首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Single‐nucleotide polymorphisms (SNPs) are rapidly becoming the standard markers in population genomics studies; however, their use in nonmodel organisms is limited due to the lack of cost‐effective approaches to uncover genome‐wide variation, and the large number of individuals needed in the screening process to reduce ascertainment bias. To discover SNPs for population genomics studies in the fungal symbionts of the mountain pine beetle (MPB), we developed a road map to discover SNPs and to produce a genotyping platform. We undertook a whole‐genome sequencing approach of Leptographium longiclavatum in combination with available genomics resources of another MPB symbiont, Grosmannia clavigera. We sequenced 71 individuals pooled into four groups using the Illumina sequencing technology. We generated between 27 and 30 million reads of 75 bp that resulted in a total of 1, 181 contigs longer than 2 kb and an assembled genome size of 28.9 Mb (N50 = 48 kb, average depth = 125x). A total of 9052 proteins were annotated, and between 9531 and 17 266 SNPs were identified in the four pools. A subset of 206 genes (containing 574 SNPs, 11% false positives) was used to develop a genotyping platform for this species. Using this roadmap, we developed a genotyping assay with a total of 147 SNPs located in 121 genes using the Illumina® Sequenom iPLEX Gold. Our preliminary genotyping (success rate = 85%) of 304 individuals from 36 populations supports the utility of this approach for population genomics studies in other MPB fungal symbionts and other fungal nonmodel species.  相似文献   

2.
Shiu SH  Borevitz JO 《Heredity》2008,100(2):141-149
Microarray technology is one of the key developments in recent years that has propelled biological research into the post-genomic era. With the ability to assay thousands to millions of features at the same time, microarray technology has fundamentally changed how biological questions are addressed, from examining one or a few genes to a collection of genes or the whole genome. This technology has much to offer in the study of genome evolution. After a brief introduction on the technology itself, we then focus on the use of microarrays to examine genome dynamics, to uncover novel functional elements in genomes, to unravel the evolution of regulatory networks, to identify genes important for behavioral and phenotypic plasticity, and to determine microbial community diversity in environmental samples. Although there are still practical issues in using microarrays, they will be alleviated by rapid advances in array technology and analysis methods, the availability of many genome sequences of closely related species and flexibility in array design. It is anticipated that the application of microarray technology will continue to better our understanding of evolution and ecology through the examination of individuals, populations, closely related species or whole microbial communities.  相似文献   

3.
4.
Diversity Arrays Technology (DArT) provides whole genome profiling for hundreds to thousands of polymorphic markers in a single assay using a high-throughput microarray platform. The presented work aimed to establish DArT genotyping for the genetically challenging genome of sugarcane. Due to the genome complexity of this sugar-producing crop of high economic importance, an application of DArT genotyping to this species required extensive testing and optimization. As the method of genome complexity reduction determines the efficiency of polymorphism identification in DArT, various approaches and several methods were tested, in order to establish the most optimal. The sugarcane DArT markers generated with these established methods identified high genetic differentiation of sugarcane ancestral species from modern cultivars, in agreement with the data available for other types of molecular markers for this crop. The majority of sugarcane DArT markers segregated in a Mendelian fashion and were readily incorporated into the framework genetic map. As the DArT markers are sequence-ready genomic clones, we sequenced 384 clones and found that one-third of sequenced markers came from the transcribed portion of the sugarcane genome. The presented results further validate the potential of DArT technology in providing cost-effective genetic profiles for plants, irrespective of their genome complexity, for effective applications in molecular-assisted breeding, diversity analysis or genetic identity testing.  相似文献   

5.
The feasibility of large-scale genome-wide association studies of complex human disorders depends on the availability of accurate and efficient genotyping methods for single nucleotide polymorphisms (SNPs). We describe a new platform of the invader assay, a biplex assay, where both alleles are interrogated in a single reaction tube. The assay was evaluated on over 50 different SNPs, with over 20 SNPs genotyped in study cohorts of over 1500 individuals. We assessed the usefulness of the new platform in high-throughput genotyping and compared its accuracy to genotyping results obtained by the traditional monoplex invader assay, TaqMan genotyping and sequencing data. We present representative data for two SNPs in different genes (CD36 and protein tyrosine phosphatase 1β) from a study cohort comprising over 1500 individuals with high or low-normal blood pressure. In this high-throughput application, the biplex invader assay is very accurate, with an error rate of <0.3% and a failure rate of 1.64%. The set-up of the assay is highly automated, facilitating the processing of large numbers of samples simultaneously. We present new analysis tools for the assignment of genotypes that further improve genotyping success. The biplex invader assay with its automated set-up and analysis offers a new efficient high-throughput genotyping platform that is suitable for association studies in large study cohorts.  相似文献   

