首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The amyloid beta-peptide (Abeta) is a principal component of insoluble amyloid plaques which are characteristic neuropathological features of Alzheimer's disease. Abeta also exists as a normal soluble protein that undergoes a pathogenic transition to an aggregated, fibrous form. This transition can be affected by extraneous proteinaceous and nonproteinaceous elements, such as zinc ions, which may promote aggregation and/or stabilization of the fibrils. Protein chelation of zinc is typically mediated by histidines, cysteines and carboxylates. Previous studies have demonstrated that the Abeta-Zn2+ binding site is localized within residues 6-28 and that histidines may serve as the principal sites of interaction. To localize key residues within this region, a series of Abeta peptides (residues 1-28) were synthesized that contained systematic His/Ala substitutions. Circular dichroism and electron microscopy were used to monitor the effects of Zn2+ on the peptide beta-sheet conformation and fibril aggregation. Our results indicate that substitution of either His13 or His14 but not His6 eliminates the zinc-mediated effects. These observations indicate a specific zinc binding site within Abeta that involves these central histidine residues.  相似文献   

2.
Metal ions have been suggested to induce aggregation of amyloid beta-peptide (Abeta), which is a key event in Alzheimer's disease. However, direct evidence that specific metal-peptide interactions are responsible for the amyloid formation has not previously been provided. Here we present the first example of the metal-induced amyloid formation by an Abeta fragment, which exhibits a clear-cut dependence on the amino acid sequence. A heptapeptide, EFRHDSG, corresponding to the amino acid residues 3-9 of Abeta (Abeta(3-9)) undergoes a conformational transition from irregular to beta-sheet and self-associates into insoluble aggregates upon Cu(II) binding. A Raman spectrum analysis of the Cu(II)-Abeta(3-9) complex and aggregation assays of mutated Abeta(3-9) peptides demonstrated that a concerted Cu(II) coordination of the imidazole side chain of His6, the carboxyl groups of Glu3 and Asp7, and the amino group at the N-terminus is essential for the amyloid formation. Although Abeta(1-9) and Abeta(2-9) also contain the metal binding sites, neither of these peptides forms amyloid depositions in the presence of Cu(II). The results of this study may not only provide new insight into the mechanism of amyloid formation, but also be important as a step toward the construction of proteinaceous materials with a specific function under the control of Cu(II).  相似文献   

3.
Aggregation of the human amyloid beta-peptide (Abeta) into insoluble plaques is a key event in Alzheimer's disease. Zinc sharply accelerates the Abeta aggregation in vitro, and the Abeta region 6-28 was suggested to be the obligatory zinc binding site. However, time-dependent aggregation of the zinc-bound Abeta species investigated so far prevented their structural analysis. By using CD spectroscopy, we have shown here for the first time that (i) the protected synthetic peptide spanning the fragment 1-16 of Abeta binds specifically zinc with 1:1 and 1:2 stoichiometry under physiologically relevant conditions; (ii) the peptide-zinc complex is soluble and stable for several months; (iii) zinc binding causes a conformational change of the peptide towards a more structured state. These findings suggest the region 1-16 to be the minimal autonomous zinc binding domain of Abeta.  相似文献   

4.
Lim KH  Kim YK  Chang YT 《Biochemistry》2007,46(47):13523-13532
Transition-metal ions (Cu2+ and Zn2+) play critical roles in the Abeta plaque formation. However, precise roles of the metal ions in the Abeta amyloidogenesis have been controversial. In this study, the molecular mechanism of the metal-induced Abeta oligomerization was investigated with extensive metal ion titration NMR experiments. Upon additions of the metal ions, the N-terminal region (1-16) of the Abeta (1-40) peptide was selectively perturbed. In particular, polar residues 4-8 and 13-15 were more strongly affected by the metal ions, suggesting that those regions may be the major binding sites of the metal ions. The NMR signal changes of the N-terminal region were dependent on the peptide concentrations (higher peptide concentrations resulted in stronger signal changes), suggesting that the metal ions facilitate the intermolecular contact between the Abeta peptides. The Abeta (1-40) peptides (>30 microM) were eventually oligomerized even at low temperature (3 degrees C), where the Abeta peptides are stable as monomeric forms without the metal ions. The real-time oligomerization process was monitored by 1H/15N HSQC NMR experiments, which provided the first residue-specific structural transition information. Hydrophobic residues 12-21 initially underwent conformational changes due to the intermolecular interactions. After the initial structural rearrangements, the C-terminal residues (32-40) readjusted their conformations presumably for effective oligomerization. Similar structural changes of the metal-free Abeta (1-40) peptides were also observed in the presence of the preformed oligomers, suggesting that the conformational transitions may be the general molecular mechanism of the Abeta (1-40) amyloidogenesis.  相似文献   

