首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recent work suggests that sexual selection can influence the evolution of ageing and lifespan by shaping the optimal timing and relative costliness of reproductive effort in the sexes. We used inbred lines of the decorated cricket, Gryllodes sigillatus, to estimate the genetic (co)variance between age‐dependent reproductive effort, lifespan, and ageing within and between the sexes. Sexual selection theory predicts that males should die sooner and age more rapidly than females. However, a reversal of this pattern may be favored if reproductive effort increases with age in males but not in females. We found that male calling effort increased with age, whereas female fecundity decreased, and that males lived longer and aged more slowly than females. These divergent life‐history strategies were underpinned by a positive genetic correlation between early‐life reproductive effort and ageing rate in both sexes, although this relationship was stronger in females. Despite these sex differences in life‐history schedules, age‐dependent reproductive effort, lifespan, and ageing exhibited strong positive intersexual genetic correlations. This should, in theory, constrain the independent evolution of these traits in the sexes and may promote intralocus sexual conflict. Our study highlights the importance of sexual selection to the evolution of sex differences in ageing and lifespan in G. sigillatus.  相似文献   

2.
The interests of males and females over reproduction rarely coincide and conflicts between the sexes over mate choice, mating frequency, reproductive investment, and parental care are common in many taxa. In Drosophila melanogaster, the optimum mating frequency is higher for males than it is for females. Furthermore, females that mate at high frequencies suffer significant mating costs due to the actions of male seminal fluid proteins. Sexual conflict is predicted to lead to sexually antagonistic coevolution, in which selection for adaptations that benefit males but harm females is balanced by counterselection in females to minimize the extent of male-induced harm. We tested the prediction that elevated sexual conflict should select for increased female resistance to male-induced harm and vice versa. We manipulated the intensity of sexual conflict by experimentally altering adult sex ratio. We created replicated lines of D. melanogaster in which the adult sex ratio was male biased (high conflict lines), equal (intermediate conflict lines), or female biased (low conflict lines). As predicted, females from high sexual conflict lines lived significantly longer in the presence of males than did females from low conflict lines. Our conclusion that the evolutionary response in females was to the level of male-induced harm is supported by the finding that there were no female longevity differences in the absence of males. Differences between males in female harming ability were not detected. This suggests that the response in females was to differences between selection treatments in mating frequency, and not to differences in male harmfulness.  相似文献   

3.
Although the trade-off between reproductive effort and longevity is central to both sexual selection and evolutionary theories of aging, there has been little synthesis between these fields. Here, we selected directly on adult longevity of male field crickets Teleogryllus commodus and measured the correlated responses of age-dependent male reproductive effort, female lifetime fecundity, and several other life-history traits. Male longevity responded significantly to five generations of divergent selection. Males from downward-selected lines commenced calling sooner and reached their peak calling effort at a younger age. They called more per night and, despite living less than half as long, called more overall than males selected for increased longevity. Females from the downward-selected lines lived significantly shorter lives than females from the upward-selected lines but still produced the same number of offspring. Nymph survival, development time, and body size and weight at eclosion did not show significant correlated response to selection on male longevity, despite evidence for substantial genetic variation in each of these traits. Collectively, our findings directly support the antagonistic pleiotropy model of aging and suggest an important role for sexual selection in the aging process.  相似文献   

4.
Intralocus sexual conflict arises when selection favours alternative fitness optima in males and females. Unresolved conflict can create negative between‐sex genetic correlations for fitness, such that high‐fitness parents produce high‐fitness progeny of their same sex, but low‐fitness progeny of the opposite sex. This cost of sexual conflict could be mitigated if high‐fitness parents bias sex allocation to produce more offspring of their same sex. Previous studies of the brown anole lizard (Anolis sagrei) show that viability selection on body size is sexually antagonistic, favouring large males and smaller females. However, sexual conflict over body size may be partially mitigated by adaptive sex allocation: large males sire more sons than daughters, whereas small males sire more daughters than sons. We explored the evolutionary implications of these phenomena by assessing the additive genetic (co)variance of fitness within and between sexes in a wild population. We measured two components of fitness: viability of adults over the breeding season, and the number of their progeny that survived to sexual maturity, which includes components of parental reproductive success and offspring viability (RSV). Viability of parents was not correlated with adult viability of their sons or daughters. RSV was positively correlated between sires and their offspring, but not between dams and their offspring. Neither component of fitness was significantly heritable, and neither exhibited negative between‐sex genetic correlations that would indicate unresolved sexual conflict. Rather, our results are more consistent with predictions regarding adaptive sex allocation in that, as the number of sons produced by a sire increased, the adult viability of his male progeny increased.  相似文献   

