首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The biomechanics of the lens capsule of the eye is important both in physiologic processes such as accommodation and clinical treatments such as cataract surgery. Although the lens capsule experiences multiaxial stresses in vivo, there have been no measurements of its multiaxial properties or possible regional heterogeneities. Rather all prior mechanical data have come from 1-D pressure–volume or uniaxial force-length tests. Here, we report a new experimental approach to study in situ the regional, multiaxial mechanical behavior of the lens capsule. Moreover, we report multiaxial data suggesting that the porcine anterior lens capsule exhibits a typical nonlinear pseudoelastic behavior over finite strains, that the in situ state is pre-stressed multiaxially, and that the meridional and circumferential directions are principal directions of strain, which is nearly equibiaxial at the pole but less so towards the equator. Such data are fundamental to much needed constitutive formulations.  相似文献   

2.
The ocular lens capsule is a smooth, transparent basement membrane that encapsulates the lens and is composed of a rigid network of interacting structural proteins and glycosaminoglycans. During cataract surgery, the anterior lens capsule is routinely removed in the form of a circular disk. We considered that the excised capsule could be easily prepared for matrix-assisted laser desorption/ionization time-of-flight mass spectrometry imaging (MALDI-MSI) analysis. MALDI-MSI is a powerful tool to elucidate the spatial distribution of small molecules, peptides, and proteins within tissues. Here, we apply this molecular imaging technique to analyze the freshly excised human lens capsule en face. We demonstrate that novel information about the distribution of proteins by MALDI-MSI can be obtained from this highly compact connective tissue, having no evident histo-morphological characteristics. Trypsin digestion carried out on-tissue is shown to improve MALDI-MSI analysis of human lens capsules and affords high repeatability. Most importantly, MALDI-MSI analysis reveals a concentric distribution pattern of proteins such as apolipoprotein E (ApoE) and collagen IV alpha-1 on the anterior surface of surgically removed lens capsule, which may indicate direct or indirect effects of environmental and mechanical stresses on the human ocular lens.  相似文献   

3.
Accidentology data showed that liver is often injured in car crashes; three types of injuries occur: hematoma, laceration and vessel failure. This paper focuses on surface laceration, which involves liver capsule and hepatic parenchyma. Liver capsule behavior has been studied but its failure properties are still unclear, particularly on a local point of view. In the present study, tensile quasi-static tests are run on parenchyma and capsule samples until failure to characterize capsule failure. Normalized load as well as failure properties—ultimate load per width unit and ultimate strain—are determined. Digital image correlation is used to measure the full local strain field on the capsule. Mean values of failure characteristics for hepatic capsule are 47±29% for the ultimate local strain and 0.3±0.3 N/mm for the ultimate load per width unit. A comparison between human and porcine tissues is conducted based on Mann–Whitney statistical test; it reveals that capsule characteristics are close between these two species; however, freezing preservation significantly affects porcine capsule failure properties. Therefore using porcine instead of human tissue to determine failure characteristics of liver capsule seems satisfactory only on fresh tissues.  相似文献   

4.
Proteins in basement membrane (BM) are long‐lived and accumulate chemical modifications during aging; advanced glycation endproduct (AGE) formation is one such modification. The human lens capsule is a BM secreted by lens epithelial cells. In this study, we have investigated the effect of aging and cataracts on the AGE levels in the human lens capsule and determined their role in the epithelial‐to‐mesenchymal transition (EMT) of lens epithelial cells. EMT occurs during posterior capsule opacification (PCO), also known as secondary cataract formation. We found age‐dependent increases in several AGEs and significantly higher levels in cataractous lens capsules than in normal lens capsules measured by LC‐MS/MS. The TGFβ2‐mediated upregulation of the mRNA levels (by qPCR) of EMT‐associated proteins was significantly enhanced in cells cultured on AGE‐modified BM and human lens capsule compared with those on unmodified proteins. Such responses were also observed for TGFβ1. In the human capsular bag model of PCO, the AGE content of the capsule proteins was correlated with the synthesis of TGFβ2‐mediated α‐smooth muscle actin (αSMA). Taken together, our data imply that AGEs in the lens capsule promote the TGFβ2‐mediated fibrosis of lens epithelial cells during PCO and suggest that AGEs in BMs could have a broader role in aging and diabetes‐associated fibrosis.  相似文献   