5.
The underlying cause of Alzheimer's disease is thought to be the aggregation of monomeric beta-amyloid (Abeta), through a series of toxic oligomers, which forms the mature amyloid fibrils that accumulate at the center of senile plaques. It has been reported that L-(-)-nicotine prevents Abeta aggregation and toxicity, and inhibits senile plaque formation. Previous NMR studies have suggested that this could be due to the specific binding of L-(-)-nicotine to histidine residues (His6, His13, and His14) in the peptide. Here, we have looked at the effects of both of the L-(-) and D-(+) optical enantiomers of nicotine on the aggregation and cytotoxicity of Abeta(1-40). Surprisingly, both enantiomers inhibited aggregation of the peptide and reduced the toxic effects of the peptide on cells. In NMR studies with Abeta(1-40), both enantiomers of nicotine were seen to interact with the three histidine residues. Overall, our data indicate that nicotine can delay Abeta fibril formation and maintain a population of less toxic Abeta species. This effect cannot be due to a highly specific binding interaction between nicotine and Abeta, as previously thought, but could be due instead to weaker, relatively nonspecific binding, or to the antioxidant or metal chelating properties of nicotine. D-(+)-nicotine, being biologically much less active than L-(-)-nicotine, might be a useful therapeutic agent.  相似文献   

6.
The interactions of Alzheimer's amyloid beta-peptide with cyclodextrins were studied by (1)H NMR: the translational diffusion coefficient of the peptide and chemical shift changes were studied by the presence of variable concentrations of cyclodextrins. For the full-length peptide, Abeta(1-40), the combined results of translational diffusion and chemical shift changes are consistent with a model where aromatic side chains interact with beta-cyclodextrin with dissociation constants in the millimolar range. The diffusion data were consistent with two beta-cyclodextrin molecules bound per peptide. The binding occurs at two sites, at F(19) and/or F(20) and at Y(10), with dissociation constants K(d)(F) = 4.7 mM and K(d)(Y) = 6.6 mM, respectively, in 10 mM sodium phosphate, pH 7.4 and 298 K. Shorter Alzheimer peptide fragments were studied to measure specific affinities for different binding sites. The N-terminal fragment Abeta(1-9) with a putative binding site at F(4) does not show measurable affinity for beta-cyclodextrin. The fragment Abeta(12-28) has similar apparent affinity (K(d) = 3.8 mM) to beta-cyclodextrin as the full-length peptide Abeta(1-40). Here, the diffusion data suggests a one-to-one stoichiometry, and the binding site is F(19) and/or F(20). Both diffusion results and chemical shift changes give the same affinity. A variant Abeta(12-28)G(19)G(20) without phenylalanines does not bind to beta-cyclodextrin. Other potential ligands, alpha-cyclodextrin, gamma-cyclodextrin, nicotine, and nornicotine do not bind to the Abeta(12-28) fragment. This study shows that combined (1)H NMR diffusion and chemical shift changes may be used to quantitatively determine affinities and stoichiometries of weak interactions, using unlabeled ligands and hosts of comparable sizes.  相似文献   

