首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Reactive oxygen species (ROS) play a central role in the pathogenesis of many cardiovascular diseases, such as atherosclerosis and hypertension. Endothelial NADPH oxidase is the major source of intracellular ROS. The present study investigated the role of endothelial NADPH oxidase-derived ROS in angiopoietin-1 (Ang-1)-induced angiogenesis. Exposure of porcine coronary artery endothelial cells (PCAECs) to Ang-1 (250 ng/ml) for periods up to 30 min led to a transient and dose-dependent increase in intracellular ROS. Thirty minutes of pretreatment with the NADPH oxidase inhibitors diphenylene iodinium (DPI, 10 microM) and apocynin (200 microM) suppressed Ang-1-stimulated ROS. Pretreatment with either DPI or apocynin also significantly attenuated Ang-1-induced Akt and p44/42 MAPK phosphorylation. In addition, inhibition of NADPH oxidase significantly suppressed Ang-1-induced endothelial cell migration and sprouting from endothelial spheroids. Using mouse heart microvascular endothelial cells from wild-type (WT) mice and mice deficient in the p47(phox) component of NADPH oxidase (p47(phox-/-)), we found that although Ang-1 stimulated intracellular ROS, Akt and p42/44 MAPK phosphorylation, and cell migration in WT cells, the responses were strikingly suppressed in cells from the p47(phox-/-) mice. Furthermore, exposure of aortic rings from p47(phox-/-) mice to Ang-1 demonstrated fewer vessel sprouts than WT mice. Inhibition of the Tie-2 receptor inhibited Ang-1-induced endothelial migration and vessel sprouting. Together, our data strongly suggest that endothelial NADPH oxidase-derived ROS play a critical role in Ang-1-induced angiogenesis.  相似文献   

2.
Tumor necrosis factor alpha (TNF-alpha) receptor-associated factors (TRAFs) play important roles in TNF-alpha signaling by interacting with downstream signaling molecules, e.g., mitogen-activated protein kinases (MAPKs). However, TNF-alpha also signals through reactive oxygen species (ROS)-dependent pathways. The interrelationship between these pathways is unclear; however, a recent study suggested that TRAF4 could bind to the NADPH oxidase subunit p47phox. Here, we investigated the potential interaction between p47phox phosphorylation and TRAF4 binding and their relative roles in acute TNF-alpha signaling. Exposure of human microvascular endothelial cells (HMEC-1) to TNF-alpha (100 U/ml; 1 to 60 min) induced rapid (within 5 min) p47phox phosphorylation. This was paralleled by a 2.7- +/- 0.5-fold increase in p47phox-TRAF4 association, membrane translocation of p47phox-TRAF4, a 2.3- +/- 0.4-fold increase in p47phox-p22phox complex formation, and a 3.2- +/- 0.2-fold increase in NADPH-dependent O2- production (all P < 0.05). TRAF4-p47phox binding was accompanied by a progressive increase in extracellular signal-regulated kinases 1 and 2 (ERK1/2) and p38(MAPK) activation, which was inhibited by an O2- scavenger, tiron. TRAF4 predominantly bound the phosphorylated form of p47phox, in a protein kinase C-dependent process. Knockdown of TRAF4 expression using siRNA had no effect on p47phox phosphorylation or binding to p22phox but inhibited TNF-alpha-induced ERK1/2 activation. In coronary microvascular EC from p47phox-/- mice, TNF-alpha-induced NADPH oxidase activation, ERK1/2 activation, and cell surface intercellular adhesion molecule 1 (ICAM-1) expression were all inhibited. Thus, both p47phox phosphorylation and TRAF4 are required for acute TNF-alpha signaling. The increased binding between p47phox and TRAF4 that occurs after p47phox phosphorylation could serve to spatially confine ROS generation from NADPH oxidase and subsequent MAPK activation and cell surface ICAM-1 expression in EC.  相似文献   

