首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A 1:1 mixture of tiletamine hydrochloride and zolazepam hydrochloride was tested on 39 polar bears in and near Churchill, Manitoba, Canada during October 1983. The mean dose for satisfactory immobilization with a single injection was 5.1 mg/kg. Bears showed signs of ataxia from 1-3 min following injection and were usually sitting within 4 min. The mean induction time, taken as the adoption of sternal recumbency, was 5.1 min. Maximum relaxation was usually seen by about 20 min post-injection. The duration of immobilization appeared to be related to the dose of drug received. In bears that received a dose near the mean, recumbency lasted about 2 hr. Cubs of the year recovered more quickly than adults. Preliminary results indicated that the bears did not suffer respiratory depression and were able to thermoregulate while immobilized. Bears could be handled safely while under the effects of the drug and workers could readily evaluate the state of their sedation by their reactions. The drug did not appear to provide good analgesia at the doses tested.  相似文献   

2.
Fourteen wolves (Canis lupus L.) were singularly or repeatedly immobilized with 30 mg xylazine hydrochloride (HCl) and 400 mg ketamine HCl. Mean induction time was 5.3 +/- 4.6 min (mean +/- SD). Administration of 8.0 mg/kg tolazoline HCl as an antagonist significantly reduced immobilization times from 148.0 +/- 52.7 to 47.9 +/- 8.9 min (F = 63.69, df = 1,17, P less than 0.05). The average times from injection to ambulation for 2.0, 4.0, and 8.0 mg/kg tolazoline HCl were 35.2 +/- 31.8, 18.5 +/- 11.7, and 10.2 +/- 9.1 min. Tolazoline HCl increased heart rates significantly (P less than 0.001) from 75 +/- 14 to 120 +/- 23 beats/min, reversing a xylazine HCl-induced bradycardia. Respiratory rates also increased significantly (P less than 0.01) after tolazoline HCl injection from 19 +/- 7 to 28 +/- 8 breaths/min. Immobilization resulted in an initial hypertension which was normalized after tolazoline HCl administration. One female wolf had a single sinoatrial block within 1 min of receiving tolazoline HCl. Tolazoline HCl appears to be an effective antagonist for xylazine HCl-ketamine HCl immobilization of wolves.  相似文献   

3.
A tiletamine hydrochloride/zolazepam hydrochloride combination was used successfully to immobilize captive untamed wild dogs (Lycaon pictus) (n = 16) at dosage rates ranging from 2.3 to 32.3 mg/kg. Animals remained immobilized for periods ranging from 35 min to 24 hr 14 min. There was a significant positive correlation (r = 0.85, P less than 0.01) between dosage rate and the time immobilized. Profuse salivation and intermittent mild myoclonal contractions were observed in some wild dogs. Mildly reduced partial oxygen and carbon dioxide pressures as well as reduced concentrations of bicarbonate were observed in arterial blood at 10 and 20 min after administration of the drug. Serum concentrations of sodium, potassium, chloride, phosphorus, calcium, magnesium, urea, creatinine, glucose, proteins, albumin, gammaglutamyltransferase, creatinine kinase, aspartate transaminase, alkaline phosphatase, lactate dehydrogenase, insulin, cortisol and thyroxine are presented. These concentrations were found to be in agreement with values previously reported for wild dogs.  相似文献   