7.
8.
The amyloid beta peptide (Abeta) with 39-42 residues is the major component of amyloid plaques found in brains of Alzheimer's disease patients, and soluble oligomeric peptide aggregates mediate toxic effects on neurons. The Abeta aggregation involves a conformational change of the peptide structure to beta-sheet. In the present study, we report on the effect of detergents on the structure transitions of Abeta, to mimic the effects that biomembranes may have. In vitro, monomeric Abeta(1-40) in a dilute aqueous solution is weakly structured. By gradually adding small amounts of sodium dodecyl sulfate (SDS) or lithium dodecyl sulfate to a dilute aqueous solution, Abeta(1-40) is converted to beta-sheet, as observed by CD at 3 degrees C and 20 degrees C. The transition is mainly a two-state process, as revealed by approximately isodichroic points in the titrations. Abeta(1-40) loses almost all NMR signals at dodecyl sulfate concentrations giving rise to the optimal beta-sheet content (approximate detergent/peptide ratio = 20). Under these conditions, thioflavin T fluorescence measurements indicate a maximum of aggregated amyloid-like structures. The loss of NMR signals suggests that these are also involved in intermediate chemical exchange. Transverse relaxation optimized spectroscopy NMR spectra indicate that the C-terminal residues are more dynamic than the others. By further addition of SDS or lithium dodecyl sulfate reaching concentrations close to the critical micellar concentration, CD, NMR and FTIR spectra show that the peptide rearranges to form a micelle-bound structure with alpha-helical segments, similar to the secondary structures formed when a high concentration of detergent is added directly to the peptide solution.  相似文献   

9.
An 18-residue peptide (NC-F1) with an amino acid sequence corresponding to the N-terminal zinc finger of human immunodeficiency virus-1 nucleocapsid protein has been shown to bind to nucleic acids by fluorescence and NMR methods. Previously, this peptide has been shown to fold into a defined structure when bound to zinc (Summers et al., 1990). We have used a fluorescent polynucleotide, poly(ethenoadenylic acid), to monitor binding of this peptide to nucleic acids. In the presence of zinc, the peptide had a smaller site size (1.75 nucleotide residues/peptide) than in the absence of the metal ion (2.75). The salt sensitivity of the interaction indicated that two ion pairs are involved in the association of Zn2+ (NC-F1) with polynucleotide, whereas one ion pair is found in the metal-free peptide-nucleic acid complex. Competition experiments with single-stranded DNA (ss DNA) in either the presence or absence of Zn2+ showed that the peptide bound to ss DNA. Using NMR methods, we monitored the binding of a synthetic oligonucleotide, d(TTTGGTTT), to Zn(NC-F1). The hydrophobic residues F2 and I10, which are on the surface of the peptide and have been implicated in viral RNA recognition, were shown to interact with the oligomer. In accord with this observation, analysis of the salt dependence of the polynucleotide-peptide interaction indicates a nonelectrostatic component of about -6 kcal/mol, a value consistent with theoretical estimates of stacking energies of phenylalanine with nucleic acid bases.  相似文献   

10.
The most well-established structural feature of amyloid fibrils is the cross-beta motif, an extended beta-sheet structure formed by beta-strands oriented perpendicular to the long fibril axis. Direct experimental identification of non-beta-strand conformations in amyloid fibrils has not been reported previously. Here we report the results of solid-state NMR measurements on amyloid fibrils formed by the 40-residue beta-amyloid peptide associated with Alzheimer's disease (Abeta(1-40)), prepared synthetically with pairs of (13)C labels at consecutive backbone carbonyl sites. The measurements probe the peptide backbone conformation in residues 24-30, a segment where a non-beta-strand conformation has been suggested by earlier sequence analysis, cross-linking experiments, and molecular modeling. Data obtained with the fpRFDR-CT, DQCSA, and 2D MAS exchange solid-state NMR techniques, which provide independent constraints on the phi and psi backbone torsion angles between the labeled carbonyl sites, indicate non-beta-strand conformations at G25, S26, and G29. These results represent the first site-specific identification and characterization of non-beta-strand peptide conformations in an amyloid fibril.  相似文献   