5.
Published data on the mechanical performance of the human lens capsule when tested under uniaxial and biaxial conditions are reviewed. It is concluded that two simple phenomenological constitutive models (namely a linear elastic model and a Fung-type hyperelastic model) are unable to provide satisfactory representations of the mechanical behaviour of the capsule for both of these loading conditions. The possibility of resolving these difficulties using a structural constitutive model for the capsule, of a form that is inspired by the network of collagen IV filaments that exist within the lens capsule, is explored. The model is implemented within a rectangular periodic cell. Prescribed stretches are imposed on the periodic cell and the network is allowed to deform in a non-affine manner. The performance of the constitutive model correlates well with previously published test data. One possible application of the model is in the development of a multi-scale analysis of the mechanics of the human lens capsule.  相似文献   

6.
An in vitro culture model enabling posterior capsule opacification (PCO) to be investigated was developed and established by using low-melting-point (LMP)-agarose gel to support the capsular bag. After removal of the cornea from rodent and porcine eyeballs, the lens zonules were dissected. Whole lens explants were embedded into 2 % (37 °C) LMP-agarose gel solution. As performed routinely in cataract surgery, capsulotomy and lens fiber removal were carried out in the solidified LMP-agarose gel as sham cataract surgery. The LMP-agarose-gel-supported capsular bag/lens epithelial cell (CB-LEC) complexes were maintained in Dulbecco’s modified Eagle medium supplemented with 10 % fetal bovine serum in an anterior face-down position. The proliferation and migration of LECs into the posterior capsule were observed every 12 h by phase-contrast microscopy. Epithelial cells were observed at the central portion of the CB-LEC complexes after 56.57?±?16.56 h (n?=?7) and 106?±?14.03 h (n?=?6) of culture, for rodent and porcine lenses, respectively. The solidified gel allowed clear microscopic observations and whole-mount immunostaining evaluations of the whole area of the capsular bag. Histological examinations revealed the proliferation, migration, and transdifferentiation of LECs related to posterior capsule opacification. This new in vitro culture model provides experimental benefits by maintaining the natural contour of the capsule without implants inside or outside of the capsule. In addition, this model system allows pharmacological and histological evaluations of the cultured CB-LEC complexes without additional manipulations.  相似文献   

7.
Blunt impact on the eye could results in lens capsular rupture that allows foreign substances to enter into the lens and leads to cataract formation. This paper aimed to investigate the mechanism of lens capsular rupture using finite element (FE) method. A FE model of the human eye was developed to simulate dynamic response of the lens capsule to a BB (a standard 4.5-mm-diameter pellet) impact. Sensitivity studies were conducted to evaluate the effect of the parameters on capsular rupture, including the impact velocity, the elastic modulus of the lens, the thickness and the elastic modulus of the lens capsule. The results indicated that the lens was subjected to anterior compression and posterior intension when the eye was stricken by a BB pellet. The strain on the posterior capsule (0.392) was almost twice as much as that on the anterior capsule (0.207) at an impact velocity of 20 m/s. The strain on the capsule was proportional to the impact velocity, while the capsular strain showed no significant change when the lens modulus elastic varied with age. The findings confirmed that blunt traumatic capsular rupture is the result of shockwave propagation throughout the eye. The posterior capsule is subjected to greater tension in blunt trauma, which is the main cause that ruptures are more commonly found on the posterior capsule than the anterior capsule. Also, thinner thickness and lower elastic modulus would contribute to the posterior capsular rupture.  相似文献   