4.
A combination of tiletamine-zolazepam/xylazine (TZ/X) is effective in the chemical immobilization of white-tailed deer (Odocoileus virginianus); however, the lengthy duration of immobilization may limit its usefulness. From October to November 2002, 21 captive female deer were assigned randomly to an alpha(2) antagonist treatment to reverse xylazine-induced sedation (seven does per group). All deer were given 220 mg of TZ (4.5+/-0.4 mg/kg) and 110 mg of X (2.2+/-0.2 mg/kg) intramuscularly (IM). Antagonist treatments were either 200 mg of tolazoline (4.0+/-0.4 mg/kg), 11 mg of atipamezole (0.23+/-0.02 mg/kg), or 15 mg of yohimbine (0.30+/-0.02 mg/kg) injected, half intravenously and half subcutaneously, 45 min after the IM TZ/X injection. In addition, 10 other deer (five per group) were immobilized as before and then given tolazoline (200 mg) after 45 min, with either a carrier (dimethyl sulfoxide [DMSO]) or carrier (DMSO) plus flumazenil (5 mg) to reverse the zolazepam portion of TZ. Mean times from antagonist injection until a deer raised its head were different for alpha(2) antagonist treatments (P=0.02). Times were longer for yohimbine (62.3+/-42.7 min) than for either atipamezole (24.3+/-17.1 min) or tolazoline (21.3+/-14.3 min). Mean times from antagonist injection until standing were not different (P=0.15) among yohimbine (112.0+/-56.4 min), atipamezole (89.7+/-62.8 min), or tolazoline (52.6+/-37.2 min). A sedation score based on behavioral criteria was assigned to each deer every 30 min for 5 hr. On the basis of sedation scores, tolazoline resulted in a faster and more complete reversal of immobilization. Flumazenil treatment did not affect recovery.  相似文献   

5.
We captured 10 free-ranging desert mule deer (Odocoileus hemionus crooki) (five males and five females) by net-gun from a helicopter and immobilized them with xylazine hydrochloride (HCl) (100 mg) and ketamine HCl (300 to 400 mg) injected intramuscularly. Arousal and ambulation times were 13.9 +/- 4.2 and 14.3 +/- 4.2 min in eight deer injected intravenously with tolazoline HCl (3.0 mg/kg). We observed a curvilinear relationship (R = 0.50, P less than 0.01) between rectal temperature and time after induction of anesthesia. Mean peak temperature (41.4 C) occurred at 23.7 +/- 3.2 min postinduction and was greater (P less than 0.01) than the mean temperature measured initially (40.8 C). Heart and respiratory rates (108 beats/min and 75 breaths/min) were elevated prior to immobilization. Mean heart rate increased (P less than 0.05) from 90 +/- 9 beats/min in anesthetized deer to 120 +/- 13 beats/min after tolazoline HCl injection. A 20% capture-related mortality rate suggests this combination of physical and chemical capture has serious limitations. Captive deer permitted to recover from xylazine HCl-ketamine HCl immobilization without a reversal agent were able to walk in 290 +/- 79 min.  相似文献   

6.
Nine-banded (n = 47) and great (n = 31) long-nosed armadillos (Dasypus novemcinctus and Dasypus kappleri) were immobilized for clinical examination and collection of biological samples as part of a wildlife rescue during the filling of a hydroelectric dam (Petit Saut, French Guiana) from May 1994 to April 1995. Three intramuscular (i.m.) anesthetic combinations were evaluated: (1) tiletamine/zolazepam (T/Z) at a dose of 8.5 mg/kg in 12 nine-banded long-nosed armadillos (NBA) and 10 great long-nosed armadillos (GLA), (2) ketamine at 40 mg/kg combined with xylazine at 1.0 mg/kg (K/X) in 18 NBA and nine GLA, and (3) ketamine at 7.5 mg/kg combined with medetomidine at 75 microng/kg (K/M) in 17 NBA and 12 GLA, antagonized by 375 microg/kg atipamezole. Induction was smooth, ranged from mean +/- SD = 2.8+/-0.6 to 4.3+/-1.8 min, and did not differ significantly between protocols, species, or sex. In NBA, immobilization time ranged from 43.8+/-27.8 to 66.5+/-40.0 min and did not differ between protocols or sex. Muscle relaxation was judged to be better with K/X and K/M versus T/Z. In GLA, the response to the anesthetic protocols was more variable and immobilization time ranged from 30.4+/-6.2 to 98.4+/-33.7 min. The main difference was observed in GLA females receiving the T/Z combination, in which immobilization time was significantly longer versus males, but also versus GLA K/M group, and versus NBA T/Z group. Effects on body temperature, heart rate and respiratory rate were limited. Thirty six to 50% of the individuals showed hypoxemia (SpO2 < 85%) throughout anesthesia and values <80% also were recorded but the hypoxemia was not associated with clinical signs. With T/Z and K/X, recovery was irregular and prolonged up to 2 to 3 hr in some individuals. In K/M groups, first standing was observed 1.0 to 16.4 min after i.m. atipamezole injection without adverse effects. Finally, the three anesthetic combinations used in this study were effective and safe agents for 30 to 40 min immobilizations including minor surgery procedures. The ability to antagonize the medetomidine-induced sedation with atipamezole significantly reduces the recovery time, making the K/M combination preferable, especially in field conditions.  相似文献   