11.
Miura T  Suzuki K  Kohata N  Takeuchi H 《Biochemistry》2000,39(23):7024-7031
Aggregation of the amyloid beta-peptide (Abeta) into insoluble fibrils is a key pathological event in Alzheimer's disease. Zn(II) induces the Abeta aggregation at acidic-to-neutral pH, while Cu(II) is an effective inducer only at mildly acidic pH. We have examined Zn(II) and Cu(II) binding modes of Abeta and their pH dependence by Raman spectroscopy. The Raman spectra clearly demonstrate that three histidine residues in the N-terminal hydrophilic region provide primary metal binding sites and the solubility of the metal-Abeta complex is correlated with the metal binding mode. Zn(II) binds to the N(tau) atom of the histidine imidazole ring and the peptide aggregates through intermolecular His(N(tau))-Zn(II)-His(N(tau)) bridges. The N(tau)-metal ligation also occurs in Cu(II)-induced Abeta aggregation at mildly acidic pH. At neutral pH, however, Cu(II) binds to N(pi), the other nitrogen of the histidine imidazole ring, and to deprotonated amide nitrogens of the peptide main chain. The chelation of Cu(II) by histidine and main-chain amide groups results in soluble Cu(II)-Abeta complexes. Under normal physiological conditions, Cu(II) is expected to protect Abeta against Zn(II)-induced aggregation by competing with Zn(II) for histidine residues of Abeta.  相似文献   

12.
The abnormal form of the prion protein (PrP) is believed to be responsible for the transmissible spongiform encephalopathies. A peptide encompassing residues 106-126 of human PrP (PrP106-126) is neurotoxic in vitro due its adoption of an amyloidogenic fibril structure. The Alzheimer's disease amyloid beta peptide (Abeta) also undergoes fibrillogenesis to become neurotoxic. Abeta aggregation and toxicity is highly sensitive to copper, zinc, or iron ions. We show that PrP106-126 aggregation, as assessed by turbidometry, is abolished in Chelex-100-treated buffer. ICP-MS analysis showed that the Chelex-100 treatment had reduced Cu(2+) and Zn(2+) levels approximately 3-fold. Restoring Cu(2+) and Zn(2+) to their original levels restored aggregation. Circular dichroism showed that the Chelex-100 treatment reduced the aggregated beta-sheet content of the peptide. Electron paramagnetic resonance spectroscopy identified a 2N1S1O coordination to the Cu(2+) atom, suggesting histidine 111 and methionine 109 or 112 are involved. Nuclear magnetic resonance confirmed Cu(2+) and Zn(2+) binding to His-111 and weaker binding to Met-112. An N-terminally acetylated PrP106-126 peptide did not bind Cu(2+), implicating the free amino group in metal binding. Mutagenesis of either His-111, Met-109, or Met-112 abolished PrP106-126 neurotoxicity and its ability to form fibrils. Therefore, Cu(2+) and/or Zn(2+) binding is critical for PrP106-126 aggregation and neurotoxicity.  相似文献   

13.
S T Liu  G Howlett  C J Barrow 《Biochemistry》1999,38(29):9373-9378
Metal ions such as Zn(2+) and Cu(2+) have been implicated in both the aggregation and neurotoxicity of the beta-amyloid (Abeta) peptide that is present in the brains of Alzheimer's sufferers. Zinc ions in particular have been shown to induce rapid aggregation of Abeta. Rat Abeta binds zinc ions much less avidly than human Abeta, and rats do not form cerebral Abeta amyloid. Rat Abeta differs from human Abeta by the substitution of Gly for Arg, Phe for Tyr, and Arg for His at positions 5, 10, and 13, respectively. Through the use of synthetic peptides corresponding to the first 28 residues of human Abeta, rat Abeta, and single-residue variations, we use circular dichroism spectroscopy, sedimentation assays, and immobilized metal ion affinity chromatography to show that the substitution of Arg for His-13 is responsible for the different Zn(2+)-induced aggregation behavior of rat and human Abeta. The coordination of Zn(2+) to histidine-13 is critical to the zinc ion induced aggregation of Abeta.  相似文献   