8.
The lens capsule is a specialized thickened basement membrane that completely surrounds the lens and provides anchoring sites for zonules, the filamentous bodies that suspend the lens. Like other basement membranes, the lens capsule contains collagen IV, which is a family of six polypeptides, subunits alpha1(IV)-alpha6(IV), each of which is encoded by a distinct gene. We have investigated the presence of collagen IV subunits in the developing lens capsule by using confocal immunohistochemistry and antibodies against each of the six collagen IV subunits. In murine embryos, subunits alpha1(IV), alpha2(IV), alpha5(IV) and alpha6(IV) were detected in the basement membrane surrounding the lens vesicle, and they persisted in the capsule until adulthood. In contrast, neither collagen alpha3(IV) nor alpha4(IV) was detected in the lens capsule until 2 weeks postnatal. Similarly, we detected no collagen alpha3(IV) or alpha4(IV) in lens capsules of 54-day human embryos, while collagen alpha3(IV) and alpha4(IV) were detected in adult humans. Thus, in the lens capsule, there is a developmental shift in detectable collagen IV subunits; early in development we observed subunits alpha1(IV), alpha2(IV), alpha5(IV) and alpha6(IV), which is consistent with the presence of fibrillar [alpha1alpha1alpha2] and elastic [alpha5alpha5alpha6] protomers, but later in development components of the more cross-linked [alpha3alpha4alpha5] protomer appear. An elastic lens capsule may be necessary in order to accommodate rapid lens growth in early development, whereas later in development a stronger, more cross-linked capsule may be necessary in order to tolerate the stress caused by postnatal accommodation and disaccommodation of the lens.  相似文献   

9.
The lens is an avascular tissue, separated from the aqueous and vitreous humors by its own extracellular matrix, the lens capsule. Here we demonstrate that the lens capsule is a source of essential survival factors for lens epithelial cells. Primary and immortalized lens epithelial cells survive in low levels of serum and are resistant to staurosporine-induced apoptosis when they remain in contact with the lens capsule. Physical contact with the capsule is required for maximal resistance to stress. The lens capsule is also a source of soluble factors including fibroblast growth factor 2 (FGF-2) and perlecan, an extracellular matrix component that enhances FGF-2 activity. Matrix metalloproteinase 2 (MMP-2) inhibition as well as MMP-2 pretreatment of lens capsules greatly reduced the protective effect of the lens capsule, although this could be largely reversed by the addition of either conditioned medium or recombinant FGF-2. These data suggest that FGF-2 release from the lens capsule by MMP-2 is essential to lens epithelial cell viability and survival.  相似文献   

10.
SPARC (Secreted Protein, Acidic and Rich in Cysteine) is a matricellular glycoprotein that modulates cell proliferation, adhesion, migration, and extracellular matrix (ECM) production. Although SPARC is generally abundant in embryonic tissues and is diminished in adults, we have found that the expression of SPARC in murine lens persists throughout embryogenesis and adulthood. Our previous studies showed that targeted ablation of the SPARC gene in mice results in cataract formation, a pathology attributed partially to an abnormal lens capsule. Here we provide evidence that SPARC is not a structural component of the lens capsule. In contrast, SPARC is abundant in lens epithelial cells, and newly differentiated fiber cells, with stable expression in wild-type mice up to 2 years of age. Pertubation of the lens capsule in animals lacking SPARC appears to be a consequence of the invasion of the lens cells situated beneath the capsule. Immunoreactivity for SPARC in the lens cells was uneven, with minimal reactivity in the epithelial cells immediately anterior to the equator. These epithelial cells appeared essentially noninvasive in SPARC-null mice, in comparison to the centrally located anterior epithelial cells, in which strong labeling by anti-SPARC IgG was observed. The posterior lens fibers exhibited cytoplasmic extensions into the posterior lens capsule, which was severely damaged in SPARC-null lenses. The expression of SPARC in wild-type lens cells, together with the abnormal lens capsule in SPARC-null mice, indicated that the structural integrity of the lens capsule is dependent on the matricellular protein SPARC. The effects of SPARC in the lens appear to involve regulation of lens epithelial and fiber cell morphology and functions rather than deposition as a structural component of the lens capsule.  相似文献   

11.
An analysis of aphakia (ak) gene expression in 16 day ak/ak C/C----+/+ c/c chimaeric embryos has shown, that ak gene, acting in developing lens, blocks lens cell differentiation and disturbs the formation by these cells of the extracellular matrix composing the lens capsule material. The dependence of capsule structure in chimaeras on the genotype of underlying cells indicates that lens cells are responsible for the formation of lens capsule.  相似文献   