7.
The effectiveness of tiletamine plus zolazepam (Telazol) and xylazine was evaluated as an immobilizing combination for raccoons (Procyon lotor). Fifteen raccoons were injected intramuscularly with a 3:2 mixture of Telazol (3.2+/-0.6 mg/kg [mean+/-SD]) and xylazine (2.1+/-0.4 mg/kg) at Pictured Rocks National Lakeshore, Michigan, USA, during May-October, 2001-03. Mean induction time was 4.8+/-3.8 min; mean recovery time was 128.5+/-48.4 min. No linear relationships were found between the amount (mg/kg) of Telazol-xylazine injected and induction (r2 = 0.06, P = 0.40) or recovery times (r2 = 0.01, P = 0.78). Mean heart rate, respiratory rate, and body temperature declined through 20 min after induction (P< 0.05). No mortality occurred and no short-term adverse effects were observed in recaptured individuals. I conclude that a 3:2 mixture of Telazol-xylazine is a safe and effective immobilizing agent for raccoons when conducting nonsurgical field procedures. Immobilizing raccoons with Telazol at 3 mg/kg and xylazine at 2 mg/kg should provide up to 60 min of handling time and usually allow full recovery in about 120 min.  相似文献   

8.
The effectiveness of tiletamine plus zolazepam (Telazol) and xylazine as an immobilizing combination for fishers (Martes pennanti) was evaluated. Ten fishers were intramuscularly injected using a 5:3 mixture of Telazol (2.9+/-0.6 mg/kg [mean+/-SD]) and xylazine (2.1+/-0.4 mg/kg) at Pictured Rocks National Lakeshore, Michigan (USA) during May to October, 2001-05. Mean induction time was 4.7+/-4.4 min; mean recovery time was 94.6+/-46.0 min. There was no relationship between the amount (mg/kg) of Telazol-xylazine injected and time to first effect of immobilants, dosage and time to induction, or between dosage and time to recovery. Mean heart rate remained constant through 20 min postinduction. Respiratory rate and body temperature declined through 10 and 20 min postinduction, respectively. No mortality occurred and no adverse effects were observed in individuals up to 19 mo later. It was concluded that a 5:3 mixture of Telazol-xylazine is a safe and effective immobilizing agent for fishers when conducting nonsurgical field procedures. Immobilizing fishers with 6-7 mg/kg of the combination (3.8-4.4 mg/kg Telazol and 2.3-2.6 mg/kg xylazine) should provide > or =30 min of handling time and allow full recovery in < 90 min.  相似文献   

9.
The objective of this study is to verify and compare the effects of acepromazine–tiletamine–zolazepam and propofol used in anesthetic protocols for semen collection by electroejaculation from captive collared peccaries. Ten sexually mature animals were physically restrained and anesthetized by either intravenous administration of tiletamine–zolazepam (2 mg/kg) after acepromazine premedication, or a propofol dose of 5 mg/kg. The onset of anesthetic recovery was determined by the animals regaining consciousness and attempting to stand. Semen was collected by electroejaculation and evaluated for volume, pH, sperm concentration, progressive motility, morphology, percentage of live cells and functional membrane integrity. Six anesthetized animals with the acepromazine–tiletamine–zolazepam protocol showed erection, but semen could be collected in only four (40%) attempts. Of the animals anesthetized using propofol, nine showed erection, and the ejaculates were collected in eight (80%) attempts. Furthermore, propofol afforded rapid recovery of animals, and ejaculates with enhanced sperm motility and functional membrane integrity as compared with those collected by the other protocol (P < 0.05). In conclusion, use of propofol for anesthetic restraint of collared peccaries enhanced collection of semen by electroejaculation.  相似文献   