3.
4.
Angiogenesis, a process of new blood vessel growth, contributes to various pathophysiologies such as cancer, diabetic retinopathy and atherosclerosis. Accumulating evidence suggests that cardiovascular diseases are associated with increased oxidative stress in blood vessels. Reactive oxygen species (ROS) such as superoxide and H2O2 cause blood vessels to thicken, produce inflammation in the vessel wall, and thus are regarded as "risk factors" for vascular disease, whereas ROS also act as signaling molecules in many aspects of growth factor-mediated physiological responses. Recent reports suggest that ROS play an important role in angiogenesis; however, its underlying molecular mechanisms remain unknown. Vascular endothelial growth factor (VEGF) induces angiogenesis by stimulating endothelial cell (EC) proliferation and migration primarily through the receptor tyrosine kinase VEGF receptor2 (Flk1/KDR). VEGF binding initiates tyrosine phosphorylation of KDR, which results in activation of downstream signaling enzymes including ERK1/2, Akt and eNOS, which contribute to angiogenic-related responses in EC. Importantly, the major source of ROS in EC is a NAD(P)H oxidase and EC express all the components of phagocytic NAD(P)H oxidase including gp91phox, p22phox, p47phox, p67phox and the small G protein Rac1. We have recently demonstrated that ROS derived from NAD(P)H oxidase are critically important for VEGF signaling in vitro and angiogenesis in vivo. Furthermore, a peptide hormone, angiotensin II, a major stimulus for vascular NAD(P)H oxidase, also plays an important role in angiogenesis. Because EC migration and proliferation are primary features of the process of myocardial angiogenesis, we would like to focus on the recent progress that has been made in the emerging area of NAD(P)H oxidase-derived ROS-dependent signaling in ECs, and discuss the possible roles in angiogenesis. Understanding these mechanisms may provide insight into the components of NAD(P)H oxidase as potential therapeutic targets for treatment of angiogenesis-dependent diseases such as cancer and atherosclerosis and for promoting myocardial angiogenesis in ischemic heart diseases.  相似文献   

5.
Angiogenesis, a process of new blood vessel growth, contributes to various pathophysiologies such as cancer, diabetic retinopathy and atherosclerosis. Accumulating evidence suggests that cardiovascular diseases are associated with increased oxidative stress in blood vessels. Reactive oxygen species (ROS) such as superoxide and H2O2 cause blood vessels to thicken, produce inflammation in the vessel wall, and thus are regarded as “risk factors” for vascular disease, whereas ROS also act as signaling molecules in many aspects of growth factor-mediated physiological responses. Recent reports suggest that ROS play an important role in angiogenesis; however, its underlying molecular mechanisms remain unknown. Vascular endothelial growth factor (VEGF) induces angiogenesis by stimulating endothelial cell (EC) proliferation and migration primarily through the receptor tyrosine kinase VEGF receptor2 (Flk1/KDR). VEGF binding initiates tyrosine phosphorylation of KDR, which results in activation of downstream signaling enzymes including ERK1/2, Akt and eNOS, which contribute to angiogenic-related responses in EC. Importantly, the major source of ROS in EC is a NAD(P)H oxidase and EC express all the components of phagocytic NAD(P)H oxidase including gp91phox, p22phox, p47phox, p67phox and the small G protein Rac1. We have recently demonstrated that ROS derived from NAD(P)H oxidase are critically important for VEGF signaling in vitro and angiogenesis in vivo. Furthermore, a peptide hormone, angiotensin II, a major stimulus for vascular NAD(P)H oxidase, also plays an important role in angiogenesis. Because EC migration and proliferation are primary features of the process of myocardial angiogenesis, we would like to focus on the recent progress that has been made in the emerging area of NAD(P)H oxidase-derived ROS-dependent signaling in ECs, and discuss the possible roles in angiogenesis. Understanding these mechanisms may provide insight into the components of NAD(P)H oxidase as potential therapeutic targets for treatment of angiogenesis-dependent diseases such as cancer and atherosclerosis and for promoting myocardial angiogenesis in ischemic heart diseases. (Mol Cell Biochem 264: 85–97, 2004)  相似文献   