6.
Here we present the successful application of the microarray technology platform to the analysis of DNA polymorphisms. Using the rice genome as a model, we demonstrate the potential of a high-throughput genome analysis method called Diversity Array Technology, DArT‘. In the format presented here the technology is assaying for the presence (or amount) of a specific DNA fragment in a representation derived from the total genomic DNA of an organism or a population of organisms. Two different approaches are presented: the first involves contrasting two representations on a single array while the second involves contrasting a representation with a reference DNA fragment common to all elements of the array. The Diversity Panels created using this method allow genetic fingerprinting of any organism or group of organisms belonging to the gene pool from which the panel was developed. Diversity Arrays enable rapid and economical application of a highly parallel, solid-state genotyping technology to any genome or complex genomic mixtures.  相似文献   

7.
We have developed and validated a consolidated bead-based genotyping platform, the Bioplex suspension array for simultaneous detection of multiple single nucleotide polymorphisms (SNPs) of the ATP-binding cassette transporters. Genetic polymorphisms have been known to influence therapeutic response and risk of disease pathologies. Genetic screening for therapeutic and diagnostic applications thus holds great promise in clinical management. The allele-specific primer extension (ASPE) reaction was used to assay 22 multiplexed SNPs for eight subjects. Comparison of the microsphere-based ASPE assay results to sequencing results showed complete concordance in genotype assignments. The Bioplex suspension array thus proves to be a reliable, cost-effective and high-throughput technological platform for genotyping. It can be easily adapted to customized SNP panels for specific applications involving large-scale mutation screening of clinically relevant markers.  相似文献   

8.
Single nucleotide polymorphism (SNP) genotyping is playing an increasing role in genome mapping, pharmacogenetic studies, and drug discovery. To date, genome-wide scans and studies involving thousands of SNPs and samples have been hampered by the lack of a system that can perform genotyping with cost-effective throughput, accuracy, and reliability. To address this need, Orrhid has developed an automated, ultra-high throughput system, SNPstream UHT, which uses multiplexed PCR in conjunction with our next generation SNP-IT tag array single base extension genotyping technology The system employs oligonucleotide microarrays manufactured in a 384-well format on a novel glass-bottomed plate. Multiplexed PCR and genotyping are performed in homogeneous reactions, and assay results are read by direct two-color fluorescence on the SNPstream UHTArray Imager. The systems flexibility enables large projects involving thousands of SNPs and thousands of samples as well as small projects that have hundreds of SNPs and hundreds of samples to be done cost effectively. We have successfully demonstrated this system in greater than 1,000,000 genotyping assays with >96% of samples giving genotypes with >99% accuracy  相似文献   

9.
Although a large number of single nucleotide polymorphism (SNP) markers covering the entire genome are needed to enable molecular breeding efforts such as genome wide association studies, fine mapping, genomic selection and marker-assisted selection in peach [Prunus persica (L.) Batsch] and related Prunus species, only a limited number of genetic markers, including simple sequence repeats (SSRs), have been available to date. To address this need, an international consortium (The International Peach SNP Consortium; IPSC) has pursued a coordinated effort to perform genome-scale SNP discovery in peach using next generation sequencing platforms to develop and characterize a high-throughput Illumina Infinium® SNP genotyping array platform. We performed whole genome re-sequencing of 56 peach breeding accessions using the Illumina and Roche/454 sequencing technologies. Polymorphism detection algorithms identified a total of 1,022,354 SNPs. Validation with the Illumina GoldenGate® assay was performed on a subset of the predicted SNPs, verifying ∼75% of genic (exonic and intronic) SNPs, whereas only about a third of intergenic SNPs were verified. Conservative filtering was applied to arrive at a set of 8,144 SNPs that were included on the IPSC peach SNP array v1, distributed over all eight peach chromosomes with an average spacing of 26.7 kb between SNPs. Use of this platform to screen a total of 709 accessions of peach in two separate evaluation panels identified a total of 6,869 (84.3%) polymorphic SNPs.The almost 7,000 SNPs verified as polymorphic through extensive empirical evaluation represent an excellent source of markers for future studies in genetic relatedness, genetic mapping, and dissecting the genetic architecture of complex agricultural traits. The IPSC peach SNP array v1 is commercially available and we expect that it will be used worldwide for genetic studies in peach and related stone fruit and nut species.  相似文献   