5.
Males and females have different routes to successful reproduction, resulting in sex differences in lifespan and age-specific allocation of reproductive effort. The trade-off between current and future reproduction is often resolved differently by males and females, and both sexes can be constrained in their ability to reach their sex-specific optima owing to intralocus sexual conflict. Such genetic antagonism may have profound implications for evolution, but its role in ageing and lifespan remains unresolved. We provide direct experimental evidence that males live longer and females live shorter than necessary to maximize their relative fitness in Callosobruchus maculatus seed beetles. Using artificial selection in a genetically heterogeneous population, we created replicate long-life lines where males lived on average 27 per cent longer than in short-life lines. As predicted by theory, subsequent assays revealed that upward selection on male lifespan decreased relative male fitness but increased relative female fitness compared with downward selection. Thus, we demonstrate that lifespan-extending genes can help one sex while harming the other. Our results show that sexual antagonism constrains adaptive life-history evolution, support a novel way of maintaining genetic variation for lifespan and argue for better integration of sex effects into applied research programmes aimed at lifespan extension.  相似文献   

6.
Sexual-selection research increasingly focuses on reproductive conflicts between the sexes. Sexual conflict, divergent evolutionary interests of males and females, can cause rapid antagonistic coevolution of reproductive traits and is a potentially powerful speciation engine. This idea has theoretical and comparative support but remains controversial. Recent experimental evidence from Sepsis cynipsea indicates that populations with greater sexual conflict diverged more quickly; females were less likely to mate with males from other populations when flies had evolved under high levels of sexual conflict. The consequences of this divergence have not been addressed, so here we assess two female fitness surrogates after 44 generations of evolving (and diverging) under three different levels of sexual conflict. Longevity after copulation was negatively associated with the degree of sexual conflict under which flies evolved, and housing females with males also reduced female longevity. Female lifetime reproductive success (LRS) also tended to decrease with increasing conflict. However, there was evidence of either sexual-selection fitness benefits at intermediate levels of sexual selection and conflict or inbreeding depression in the smallest populations (those with the lowest levels of conflict). Nevertheless, the results indicate that there can be a fitness load associated with sexual selection and support claims that sexual conflict can lead to reproductive isolation.  相似文献   

7.
The evolutionary ecology of pre- and post-meiotic sperm senescence   总被引:3,自引:0,他引:3  
Male reproductive success is an extremely variable fitness component. Understanding the maintenance of this variation is a key challenge in evolutionary biology. An often neglected source of variation in male reproductive success is determined by age-dependent patterns of decline in sperm fitness. Two pathways mediate sperm senescence: pre-meiotic senescence of somatic and germ cells of the ageing male, and post-meiotic ageing of the spermatozoon. Recently, theoretical and empirical studies have highlighted wide-ranging implications of both pathways. We clarify different mechanisms of sperm senescence, outlining their distinct evolutionary implications for the male, the female and the zygote, and their influence on fundamental evolutionary processes, including the evolution of anisogamy, sexual conflict, sexual selection, and applied issues such as assisted conception.  相似文献   

8.
Ceballos S  Kiørboe T 《PloS one》2011,6(4):e18870
The ecology of senescence in marine zooplankton is not well known. Here we demonstrate senescence effects in the marine copepod Oithona davisae and show how sex and sexual selection accelerate the rate of ageing in the males. We show that adult mortality increases and male mating capacity and female fertility decrease with age and that the deterioration in reproductive performance is faster for males. Males have a limited mating capacity because they can fertilize < 2 females day(-1) and their reproductive life span is 10 days on average. High female encounter rates in nature (>10 day(-1)), a rapid age-dependent decline in female fertility, and a high mortality cost of mating in males are conducive to the development of male choosiness. In our experiments males in fact show a preference for mating with young females that are 3 times more fertile than 30-day old females. We argue that this may lead to severe male-male competition for young virgin females and a trade-off that favours investment in mate finding over maintenance. In nature, mate finding leads to a further elevated mortality of males, because these swim rapidly in their search for attractive partners, further relaxing fitness benefits of maintenance investments. We show that females have a short reproductive period compared to their average longevity but virgin females stay fertile for most of their life. We interpret this as an adaptation to a shortage of males, because a long life increases the chance of fertilization and/or of finding a high quality partner. The very long post reproductive life that many females experience is thus a secondary effect of such an adaptation.  相似文献   