6.
Endothelial cells express a constitutively active phagocyte-type NADPH oxidase whose activity is augmented by agonists such as angiotensin II. We recently reported (Li, J.-M., and Shah, A. M. (2002) J. Biol. Chem. 277, 19952-19960) that in contrast to neutrophils a substantial proportion of the NADPH oxidase in unstimulated endothelial cells exists as preassembled intracellular complexes. Here, we investigate the mechanism of angiotensin II-induced endothelial NADPH oxidase activation. Angiotensin II (100 nmol/liter)-induced reactive oxygen species production (as measured by dichlorohydrofluorescein fluorescence or lucigenin chemiluminescence) was completely absent in coronary microvascular endothelial cells isolated from p47(phox) knockout mice. Transfection of p47(phox) cDNA into p47(phox-/-) cells restored the angiotensin II response, whereas transfection of antisense p47(phox) cDNA into wild-type cells depleted p47(phox) and inhibited the angiotensin II response. In unstimulated human microvascular endothelial cells, there was significant p47(phox)-p22(phox) complex formation but minimal detectable p47(phox) phosphorylation. Angiotensin II induced rapid serine phosphorylation of p47(phox) (within 1 min, peaking at approximately 15 min), a 1.9 +/- 0.1-fold increase in p47(phox)-p22(phox) complex formation and a 1.6 +/- 0.2-fold increase in NADPH-dependent O(2)-* production (p < 0.05). p47(phox) was redistributed to "nuclear" and membrane-enriched cell fractions. These data indicate that angiotensin II-stimulated endothelial NADPH oxidase activity is regulated through serine phosphorylation of p47(phox) and its enhanced binding to p22(phox).  相似文献   

7.
Hyperoxia increases reactive oxygen species (ROS) production in vascular endothelium; however, the mechanisms involved in ROS generation are not well characterized. We determined the role and regulation of NAD(P)H oxidase in hyperoxia-induced ROS formation in human pulmonary artery endothelial cells (HPAECs). Exposure of HPAECs to hyperoxia for 1, 3, and 12 h increased the generation of superoxide anion, which was blocked by diphenyleneiodonium but not by rotenone or oxypurinol. Furthermore, hyperoxia enhanced NADPH- and NADH-dependent and superoxide dismutase- or diphenyleneiodonium-inhibitable ROS production in HPAECs. Immunohistocytochemistry and Western blotting revealed the presence of gp91, p67 phox, p22 phox, and p47 phox subcomponents of NADPH oxidase in HPAECs. Transfection of HPAECs with p22 phox antisense plasmid inhibited hyperoxia-induced ROS production. Exposure of HPAECs to hyperoxia activated p38 MAPK and ERK, and inhibition of p38 MAPK and MEK1/2 attenuated the hyperoxia-induced ROS generation. These results suggest a role for MAPK in regulating hyperoxia-induced NAD(P)H oxidase activation in HPAECs.  相似文献   

8.
Reactive oxygen species (ROS) signal vital physiological processes including cell growth, angiogenesis, contraction, and relaxation of vascular smooth muscle. Because cytochrome P-450 family 4 (CYP4)/20-hydroxyeicosatetraenoic acid (20-HETE) has been reported to enhance angiogenesis, pulmonary vascular tone, and endothelial nitric oxide synthase function, we explored the potential of this system to stimulate bovine pulmonary artery endothelial cell (BPAEC) ROS production. Our data are the first to demonstrate that 20-HETE increases ROS in BPAECs in a time- and concentration-dependent manner as detected by enhanced fluorescence of oxidation products of dihydroethidium (DHE) and dichlorofluorescein diacetate. An analog of 20-HETE elicits no increase in ROS and blocks 20-HETE-evoked increments in DHE fluorescence, supporting its function as an antagonist. Endothelial cells derived from bovine aortas exhibit enhanced ROS production to 20-HETE quantitatively similar to that of BPAECs. 20-HETE-induced ROS production in BPAECs is blunted by pretreatment with polyethylene-glycolated SOD, apocynin, inhibition of Rac1, and a peptide-based inhibitor of NADPH oxidase subunit p47(phox) association with gp91. These data support 20-HETE-stimulated, NADPH oxidase-derived, and Rac1/2-dependent ROS production in BPAECs. 20-HETE promotes translocation of p47(phox) and tyrosine phosphorylation of p47(phox) in a time-dependent manner as well as increased activated Rac1/2, providing at least three mechanisms through which 20-HETE activates NADPH oxidase. These observations suggest that 20-HETE stimulates ROS production in BPAECs at least in part through activation of NADPH oxidase within minutes of application of the lipid.  相似文献   