10.
MOTIVATION: Modern strategies for mapping disease loci require efficient genotyping of a large number of known polymorphic sites in the genome. The sensitive and high-throughput nature of hybridization-based DNA microarray technology provides an ideal platform for such an application by interrogating up to hundreds of thousands of single nucleotide polymorphisms (SNPs) in a single assay. Similar to the development of expression arrays, these genotyping arrays pose many data analytic challenges that are often platform specific. Affymetrix SNP arrays, e.g. use multiple sets of short oligonucleotide probes for each known SNP, and require effective statistical methods to combine these probe intensities in order to generate reliable and accurate genotype calls. RESULTS: We developed an integrated multi-SNP, multi-array genotype calling algorithm for Affymetrix SNP arrays, MAMS, that combines single-array multi-SNP (SAMS) and multi-array, single-SNP (MASS) calls to improve the accuracy of genotype calls, without the need for training data or computation-intensive normalization procedures as in other multi-array methods. The algorithm uses resampling techniques and model-based clustering to derive single array based genotype calls, which are subsequently refined by competitive genotype calls based on (MASS) clustering. The resampling scheme caps computation for single-array analysis and hence is readily scalable, important in view of expanding numbers of SNPs per array. The MASS update is designed to improve calls for atypical SNPs, harboring allele-imbalanced binding affinities, that are difficult to genotype without information from other arrays. Using a publicly available data set of HapMap samples from Affymetrix, and independent calls by alternative genotyping methods from the HapMap project, we show that our approach performs competitively to existing methods. AVAILABILITY: R functions are available upon request from the authors.  相似文献   

11.
Genotyping of Bacillus cereus strains by microarray-based resequencing   总被引:1,自引:0,他引:1  
The ability to distinguish microbial pathogens from closely related but nonpathogenic strains is key to understanding the population biology of these organisms. In this regard, Bacillus anthracis, the bacterium that causes inhalational anthrax, is of interest because it is closely related and often difficult to distinguish from other members of the B. cereus group that can cause diverse diseases. We employed custom-designed resequencing arrays (RAs) based on the genome sequence of Bacillus anthracis to generate 422 kb of genomic sequence from a panel of 41 Bacillus cereus sensu lato strains. Here we show that RAs represent a "one reaction" genotyping technology with the ability to discriminate between highly similar B. anthracis isolates and more divergent strains of the B. cereus s.l. Clade 1. Our data show that RAs can be an efficient genotyping technology for pre-screening the genetic diversity of large strain collections to selected the best candidates for whole genome sequencing.  相似文献   

12.
Optimized design and assessment of whole genome tiling arrays   总被引:1,自引:0,他引:1  
MOTIVATION: Recent advances in microarray technologies have made it feasible to interrogate whole genomes with tiling arrays and this technique is rapidly becoming one of the most important high-throughput functional genomics assays. For large mammalian genomes, analyzing oligonucleotide tiling array data is complicated by the presence of non-unique sequences on the array, which increases the overall noise in the data and may lead to false positive results due to cross-hybridization. The ability to create custom microarrays using maskless array synthesis has led us to consider ways to optimize array design characteristics for improving data quality and analysis. We have identified a number of design parameters to be optimized including uniqueness of the probe sequences within the whole genome, melting temperature and self-hybridization potential. RESULTS: We introduce the uniqueness score, U, a novel quality measure for oligonucleotide probes and present a method to quickly compute it. We show that U is equivalent to the number of shortest unique substrings in the probe and describe an efficient greedy algorithm to design mammalian whole genome tiling arrays using probes that maximize U. Using the mouse genome, we demonstrate how several optimizations influence the tiling array design characteristics. With a sensible set of parameters, our designs cover 78% of the mouse genome including many regions previously considered 'untilable' due to the presence of repetitive sequence. Finally, we compare our whole genome tiling array designs with commercially available designs. AVAILABILITY: Source code is available under an open source license from http://www.ebi.ac.uk/~graef/arraydesign/.  相似文献   