9.
Conflicts between females and males over reproductive decisions are common . In Drosophila, as in many other organisms, there is often a conflict over how often to mate. The mating frequency that maximizes male reproductive success is higher than that which maximizes female reproductive success . In addition, frequent mating reduces female lifespan and reproductive success , a cost that is mediated by male ejaculate accessory gland proteins (Acps) . We demonstrate here that a single Acp, the sex peptide (SP or Acp70A), which decreases female receptivity and stimulates egg production in the first matings of virgin females , is a major contributor to Acp-mediated mating costs in females. Females continuously exposed to SP-deficient males (which produce no detectable SP ) had significantly higher fitness and higher lifetime reproductive success than control females. Hence, rather than benefiting both sexes, receipt of SP decreases female fitness, making SP the first identified gene that is likely to play a central role in sexual conflict.  相似文献   

10.
Senescence is shaped by age-dependent trade-offs between fitness components. Because males and females invest different resources in reproduction, the trade-offs behind age-dependent reproductive effort should be resolved differently in the sexes. In this study, we assess the effects of diet (high carbohydrate and low protein vs. equal carbohydrate and protein) and mating (once mated vs. virgin) on lifespan and age-dependent mortality in male and female field crickets (Teleogryllus commodus), and on male calling effort. Females always had higher actuarial ageing rates than males, and we found a clear lifespan cost of mating in females. Mated males, however, lived longer than virgin males, possibly because virgins call more than mated males. The fastest age-dependent increases in mortality were among mated males on the high-carbohydrate diet. Males on a high-carbohydrate diet showed a faster increase in calling effort earlier in life, and a more pronounced pattern of senescence once they reached this peak than did males on a diet with equal amounts of protein and carbohydrates. Our results provide evidence that the cost of mating in this cricket species is both diet and sex-dependent, and that the underlying causes of sex differences in life-history traits such as lifespan and senescence can be complex.  相似文献   

11.
Diet affects both lifespan and reproduction [1-9], leading to the prediction that the contrasting reproductive strategies of the sexes should result in sex-specific effects of nutrition on fitness and longevity [6, 10] and favor different patterns of nutrient intake in males and females. However, males and females share most of their genome and intralocus sexual conflict may prevent sex-specific diet optimization. We show that both male and female longevity were maximized on a high-carbohydrate low-protein diet in field crickets Teleogryllus commodus, but male and female lifetime reproductive performances were maximized in markedly different parts of the nutrient intake landscape. Given a choice, crickets exhibited sex-specific dietary preference in the direction that increases reproductive performance, but this sexual dimorphism in preference was incomplete, with both sexes displaced from the optimum diet for lifetime reproduction. Sexes are, therefore, constrained in their ability to reach their sex-specific dietary optima by the shared biology of diet choice. Our data suggest that sex-specific selection has thus far failed fully to resolve intralocus sexual conflict over diet optimization. Such conflict may be an important factor linking nutrition and reproduction to lifespan and aging.  相似文献   

12.
Sexual reproduction involves many costs. Therefore, females acquiring a capacity for parthenogenetic (or asexual) reproduction will gain a reproductive advantage over obligately sexual females. In contrast, for males, any trait coercing parthenogens into sexual reproduction (male coercion) increases their fitness and should be under positive selection because parthenogenesis deprives them of their genetic contribution to future generations. Surprisingly, although such sexual conflict is a possible outcome whenever reproductive isolation is incomplete between parthenogens and the sexual ancestors, it has not been given much attention in the studies of the maintenance of sex. Using two mathematical models, I show here that the evolution of male coercion substantially favours the maintenance of sex even though a female barrier against the coercion can evolve. First, the model based on adaptive-dynamics theory demonstrates that the resultant antagonistic coevolution between male coercion and a female barrier fundamentally ends in either the prevalence of sex or the co-occurrence of two reproductive modes. This is because the coevolution between the two traits additionally involves sex-ratio selection, that is, an increase in parthenogenetic reproduction leads to a female-biased population sex ratio, which will enhance reproductive success of more coercive males and directly promotes the evolution of the coercion among males. Therefore, as shown by the individual-based model, the establishment of obligate parthenogenesis in the population requires the simultaneous evolution of strong reproductive isolation between males and parthenogens. These findings should shed light on the interspecific diversity of reproductive modes as well as help to explain the prevalence of sexual reproduction.  相似文献   