9.
Cardiac tissues express constitutively an NADPH oxidase, which generates reactive oxygen species (ROS) and is involved in redox signaling. Myocardial metabolism generates abundant adenosine, which binds to its receptors and plays important roles in cardiac function. The adenosine A2A receptor (A2AR) has been found to be expressed in cardiac myocytes and coronary endothelial cells. However, the role of the A2AR in the regulation of cardiac ROS production remains unknown. We found that knockout of A2AR significantly decreased (39+/-8%) NADPH-dependent O2- production in mouse hearts compared to age (10 weeks)-matched wild-type controls. This was accompanied by a significant decrease in Nox2 (a catalytic subunit of NADPH oxidase) protein expression, and down-regulation of ERK1/2, p38MAPK, and JNK phosphorylation (all P<0.05). In wild-type mice, intraperitoneal injection of the selective A2AR antagonist SCH58261 (3-10 mg/kg body weight for 90 min) inhibited phosphorylation of p47phox (a regulatory subunit of Nox2), which was accompanied by a down-regulated cardiac ROS production (48+/-8%), and decreased JNK and ERK1/2 activation by 54+/-28% (all P<0.05). In conclusion, A2AR through MAPK signaling regulates p47phox phosphorylation and cardiac ROS production by NADPH oxidase. Modulation of A2AR activity may have potential therapeutic applications in controlling ROS production by NADPH oxidase in the heart.  相似文献   

10.
Reactive oxygen species (ROS) generated by NADPH oxidase are generally known to be proinflammatory, and it seems to be counterintuitive that ROS play a critical role in regulating the resolution of the inflammatory response. However, we observed that deficiency of the p47(phox) component of NADPH oxidase in macrophages was associated with a paradoxical accentuation of inflammation in a whole animal model of noninfectious sepsis induced by endotoxin. We have confirmed this observation by interrogating four separate in vivo models that use complementary methodology including the use of p47(phox-/-) mice, p47(phox-/-) bone marrow chimera mice, adoptive transfer of macrophages from p47(phox-/-) mice, and an isolated perfused lung edema model that all point to a relationship between excessive acute inflammation and p47(phox) deficiency in macrophages. Mechanistic data indicate that ROS deficiency in both cells and mice results in decreased production of IL-10 in response to treatment with LPS, at least in part, through attenuation of the Akt-GSK3-β signal pathway and that it can be reversed by the administration of rIL-10. Our data support the innovative concept that generation of ROS is essential for counterregulation of acute lung inflammation.  相似文献   

11.
We recently demonstrated that hyperoxia (HO) activates lung endothelial cell NADPH oxidase and generates reactive oxygen species (ROS)/superoxide via Src-dependent tyrosine phosphorylation of p47(phox) and cortactin. Here, we demonstrate that the non-muscle ~214-kDa myosin light chain (MLC) kinase (nmMLCK) modulates the interaction between cortactin and p47(phox) that plays a role in the assembly and activation of endothelial NADPH oxidase. Overexpression of FLAG-tagged wild type MLCK in human pulmonary artery endothelial cells enhanced interaction and co-localization between cortactin and p47(phox) at the cell periphery and ROS production, whereas abrogation of MLCK using specific siRNA significantly inhibited the above. Furthermore, HO stimulated phosphorylation of MLC and recruitment of phosphorylated and non-phosphorylated cortactin, MLC, Src, and p47(phox) to caveolin-enriched microdomains (CEM), whereas silencing nmMLCK with siRNA blocked recruitment of these components to CEM and ROS generation. Exposure of nmMLCK(-/-) null mice to HO (72 h) reduced ROS production, lung inflammation, and pulmonary leak compared with control mice. These results suggest a novel role for nmMLCK in hyperoxia-induced recruitment of cytoskeletal proteins and NADPH oxidase components to CEM, ROS production, and lung injury.  相似文献   

12.
Superoxide (O(2)(-)) production by nonphagocytes, similar to phagocytes, is by activation of the NADPH oxidase multicomponent system. Although activation of neutrophil NADPH oxidase involves extensive serine phosphorylation of p47(phox), the role of tyrosine phosphorylation of p47(phox) in NADPH oxidase-dependent O(2)(-) production is unclear. We have shown recently that hyperoxia-induced NADPH oxidase activation in human pulmonary artery endothelial cells (HPAECs) is regulated by mitogen-activated protein kinase signal transduction. Here we provided evidence on the role of nonreceptor tyrosine kinase, Src, in hyperoxia-induced tyrosine phosphorylation of p47(phox) and NADPH oxidase activation in HPAECs. Exposure of HPAECs to hyperoxia for 1 h resulted in increased O(2)(-) and reactive oxygen species (ROS) production and enhanced tyrosine phosphorylation of Src as determined by Western blotting with phospho-Src antibodies. Pretreatment of HPAECs with the Src kinase inhibitor PP2 (1 mum) or transient expression of a dominant-negative mutant of Src attenuated hyperoxia-induced tyrosine phosphorylation of Src and ROS production. Furthermore, exposure of cells to hyperoxia enhanced tyrosine phosphorylation of p47(phox) and its translocation to cell peripheries that were attenuated by PP2. In vitro, Src phosphorylated recombinant p47(phox) in a time-dependent manner. Src immunoprecipitates of cell lysates from control cells revealed the presence of immunodetectable p47(phox) and p67(phox), suggesting the association of oxidase components with Src under basal conditions. Moreover, exposure of HPAECs to hyperoxia for 1 h enhanced the association of p47(phox), but not p67(phox), with Src. These results indicated that Src-dependent tyrosine phosphorylation of p47(phox) regulates hyperoxia-induced NADPH oxidase activation and ROS production in HPAECs.  相似文献   