14.
Alzheimer's disease (AD) is a neurodegenerative disorder whose hallmark is the presence of senile plaques and neurofibrillary tangles. Senile plaques are mainly composed of amyloid beta-peptide (Abeta) fibrils and several proteins including acetylcholinesterase (AChE). AChE has been previously shown to stimulate the aggregation of Abeta1-40 into amyloid fibrils. In the present work, the neurotoxicity of different amyloid aggregates formed in the absence or presence of AChE was evaluated in rat pheochromocytoma PC12 cells. Stable AChE-Abeta complexes were found to be more toxic than those formed without the enzyme, for Abeta1-40 and Abeta1-42, but not for amyloid fibrils formed with AbetaVal18-Ala, a synthetic variant of the Abeta1-40 peptide. Of all the AChE-Abeta complexes tested the one containing the Abeta1-40 peptide was the most toxic. When increasing concentrations of AChE were used to aggregate the Abeta1-40 peptide, the neurotoxicity of the complexes increased as a function of the amount of enzyme bound to each complex. Our results show that AChE-Abeta1-40 aggregates are more toxic than those of AChE-Abeta1-42 and that the neurotoxicity depends on the amount of AChE bound to the complexes, suggesting that AChE may play a key role in the neurodegeneration observed in Alzheimer brain.  相似文献   

15.
Aggregated amyloid beta-peptide (A beta) is the primary constituent of the extracellular plaques and perivascular amyloid deposits associated with Alzheimer's disease (AD). Deposition of the cerebral amyloid plaques is thought to be central to the disease progression. One such molecule that has previously been shown to 'dissolve' deposited amyloid in post-mortem brain tissue is bathocuproine (BC). In this paper 1H NMR chemical shift analysis and pulsed field gradient NMR diffusion measurements were used to study BC self-association and subsequent binding to A beta. The results show that BC undergoes self-association as its concentration increases. The association constant of BC dimerization, Ka, was estimated to be 0.64 mM(-1) at 25 degrees C from 1H chemical shift analysis. It was also found that dimerization of BC appeared to be essential for its binding to A beta. From the self-association constant of BC, Ka, the fraction of dimeric BC in the complex was obtained and the dissociation constant, Kd, of BC bound to A beta40 peptide was then determined to be approximately 1 mM.  相似文献   

16.
M G Zagorski  C J Barrow 《Biochemistry》1992,31(24):5621-5631
Beta-peptide is a major component of amyloid deposits in Alzheimer's disease. We report here a proton nuclear magnetic resonance (NMR) spectroscopic investigation of a synthetic peptide that is homologous to residues 1-28 of beta-peptide [abbreviated as beta-(1-28)]. The beta-(1-28) peptide produces insoluble beta-pleated sheet structures in vitro, similar to the beta-pleated sheet structures of beta-peptide in amyloid deposits in vivo. For peptide solutions in the millimolar range, in aqueous solution at pH 1-4 the beta-(1-28) peptide adopts a monomeric random coil structure, and at pH 4-7 the peptide rapidly precipitates from solution as an oligomeric beta-sheet structure, analogous to amyloid deposition in vivo. The NMR work shown here demonstrates that the beta-(1-28) peptide can adopt a monomeric alpha-helical conformation in aqueous trifluoroethanol solution at pH 1-4. Assignment of the complete proton NMR spectrum and the determination of the secondary structure were arrived at from interpretation of two-dimensional (2D) NMR data, primarily (1) nuclear Overhauser enhancement (NOE), (2) vicinal coupling constants between the amide (NH) and alpha H protons, and (3) temperature coefficients of the NH chemical shifts. The results show that at pH 1.0 and 10 degrees C the beta-(1-28) peptide adopts an alpha-helical structure that spans the entire primary sequence. With increasing temperature and pH, the alpha-helix unfolds to produce two alpha-helical segments from Ala2 to Asp7 and Tyr10 to Asn27. Further increases in temperature to 35 degrees C cause the Ala2-Asp7 section to become random coil, while the His13-Phe20 section stays alpha-helical. A mechanism involving unfavorable interactions between charged groups and the alpha-helix macrodipole is proposed for the alpha-helix----beta-sheet conversion observed at midrange pH.  相似文献   

