome decoding centre.  相似文献   

20.
The kinetic of 1H leads to 3H exchange between water and C(8)H-groups of the guanylic residues in poly(G) . poly(C) and poly(dG) . poly(dC) was investigated within the temperature range from 30 to 90 degrees in 0.5 M NaCl (pH 7.2). It was shown that the exchange in freshly dissolved preparations at temperatures lower than 50 degrees proceeds faster than that in the case of GMP. According to the ylide mechanism of the exchange reaction the observed acceleration of the exchange is considered as a consequence of associates formation in poly(G) . poly(c) and poly(dG) . poly(dC) solutions at temperatures lower than 50 degrees. Associates are stabilized by intermolecular hydrogen bonds in which N(7) atoms of guanylic residues take part. The increase of the temperature is accompanied by gradual disappearance of the exchange acceleration. The retardation of exchange, which is characteristic of most non-associated double-stranded polynucleotides and nucleic acids is observed at the temperatures above 60 degrees. The retardation points to thermal destruction of the associates at temperatures higher than 50 degrees. The associates which are characterized by ordered structure including several "side by side" arranged double-stranded molecules were observed by electron microscopy. The addition of EDTA to solutions as well as the increase of temperature leads to destruction of the associates whereas the addition of Mg2+ makes the associates more stable.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号