13.
Endothelial dysfunction is characterized by increased levels of reactive oxygen species (ROS) and a prothrombotic state. The mechanisms linking thrombosis to ROS production in the endothelium are not well understood. We investigated the role of thrombin in regulating NADPH oxidase-dependent ROS production and expression of its subunit p22phox in the endothelial cell line EaHy926. Thrombin elicited a biphasic increase in ROS generation peaking within 15 min, but also at 3 h. The delayed response was accompanied by increased p22phox mRNA and protein expression. Two-photon confocal laser microscopy showed colocalization between p22phox and ROS production. Antioxidant treatment with vitamin C or diphenyleneiodonium abrogated thrombin-induced ROS production and p22phox expression, whereas H2O2 elevated ROS production and p22phox levels. Both responses were dependent on p38 MAP kinase and phosphatidylinositol-3-kinase (PI3 kinase)/Akt. Finally, p22phox was required for thrombin- or H2O2-stimulated proliferation. These data show that thrombin rapidly increases ROS production in endothelial cells, resulting, via activation of p38 MAP kinase and PI3 kinase/Akt, in upregulation of p22phox accompanied by a delayed increase in ROS generation and enhanced proliferation. These findings suggest a positive feedback mechanism whereby ROS, possibly generated by the NADPH oxidase, lead to elevated levels of p22phox and, thus, sustained ROS generation as is observed in endothelial dysfunction.  相似文献   

14.
We examined the role of redox signaling generated by NADPH oxidase in activation of NF-kappaB and host defense against Pseudomonas aeruginosa pneumonia. Using mice with an NF-kappaB-driven luciferase reporter construct (HIV-LTR/luciferase (HLL)), we found that intratracheal administration of P. aeruginosa resulted in a dose-dependent neutrophilic influx and activation of NF-kappaB. To determine the effects of reactive oxygen species generated by the NADPH oxidase system on activation of NF-kappaB, we crossbred mice deficient in p47(phox) with NF-kappaB reporter mice (p47(phox-/-)HLL). These p47(phox-/-)HLL mice were unable to activate NF-kappaB to the same degree as HLL mice with intact NADPH oxidase following P. aeruginosa infection. In addition, lung TNF-alpha levels were significantly lower in p47(phox-/-)HLL mice compared with HLL mice. Bacterial clearance was impaired in p47(phox-/-)HLL mice. In vitro studies using bone marrow-derived macrophages showed that Toll-like receptor 4 was necessary for NF-kappaB activation following treatment with P. aeruginosa. Additional studies with macrophages from p47(phox-/-) mice confirmed that redox signaling was necessary for maximal Toll-like receptor 4-dependent NF-kappaB activation in this model. These data indicate that the NADPH oxidase-dependent respiratory burst stimulated by Pseudomonas infection contributes to host defense by modulating redox-dependent signaling through the NF-kappaB pathway.  相似文献   