17.
There is evidence that binding of metal ions like Zn2+ and Cu2+ to amyloid beta-peptides (Abeta) may contribute to the pathogenesis of Alzheimer's disease. Cu2+ and Zn2+ form complexes with Abeta peptides in vitro; however, the published metal-binding affinities of Abeta vary in an enormously large range. We studied the interactions of Cu2+ and Zn2+ with monomeric Abeta(40) under different conditions using intrinsic Abeta fluorescence and metal-selective fluorescent dyes. We showed that Cu(2+) forms a stable and soluble 1 : 1 complex with Abeta(40), however, buffer compounds act as competitive copper-binding ligands and affect the apparent K(D). Buffer-independent conditional K(D) for Cu(II)-Abeta(40) complex at pH 7.4 is equal to 0.035 micromol/L. Interaction of Abeta(40) with Zn2+ is more complicated as partial aggregation of the peptide occurs during zinc titration experiment and in the same time period (within 30 min) the initial Zn-Abeta(40) complex (K(D) = 60 micromol/L) undergoes a transition to a more tight complex with K(D) approximately 2 micromol/L. Competition of Abeta(40) with ion-selective fluorescent dyes Phen Green and Zincon showed that the K(D) values determined from intrinsic fluorescence of Abeta correspond to the binding of the first Cu2+ and Zn2+ ions to the peptide with the highest affinity. Interaction of both Zn2+ and Cu2+ ions with Abeta peptides may occur in brain areas affected by Alzheimer's disease and Zn2+-induced transition in the peptide structure might contribute to amyloid plaque formation.  相似文献   

18.
NMRsolution structures are reported for two mutants (K16E, K16F) of the soluble amyloid beta peptide Abeta(1-28). The structural effects of these mutations of a positively charged residue to anionic and hydrophobic residues at the alpha-secretase cleavage site (Lys16-Leu17) were examined in the membrane-simulating solvent aqueous SDS micelles. Overall the three-dimensional structures were similar to that for the native Abeta(1-28) sequence in that they contained an unstructured N-terminus and a helical C-terminus. These structural elements are similar to those seen in the corresponding regions of full-length Abeta peptides Abeta(1-40) and Abeta(1-42), showing that the shorter peptides are valid model systems. The K16E mutation, which might be expected to stabilize the macrodipole of the helix, slightly increased the helix length (residues 13-24) relative to the K16F mutation, which shortened the helix to between residues 16 and 24. The observed sequence-dependent control over conformation in this region provides an insight into possible conformational switching roles of mutations in the amyloid precursor protein from which Abeta peptides are derived. In addition, if conformational transitions from helix to random coil to sheet precede aggregation of Abeta peptides in vivo, as they do in vitro, the conformation-inducing effects of mutations at Lys16 may also influence aggregation and fibril formation.  相似文献   

19.
Metal ions associated with amyloid-β (Aβ) species have been suggested to be involved in neurodegeneration leading to the progression of Alzheimer's disease (AD). The role of metal-involved Aβ species in AD neuropathogenesis, however, is not fully elucidated. In order to advance this understanding and contribute to the therapeutic development for AD, the rational structure-based design of small molecules that specifically target metal ions surrounded by Aβ species has recently received increased attention. To date, only a few compounds have been fashioned for this purpose. Herein, we report the design strategy, synthesis, characterization, and reactivity of new bifunctional IMPY derivatives K1 and K2. Using UV-vis and high-resolution two-dimensional (2D) NMR spectroscopy, the bifunctionality of K1 and K2 (metal chelation and Aβ interaction) was confirmed. These bifunctional IMPY derivatives showed preferential reactivity toward metal-induced Aβ aggregation over metal-free conditions in both in vitro inhibition and disaggregation experiments. Taken together, this study provides another example of a bifunctional small molecule framework that can target metal ions associated with Aβ species.  相似文献   

20.
The metal-induced assembly of a designed peptide-based rubredoxin model is described. The C16C19-GGY peptide has the sequence Ac-K(IEALEGK)(2)(CEACEGK)(IEALEGK)GGY-amide in which the presence of the Cys-X-X-Cys metal binding domain of rubredoxin was used to place cysteine residues at the hydrophobic "a" and "d" positions upon formation of a homodimeric alpha-helical coiled-coil. Circular dichroism spectroscopy shows that the apopeptide exists as a random coil and assembles into a coiled-coil in the presence of Cd(2+). Metal binding is monitored by the appearance of a new LMCT band at 238 nm. UV-Vis titrations and SDS-PAGE experiments are used to show that this designed metalloprotein exists as a metal-bridged coiled-coil dimer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号