12.
We apply topography and recognition (TREC) imaging to the analysis of whole, untreated human tissue for what we believe to be the first time. Pseudoexfoliation syndrome (PEX), a well-known cause of irreversible blindness worldwide, is characterized by abnormal protein aggregation on the anterior lens capsule of the eye. However, the development of effective therapies has been hampered by a lack of detailed knowledge of the protein constituents in these pathological deposits and their distribution. Using both TREC and immunofluorescence, one of the proteins implicated in the PEX pathology—the apolipoprotein clusterin—was detected, and differences in its distribution pattern on the surface of untreated human lens capsule tissue in both PEX and normal control samples were investigated. Our study shows the potential of TREC imaging for the analysis of whole, untreated human tissue samples.  相似文献   

13.
Transplantation therapy for human diabetes is limited by the toxicity of immunosuppressive drugs. If toxicity can be minimized, there will still be a shortage of human donor organs. Xenotransplantation of porcine islets is a strategy to overcome supply problems. Xenotransplantation in mesentery of pig pancreatic primordia obtained very early during organogenesis [embryonic day 28 (E28)] is a way to obviate the need for immunosuppression in rats or rhesus macaques and to enable engraftment of a cell component originating from porcine islets implanted beneath the renal capsule of rats. Here, we show engraftment in the kidney of insulin and porcine proinsulin mRNA-expressing cells following implantation of porcine islets beneath the renal capsule of diabetic rhesus macaques transplanted previously with E28 pig pancreatic primordia in mesentery. Donor cell engraftment is confirmed using fluorescent in situ hybridization (FISH) for the porcine X chromosome and is supported by glucose-stimulated insulin release in vitro. Cells from islets do not engraft in the kidney without prior transplantation of E28 pig pancreatic primordia in mesentery. This is the first report of engraftment following transplantation of porcine islets in non-immunosuppressed, immune-competent non-human primates. The data are consistent with tolerance to a cell component of porcine islets induced by previous transplantation of E28 pig pancreatic primordia.  相似文献   

14.
《Organogenesis》2013,9(3):154-162
Transplantation therapy for human diabetes is limited by the toxicity of immunosuppressive drugs. If toxicity can be minimized, there will still be a shortage of human donor organs. Xenotransplantation of porcine islets is a strategy to overcome supply problems. Xenotransplantation in mesentery of pig pancreatic primordia obtained very early during organogenesis [embryonic day 28 (E28)] is a way to obviate the need for immunosuppression in rats or rhesus macaques and to enable engraftment of a cell component originating from porcine islets implanted beneath the renal capsule of rats. Here, we show engraftment in the kidney of insulin and porcine proinsulin mRNA-expressing cells following implantation of porcine islets beneath the renal capsule of diabetic rhesus macaques transplanted previously with E28 pig pancreatic primordia in mesentery. Donor cell engraftment is confirmed using fluorescent in situ hybridization (FISH) for the porcine X chromosome and is supported by glucose-stimulated insulin release in vitro. Cells from islets do not engraft in the kidney without prior transplantation of E28 pig pancreatic primordia in mesentery. This is the first report of engraftment following transplantation of porcine islets in non-immunosuppressed, immune-competent non-human primates. The data are consistent with tolerance to a cell component of porcine islets induced by previous transplantation of E28 pig pancreatic primordia.  相似文献   

15.
16.
Summary The bovine lens capsule has previously been shown to provide an optimal surface for the examination of epithelial cell interaction with a basement membrane. This native substrate has been used to investigate some initial aspects of attachment of mouse blastocysts and trophoblastic cellular outgrowth. Mouse blastocysts were presented to the cell-free humoral side of the anterior lens capsule, incubated for 72 h, and examined by scanning and transmission electron microscopy. Blastocysts hatch and attach from their zonae pellucidae by 30 h. Trophoblastic cells proliferate rapidly in a coronal direction, display extensive surface microvilli, and advance by the extension of numerous filipodia, many of which terminate with bulbous projections. These projections were shown by transmission electron microscopy to contain numerous vacuoles and polysomes. To simulate further the initial blastocyst-uterine interaction, a suspension of lens epithelial cells was introduced to the capsule and permitted to form a monolayer prior to the addition of the blastocysts. At 72 h the monolayer of lens cells remained intact. We observed that: a) lens cells appear to recede from the advancing trophoblastic cells, and b) trophoblastic cells extend beneath the monolayer of lens cells and thereby dislodge the cells from the lens capsule substrate. No infiltration of the capsule by the advancing trophoblastic cells was observed. The lens capsule appears to offer a promising system for the study of trophoblast-epithelial cell interaction on a natural basement membrane.  相似文献   