15.
NADPH oxidase-2 (Nox2)/gp91(phox) and p47(phox) deficient mice are prone to hyper-inflammatory responses suggesting a paradoxical role for Nox2-derived reactive oxygen species (ROS) as anti-inflammatory mediators. The molecular basis for this mode of control remains unclear. Here we demonstrate that IFNγ/LPS matured p47(phox-/-)-ROS deficient mouse dendritic cells (DC) secrete more IL-12p70 than similarly treated wild type DC, and in an in vitro co-culture model IFNγ/LPS matured p47(phox-/-) DC bias more ovalbumin-specific CD4(+) T lymphocytes toward a Th1 phenotype than wild type (WT) DC through a ROS-dependent mechanism linking IL-12p70 expression to regulation of p38-MAPK activation. The Nox2-dependent ROS production in DC negatively regulates proinflammatory IL-12 expression in DC by constraining p38-MAPK activity. Increasing endogenous H(2)O(2) attenuates p38-MAPK activity in IFNγ/LPS stimulated WT and p47(phox-/-) DC, which suggests that endogenous Nox 2-derived ROS functions as a secondary messenger in the activated p38-MAPK signaling pathway during IL-12 expression. These findings indicate that ROS, generated endogenously by innate and adaptive immune cells, can function as important secondary messengers that can regulate cytokine production and immune cell cross-talk to control during the inflammatory response.  相似文献   

16.
Hyperosmotic exposure of rat hepatocytes induced a rapid oxidative-stress(ROS) response as an upstream signal for proapoptotic CD95 activation. This study shows that hyperosmotic ROS formation involves a rapid ceramide- and protein kinase Czeta (PKCzeta)-dependent serine phosphorylation of p47phox and subsequent activation of NADPH oxidase isoforms. Hyperosmotic p47phox phosphorylation and ROS formation were sensitive to inhibition of sphingomyelinases and were strongly blunted after knockdown of acidic sphingomyelinase (ASM) or of p47phox protein. Hyperosmolarity induced a rapid bafilomycin- and 4,4 '-diisothiocyanostilbene-2,2 '-disulfonic acid disodium salt (DIDS)-sensitive acidification of a vesicular compartment, which was accessible to endocytosed fluorescein isothiocyanate-dextran and colocalized with ASM, PKCzeta, and the NADPH oxidase isoform Nox 2 (gp91phox). Bafilomycin and DIDS prevented the hyperosmolarity-induced increase in ceramide formation, p47phox phosphorylation, and ROS formation. As shown recently (Reinehr, R., Becker, S., H?ngen, A., and H?ussinger, D. (2004) J. Biol. Chem. 279, 23977-23987), hyperosmolarity induced a Yes-dependent activation of JNK and the epidermal growth factor receptor (EGFR), followed by EGFR-CD95 association, EGFR-catalyzed CD95-tyrosine phosphorylation, and translocation of the EGFR-CD95 complex to the plasma membrane, where formation of the deathinducing signaling complex occurs. These proapoptotic responses were not only sensitive to inhibitors of sphingomyelinase, PKCzeta, or NADPH oxidases but also to ASM knockdown, bafilomycin, and DIDS, i.e. maneuvers largely preventing hyperosmolarity-induced endosomal acidification and/or ceramide formation. In hepatocytes from p47phox knock-out mice, hyperosmolarity failed to activate the CD95 system. The data suggest that hyperosmolarity induces endosomal acidification as an important upstream event for CD95 activation through stimulation of ASM-dependent ceramide formation and activation of NADPH oxidase isoforms.  相似文献   

17.
The renin-angiotensin system (RAS) and reactive oxygen species (ROS) have been implicated in the development of insulin resistance and its related complications. There is also evidence that angiotensin II (Ang II)-induced generation of ROS contributes to the development of insulin resistance in skeletal muscle, although the precise mechanisms remain unknown. In the present study, we found that Ang II markedly enhanced NADPH oxidase activity and consequent ROS generation in L6 myotubes. These effects were blocked by the angiotensin II type 1 receptor blocker losartan, and by the NADPH oxidase inhibitor apocynin. Ang II also promoted the translocation of NADPH oxidase cytosolic subunits p47phox and p67phox to the plasma membrane within 15 min. Furthermore, Ang II abolished insulin-induced tyrosine phosphorylation of insulin receptor substrate 1 (IRS1), activation of protein kinase B (Akt), and glucose transporter-4 (GLUT4) translocation to the plasma membrane, which was reversed by pretreating myotubes with losartan or apocynin. Finally, small interfering RNA (siRNA)-specific gene silencing targeted specifically against p47phox (p47siRNA), in both L6 and primary myotubes, reduced the cognate protein expression, decreased NADPH oxidase activity, restored Ang II-impaired IRS1 and Akt activation as well as GLUT4 translocation by insulin. These results suggest a pivotal role for NADPH oxidase activation and ROS generation in Ang II-induced inhibition of insulin signaling in skeletal muscle cells.  相似文献   