13.
Sexual interactions are often rife with conflict. Conflict between members of the same sex over opportunities to mate has long been understood to effect evolution via sexual selection. Although conflict between males and females is now understood to be widespread, such conflict is seldom considered in the same light as a general agent of sexual selection. Any interaction between males or females that generates variation in fitness, whether due to conflict, competition or mate choice, can potentially influence sexual selection acting on a range of male traits. Here we seek to address a lack of direct experimental evidence for how sexual conflict influences sexual selection more broadly. We manipulate a major source of sexual conflict in the black field cricket, Teleogryllus commodus, and quantify the resulting changes in the nature of sexual selection using formal selection analysis to statistically compare multivariate fitness surfaces. In T. commodus, sexual conflict occurs over the attachment time of an external spermatophore. By experimentally manipulating the ability of males and females to influence spermatophore attachment, we found that sexual conflict significantly influences the opportunity, form, and intensity of sexual selection on male courtship call and body size. When males were able to harass females, the opportunity for selection was smaller, the form of selection changed, and sexual selection was weaker. We discuss the broader evolutionary implications of these findings, including the contributions of sexual conflict to fluctuating sexual selection and the maintenance of additive genetic variation.  相似文献   

14.
Sexual conflict is a pervasive evolutionary force that can reduce female fitness. Experimental evolution studies in the laboratory might overestimate the importance of sexual conflict because the ecological conditions in such settings typically include only a single species. Here, we experimentally manipulated conspecific male density (high or low) and species composition (sympatric or allopatric) to investigate how ecological conditions affect female survival in a sexually dimorphic insect, the banded demoiselle (Calopteryx splendens). Female survival was strongly influenced by an interaction between male density and species composition. Specifically, at low conspecific male density, female survival increased in the presence of heterospecific males (C. virgo). Behavioral mating experiments showed that interspecific interference competition reduced conspecific male mating success with large females. These findings suggest that reproductive interference competition between con‐ and heterospecific males might indirectly facilitate female survival by reducing mating harassment from conspecific males. Hence, interspecific competitors can show contrasting effects on the two sexes thereby influencing sexual conflict dynamics. Our results call for incorporation of more ecological realism in sexual conflict research, particularly how local community context and reproductive interference competition between heterospecific males can affect female fitness.  相似文献   

15.
Theory predicts that sexual conflict can fuel evolutionary change and generate substantial reproductive costs. This was tested here by measuring the fitness of focal individuals across multiple generations using an experimental framework. We manipulated sexual conflict through high versus low exposure of females to males across a four-generation pedigree of Drosophila melanogaster, and assessed fitness in 1062 females and 639 males. We used the animal model to estimate (1) genotype by sexual conflict environment interactions for female fitness and (2) indirect benefits gained through sons and daughters. Some female genotypes achieved higher fitness under low, in comparison to high, conflict and vice versa. We found a consistent 10% reduction in female fitness under high conflict, regardless of maternal history. Following high exposure, females produced sons with increased, but grandsons with decreased, fitness. This opposing effect suggests no consistent fitness gains through sons for females that mated multiply. We saw no indirect benefits through daughters. Our pedigree was based exclusively on maternal links; however, maternal effects are unlikely to contribute significantly unless expressed across multiple generations. In sum, we quantified a significant sexual conflict load and a female genotype by sexual conflict interaction that could slow the erosion of genetic variation.  相似文献   

16.
Sexual and parental conflicts can arise because males benefit by inducing elevated reproductive effort in their mates. For females, the costs of such manipulation are often manifested later in life, and may therefore covary with female life expectancy. Here, I outline a simple female life‐history model where female life expectancy reflects extrinsic mortality rate, and elevated reproductive effort causes accelerated senescence. Using this model, I show that variation in extrinsic mortality rate can modulate the magnitude and sign of fitness effects that male manipulation has on females. This result has several interesting implications. First, it suggests that the fitness effects of sexual interactions can depend on ecological factors, such as predation, that influence life expectancy. Second, if mortality risk is condition‐dependent but reproductive effort is not fully optimized in relation to individual condition, then sexual conflict intensity may increase with individual condition, selecting for condition‐dependent reproductive strategies. Third, if males vary in manipulativeness, then the fitness effects of mating with a given male phenotype may depend on both female condition and extrinsic mortality rate. Fourth, life span extension in the laboratory can lead to overestimation of sexual and parental conflicts. Life expectancy may therefore be a key factor in sexual coevolution.  相似文献   

17.
Abstract Age-specific mating incidence, sexual maturation and effect of age at mating on reproductive performance of the Parthenium beetle, Zygogramma bicolorata Pallister, was studied. Based on 50% mating incidence the calculated age of sexual maturation of males and females was 10.5 and 11.1 days, respectively, which was not statistically significant. However, on the basis of age at first mating, that is, sexual maturity, females matured 2 days earlier than males. Fecundity, pre-oviposition, oviposition and post-oviposition period and female longevity appear to be influenced by female age at mating with reproductive performance peaking at 30 days. On the other hand, egg viability was influenced by male age and was highest when males mated at the age of 40 days. To summarise, egg production and timing of egg deposition was female age-dependent, whereas egg fertility was male age-dependent. It was also observed that females mated at a later age and laid a higher number of eggs immediately after mating than did earlier mated females. This was ostensibly in a bid to increase fitness by maximizing reproductive output in the reduced life span available. This is the first investigation on the effect of age of females at mating on reproduction in this beetle.  相似文献   