17.
The function of mammalian ocular lens is to provide a sharp image to the retina. Accordingly, the lens needs to be transparent and minimize light scattering. To do so the lens fiber cells first loose intracellular organelles, organize the cytoplasm and arrange the fiber cell membranes. Because the fiber cells are metabolically inactive, the plasma membrane becomes the only cellular organelle and consequently, the phase behavior of these membranes determines the physiological state of the lens. Previous studies have shown that lipids extracted from the nuclear and cortical region of human lens show a temperature-induced phase transition close to the body temperature. Yet, the physiological function of this phase transition is not known, and even the presence of the phase transition in intact lenses is unknown. Positron annihilation lifetime spectroscopy (PALS) was used to characterize the sub-nanometer-sized local structure of intact porcine lens and these studies were complemented with differential scanning calorimeter and mass spectrometric analysis in extracted porcine lens lipids. Using PALS, we present evidence for the presence of a temperature-dependent structural transition centered at 35.5 °C in-situ in clear extracted porcine lenses. Further studies employing extracted lens lipids and purified egg-yolk sphingomyelin and cholesterol mixtures suggest that the nano-scale transition emerges from the phase behavior of lens lipids. Based on our results, PALS seems to be a viable method for gaining additional information on biological tissues, especially since it enables non-destructive studies on intact tissues.  相似文献   

18.
The wide angle X-ray diffraction pattern of air-dried lens capsule collagen under tension is the same as the tendon collagen diffraction pattern with regard to the main reflections, and indicates that lens capsule collagen has the characteristic three-stranded helical structure with an axial repeat of 0.29 nm as tendon collagen. The low angle X-ray diffraction pattern shows several weak diffraction maxima corresponding to the meridional reflections of capsule collagen which show orders of 63.0 nm periodicity. This is an evidence of quarter staggered molecular assembly typical of tendon collagen even if less ordered. The results are consistent with the existence in lens capsule collagen of clearly defined molecular units, which can be oriented by stress and are packed in a poor-ordered fibrillar assembly.  相似文献   

19.
To define the molecular structure of bovine lens epithelium and its anterior lens capsule, we investigated the composition of lens capsule basement membrane proteins. Immunofluorescence and immunogold techniques were used to demonstrate the presence of type I and type III collagen in the lens capsule and in primary explant epithelial cultures grown on protein-binding membranes. Immunofluorescence staining with specific antibodies indicated that type I and type III collagen were constituents of lens basement membrane. We observed that deposition of type III collagen was more than type I collagen. The synthesis of fibrillar collagen by lens epithelium and its deposition in the lens capsule was established by localization of fibrillar collagen by transmission immunoelectron microscopy. These results demonstrate for the first time that normal lens epithelium synthesize fibrillar collagen which is an intrinsic component of the anterior lens capsule basement membrane.  相似文献   

20.
In this paper, we consider the ocular lens in the context of contemporary developments in biological ideas. We attempt to reconcile lens biology with stem cell concepts and a dearth of lens tumors. Historically, the lens has been viewed as a closed system, in which cells at the periphery of the lens epithelium differentiate into fiber cells. Theoretical considerations led us to question whether the intracapsular lens is indeed self-contained. Since stem cells generate tumors and the lens does not naturally develop tumors, we reasoned that lens stem cells may not be present within the capsule. We hypothesize that lens stem cells reside outside the lens capsule, in the nearby ciliary body. Our ideas challenge the existing lens biology paradigm. We begin our discussion with lens background information, in order to describe our lens stem cell hypothesis in the context of published data. Then we present the ciliary body as a possible source for lens stem cells, and conclude by comparing the ocular lens with the corneal epithelium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号