18.
Interrupted reperfusion reduces ischemia/reperfusion (I/R) injury. This study was designed to determine whether NADPH oxidase participates in the neural protection against global I/R injury after interrupted reperfusion. Mice were randomly divided into five groups: sham (sham-operated), I/R (20-min global I/R), RR (I/R+interrupted reperfusion), Apo (I/R+apocynin administration), and RR+Apo. Behavioral tests (pole test, beam walking, and Morris water maze) and Nissl staining were undertaken in all five groups; superoxide levels, expression of gp91(phox) and p47(phox), p47(phox) translocation, and Rac1 activation were measured in the sham, I/R, and RR groups. The motor coordination, bradykinesia, and spatial learning and memory, as well as the neuron survival rates, were better in the RR, Apo, and RR+Apo groups than in the I/R group. The NADPH oxidase-dependent superoxide levels, p47(phox) and gp91(phox) expression, p47(phox) translocation, and Rac1 activation were lower in the RR group than in the I/R group. In conclusion, the neural protective effect of interrupted reperfusion is at least partly mediated by decreasing the expression and assembly of NADPH oxidase and the levels of NADPH oxidase-derived superoxide. The most striking reduction Rac1-GTP in the RR group suggests that interrupted reperfusion also acts on the activation of assembled NADPH oxidase by reducing the availability of Rac1-GTP.  相似文献   

19.
The production of reactive oxygen species (ROS) is central to the etiology of endothelial dysfunction in sepsis. Endothelial cells respond to infection by activating NADPH oxidases that are sources of intracellular ROS and potential targets for therapeutic administration of antioxidants. Ascorbate is an antioxidant that accumulates in these cells and improves capillary blood flow, vascular reactivity, arterial blood pressure, and survival in experimental sepsis. Therefore, the present study tested the hypothesis that ascorbate regulates NADPH oxidases in microvascular endothelial cells exposed to septic insult. We observed that incubation with Escherichia coli lipopolysaccharide (LPS) and interferon-gamma (IFNgamma) increased NADPH oxidase activity and expression of the enzyme subunit p47phox in mouse microvascular endothelial cells of skeletal muscle origin. Pretreatment of the cells with ascorbate prevented these increases. Polyethylene glycol-conjugated catalase and selective inhibitors of Jak2 also abrogated induction of p47phox. Exogenous hydrogen peroxide induced p47phox expression that was prevented by pretreatment of the cells with ascorbate. LPS+IFNgamma or hydrogen peroxide activated the Jak2/Stat1/IRF1 pathway and this effect was also inhibited by ascorbate. In conclusion, ascorbate blocks the stimulation by septic insult of redox-sensitive Jak2/Stat1/IRF1 signaling, p47phox expression, and NADPH oxidase activity in microvascular endothelial cells. Because endothelial NADPH oxidases produce ROS that can cause endothelial dysfunction, their inhibition by ascorbate may represent a new strategy for sepsis therapy.  相似文献   

20.
Vascular endothelial growth factor (VEGF) and reactive oxygen species (ROS) play critical roles in vascular physiology and pathophysiology. We have demonstrated previously that NADPH oxidase-derived ROS are required for VEGF-mediated migration and proliferation of endothelial cells. The goal of this study was to determine the extent to which VEGF signaling is coupled to NADPH oxidase activity. Human umbilical vein endothelial cells and/or human coronary artery endothelial cells were transfected with short interfering RNA against the p47(phox) subunit of NADPH oxidase, treated in the absence or presence of VEGF, and assayed for signaling, gene expression, and function. We show that NADPH oxidase activity is required for VEGF activation of phosphoinositide 3-kinase-Akt-forkhead, and p38 MAPK, but not ERK1/2 or JNK. The permissive role of NADPH oxidase on phosphoinositide 3-kinase-Akt-forkhead signaling is mediated at post-VEGF receptor levels and involves the nonreceptor tyrosine kinase Src. DNA microarrays revealed the existence of two distinct classes of VEGF-responsive genes, one that is ROS-dependent and another that is independent of ROS levels. VEGF-induced, thrombomodulin-dependent activation of protein C was dependent on NADPH oxidase activity, whereas VEGF-induced decay-accelerating factor-mediated protection of endothelial cells against complement-mediated lysis was not. Taken together, these findings suggest that NADPH oxidase-derived ROS selectively modulate some but not all the effects of VEGF on endothelial cell phenotypes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号