18.
Recently refined evolutionary theories propose that sexual selection and reproductive conflict could be drivers of speciation. Male and female reproductive optima invariably differ because the potential reproductive rate of males almost always exceeds that of females: females are selected to maximize mate 'quality', while males can increase fitness through mate 'quantity'. A dynamic, sexually selected conflict therefore exists in which 'competitive' males are selected to override the preference tactics evolved by 'choosy' females. The wide variation across taxa in mating systems therefore generates variance in the outcome of intrasexual conflict and the strength of sexual selection: monandry constrains reproductive heterozygosity and allows female choice to select and maintain particular (preferred) genes; polyandry promotes reproductive heterozygosity and will more likely override female choice. Two different theories predict how sexual selection might influence speciation. Traditional ideas indicate that increased sexual selection (and hence conflict) generates a greater diversity of male reproductive strategies to be counteracted by female mate preferences, thus providing elevated potentials for speciation as more evolutionary avenues of male-female interaction are created. A less intuitively obvious theory proposes that increased sexual selection and conflict constrains speciation by reducing the opportunities for female mate choice under polyandry. We use a comparative approach to test these theories by investigating whether two general measures of sexual selection and the potential for sexual conflict have influenced speciation. Sexual size dimorphism (across 480 mammalian genera, 105 butterfly genera and 148 spider genera) and degree of polyandry (measured as relative testes size in mammals (72 genera) and mating frequency in female butterflies (54 genera)) showed no associations with the variance in speciosity. Our results therefore show that speciation occurs independently of sexual selection.  相似文献   

19.
Sexual selection should cause sex differences in patterns of resource allocation. When current and future reproductive effort trade off, variation in resource acquisition might further cause sex differences in age‐dependent investment, or in sensitivity to changes in resource availability over time. However, the nature and prevalence of sex differences in age‐dependent investment remain unclear. We manipulated resource acquisition at juvenile and adult stages in decorated crickets, Gryllodes sigillatus, and assessed effects on sex‐specific allocation to age‐dependent reproductive effort (calling in males, fecundity in females) and longevity. We predicted that the resource and time demands of egg production would result in relatively consistent female strategies across treatments, whereas male investment should depend sharply on diet. Contrary to expectations, female age‐dependent reproductive effort diverged substantially across treatments, with resource‐limited females showing much lower and later investment in reproduction; the highest fecundity was associated with intermediate lifespans. In contrast, long‐lived males always signalled more than short‐lived males, and male age‐dependent reproductive effort did not depend on diet. We found consistently positive covariance between male reproductive effort and lifespan, whereas diet altered this covariance in females, revealing sex differences in the benefits of allocation to longevity. Our results support sex‐specific selection on allocation patterns, but also suggest a simpler alternative: males may use social feedback to make allocation decisions and preferentially store resources as energetic reserves in its absence. Increased calling effort with age therefore could be caused by gradual resource accumulation, heightened mortality risk over time, and a lack of feedback from available mates.  相似文献   

20.
The nematode worm Caenorhabditis elegans and the clam shrimp Eulimnadia texana are two well‐studied androdioecious species consisting mostly of self‐fertilizing hermaphrodites and few males. To understand how androdioecy can evolve, a simple two‐step mathematical model of the evolutionary pathway from a male–female species to a selfing‐hermaphrodite species is constructed. First, the frequency of mutant females capable of facultative self‐fertilization increases if the benefits of reproductive assurance exceed the cost. Second, hermaphrodites become obligate self‐fertilizers if the fitness of selfed offspring exceeds one‐half the fitness of outcrossed offspring. Genetic considerations specific to C. elegans and E. texana show that males may endure as descendants of the ancestral male–female species. These models combined with an extensive literature review suggest a sexual conflict over mating in these androdioecious species: selection favours hermaphrodites that self and males that outcross. The strength of selection on hermaphrodites and males differs, however. Males that fail to outcross suffer a genetic death. Hermaphrodites may never encounter a rare male, and those that do and outcross only bear less fecund offspring. This asymmetric sexual conflict results in an evolutionary stand‐off: rare, but persistent males occasionally fertilize common, but reluctant hermaphrodites. A consequence of this stand‐off may be an increase in the longevity of the androdioecious mating system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号