13.
Current genotyping algorithms typically call genotypes by clustering allele-specific intensity data on a single nucleotide polymorphism (SNP) by SNP basis. This approach assumes the availability of a large number of control samples that have been sampled on the same array and platform. We have developed a SNP genotyping algorithm for the Illumina Infinium SNP genotyping assay that is entirely within-sample and does not require the need for a population of control samples nor parameters derived from such a population. Our algorithm exhibits high concordance with current methods and >99% call accuracy on HapMap samples. The ability to call genotypes using only within-sample information makes the method computationally light and practical for studies involving small sample sizes and provides a valuable independent quality control metric for other population-based approaches. AVAILABILITY: http://www.stats.ox.ac.uk/~giannoul/GenoSNP/.  相似文献   

14.
15.
DNA resequencing arrays enable rapid acquisition of high-quality sequence data. This technology represents a promising platform for rapid high-resolution genotyping of microorganisms. Traditional array-based resequencing methods have relied on the use of specific PCR-amplified fragments from the query samples as hybridization targets. While this specificity in the target DNA population reduces the potential for artifacts caused by cross-hybridization, the subsampling of the query genome limits the sequence coverage that can be obtained and therefore reduces the technique's resolution as a genotyping method. We have developed and validated an Affymetrix Inc. GeneChip(R) array-based, whole-genome resequencing platform for Francisella tularensis, the causative agent of tularemia. A set of bioinformatic filters that targeted systematic base-calling errors caused by cross-hybridization between the whole-genome sample and the array probes and by deletions in the sample DNA relative to the chip reference sequence were developed. Our approach eliminated 91% of the false-positive single-nucleotide polymorphism calls identified in the SCHU S4 query sample, at the cost of 10.7% of the true positives, yielding a total base-calling accuracy of 99.992%.  相似文献   

16.
One of the most devastating emerging pathogens of wildlife is the chytrid fungus, Batrachochytrium dendrobatidis (Bd), which affects hundreds of amphibian species around the world. Genomic data from pure Bd cultures have advanced our understanding of Bd phylogenetics, genomic architecture and mechanisms of virulence. However, pure cultures are laborious to obtain and whole‐genome sequencing is comparatively expensive, so relatively few isolates have been genetically characterized. Thus, we still know little about the genetic diversity of Bd in natural systems. The most common noninvasive method of sampling Bd from natural populations is to swab amphibian skin. Hundreds of thousands of swabs have been collected from amphibians around the world, but Bd DNA collected via swabs is often low in quality and/or quantity. In this study, we developed a custom Bd genotyping assay using the Fluidigm Access Array platform to amplify 192 carefully selected regions of the Bd genome. We obtained robust sequence data for pure Bd cultures and field‐collected skin swabs. This new assay has the power to accurately discriminate among the major Bd clades, recovering the basic tree topology previously revealed using whole‐genome data. Additionally, we established a critical value for initial Bd load for swab samples (150 Bd genomic equivalents) above which our assay performs well. By leveraging advances in microfluidic multiplex PCR technology and the globally distributed resource of amphibian swab samples, noninvasive skin swabs can now be used to address critical spatial and temporal questions about Bd and its effects on declining amphibian populations.  相似文献   

17.

Background

Molecular alterations critical to development of cancer include mutations, copy number alterations (amplifications and deletions) as well as genomic rearrangements resulting in gene fusions. Massively parallel next generation sequencing, which enables the discovery of such changes, uses considerable quantities of genomic DNA (> 5 ug), a serious limitation in ever smaller clinical samples. However, a commonly available microarray platforms such as array comparative genomic hybridization (array CGH) allows the characterization of gene copy number at a single gene resolution using much smaller amounts of genomic DNA. In this study we evaluate the sensitivity of ultra-dense array CGH platforms developed by Agilent, especially that of the 1 million probe array (1 M array), and their application when whole genome amplification is required because of limited sample quantities.

Methods

We performed array CGH on whole genome amplified and not amplified genomic DNA from MCF-7 breast cancer cells, using 244 K and 1 M Agilent arrays. The ADM-2 algorithm was used to identify micro-copy number alterations that measured less than 1 Mb in genomic length.

Results

DNA from MCF-7 breast cancer cells was analyzed for micro-copy number alterations, defined as measuring less than 1 Mb in genomic length. The 4-fold extra resolution of the 1 M array platform relative to the less dense 244 K array platform, led to the improved detection of copy number variations (CNVs) and micro-CNAs. The identification of intra-genic breakpoints in areas of DNA copy number gain signaled the possible presence of gene fusion events. However, the ultra-dense platforms, especially the densest 1 M array, detect artifacts inherent to whole genome amplification and should be used only with non-amplified DNA samples.

Conclusions

This is a first report using 1 M array CGH for the discovery of cancer genes and biomarkers. We show the remarkable capacity of this technology to discover CNVs, micro-copy number alterations and even gene fusions. However, these platforms require excellent genomic DNA quality and do not tolerate relatively small imperfections related to the whole genome amplification.  相似文献   

18.
High-throughput SNP genotyping   总被引:5,自引:0,他引:5  
Whole genome approaches using single nucleotide polymorphism (SNP) markers have the potential to transform complex disease genetics and expedite pharmacogenetics research. This has led to a requirement for high-throughput SNP genotyping platforms. Development of a successful high-throughput genotyping platform depends on coupling reliable assay chemistry with an appropriate detection system to maximise efficiency with respect to accuracy, speed and cost. Current technology platforms are able to deliver throughputs in excess of 100 000 genotypes per day, with an accuracy of >99%, at a cost of 20-30 cents per genotype. In order to meet the demands of the coming years, however, genotyping platforms need to deliver throughputs in the order of one million genotypes per day at a cost of only a few cents per genotype. In addition, DNA template requirements must be minimised such that hundreds of thousands of SNPs can be interrogated using a relatively small amount of genomic DNA. As such, it is predicted that the next generation of high-throughput genotyping platforms will exploit large-scale multiplex reactions and solid phase assay detection systems.  相似文献   

19.
Genomic hybridization on whole genome arrays detects the presence or absence of similar DNA regions in sufficiently related microorganisms, allowing genome-wide comparison of their genetic contents. A whole genome array is based on a sequenced bacterial isolate, and is a collection of DNA probes fixed on a solid support. In a single hybridization experiment, the absence/presence status of all genes of the sequenced microbe in the queried isolate can be examined. The objective of this minireview is to summarize the past usage of DNA microarray technology for microbial strain characterizations, and to estimate its future utilization in epidemiological studies and molecular typing of bacterial pathogens. The studies reviewed here confirm the usefulness of microarray technology for the detection of genetic polymorphisms. However, the construction or purchase of DNA microarrays and the performance of strain to strain hybridization experiments are still prohibitively expensive for routine application. Future use of arrays in epidemiology is likely to depend on the development of more cost-effective protocols, more robust and simplified formats, and the adequate evaluation of their performance (efficacy) and convenience (efficiency) compared with other genotyping methods. It seems more likely that a more focused assay, concentrating on genomic regions of variability previously detected by genome-wide microarrays, will find broad application in routine bacterial epidemiology.  相似文献   

20.
The diversity in the Plasmodium falciparum genome can be used to explore parasite population dynamics, with practical applications to malaria control. The ability to identify the geographic origin and trace the migratory patterns of parasites with clinically important phenotypes such as drug resistance is particularly relevant. With increasing single-nucleotide polymorphism (SNP) discovery from ongoing Plasmodium genome sequencing projects, a demand for high SNP and sample throughput genotyping platforms for large-scale population genetic studies is required. Low parasitaemias and multiple clone infections present a number of challenges to genotyping P. falciparum. We addressed some of these issues using a custom 384-SNP Illumina GoldenGate assay on P. falciparum DNA from laboratory clones (long-term cultured adapted parasite clones), short-term cultured parasite isolates and clinical (non-cultured isolates) samples from East and West Africa, Southeast Asia and Oceania. Eighty percent of the SNPs (n = 306) produced reliable genotype calls on samples containing as little as 2 ng of total genomic DNA and on whole genome amplified DNA. Analysis of artificial mixtures of laboratory clones demonstrated high genotype calling specificity and moderate sensitivity to call minor frequency alleles. Clear resolution of geographically distinct populations was demonstrated using Principal Components Analysis (PCA), and global patterns of population genetic diversity were consistent with previous reports. These results validate the utility of the platform in performing population genetic studies of P. falciparum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号