10.
Sixty chemical immobilizations of red deer (Cervus elaphus hippelaphus) have been carried out during an etho-ecological study from August 1994 to December 1996 in a 35 ha pen in the district of Nitra (Slovac Republic). Our objective was to determine the efficacy and standard dosages of Zoletil and Rompun for the immobilization of adult red deer in feral conditions as an alternative to the use of the highly toxic opioids. We therefore compared an Immobilon-Rompun combination (ImRo) with a 1:1 mixture of Zoletil and Rompun (ZoRo) as an injectable solution. Use of both combinations led to the immobilization of >92% of deer with an injection volume <3 ml. Mean (SD) dose to achieve immobilization was 35 (14) microg/kg ethorphine + 0.14 (0.056) mg/kg acepromazine + 0.36 (0.14) mg/kg xylazine compared to 1.2 (0.8) mg/kg tiletamine + 1.2 (0.8) mg/kg zolazepam + 2.3 (1.6) mg/kg xylazine. This corresponds to a volume of 1.8 (0.7) ml/100 kg body mass (BM) for ImRo (range = 1.0 to 4.6) and to 2.3 (1.6) ml/100 kg BM for ZoRo (range = 0.7 to 4.0), respectively. Heart rate, respiratory rate and oxyhaemoglobin saturation values did not differ significantly between the two groups during immobilization. Three deer (5%) died during immobilization, but fatalities could not be directly associated with the drug effect. Mean (SD) time from darting to complete immobilization was 5.5 (4.2) min for ImRo and 7.5 (6.1) min for ZoRo, respectively. Differences were not statistically significant. Anesthesia with both combinations of immobilizing agents could be reversed within 2 min using sarmazenile-yohimbine for ZoRo and diprenorphine-yohimbine for ImXy immobilizations, respectively. We conclude that the 1:1 combination of Zoletil and xylazine is a valuable alternative to the use of opioids for the immobilization of adult red deer including feral adult animals.  相似文献   

11.
The mean time to arousal (MTA), the mean time to sternal recumbency (MTSR) and the mean time to walking (MTW) were measured in 10 adult guineafowl (Numida meleagris) immobilized with a combination of xylazine hydrochloride (1 mg/kg) and ketamine hydrochloride (25 mg/kg). Yohimbine hydrochloride, given intravenously (1 mg/kg) at 40 min after the injection of the xylazine-ketamine, significantly shortened the MTA, the MTSR and the MTW compared to saline controls. Increasing the dosage of yohimbine to 2.5 mg/kg did not shorten recovery when compared to the lower dosage. No adverse effects were noted at either dosage of yohimbine. Yohimbine appeared to be a safe and effective antagonist of xylazine-ketamine immobilization in guineafowl and may prove useful in other avian species to produce more rapid recovery from xylazine-ketamine immobilization, xylazine sedation or xylazine overdosage.  相似文献   

12.
Immobilization and anaesthesia of adult male southern elephant seals (Mirounga leonina) is potentially risky for animals and scientists. A tiletamine/zolazepam injection is considered the most appropriate drug combination for field application in this species. Since appropriate dosages are difficult to assess due to uncertainties in weight estimation, we used photogrammetry-derived weight estimates to ensure precise post hoc calculations of dosages. We report on 15 intramuscular tiletamine/zolazepam immobilizations of post-moult males of the upper weight class at King George Island/Isla 25 de Mayo, in April 2010. Initial injections were made using blowpipe syringes. Mean tiletamine/zolazepam combined dosages of 0.71 mg kg?1 (SD ± 0.16) ranged between 0.46 and 1.01 mg kg?1. In four cases, ketamine was added in dosages between 0.96 and 2.61 mg kg?1. Mean induction period was 23 min (± 15), and the mean duration of the procedures from first injection to release of the animals required 96 min (± 51). Four seals exhibited periods of apnoea, and one case of an extended, repetitive, and potentially critical apnoea (> 25 and 8 min) required intervention in order to successfully re-initiate spontaneous respiration. All procedures resulted in proper immobilizations allowing for the deployment of the satellite tags on the seals’ heads. The fact that even substantial deviations between the initial weight estimates and the photogrammetry-derived weight estimates had no apparent effect on the course of the immobilization underlines the drugs’ wide safety margin in this species.  相似文献   

13.
大熊猫(Ailuropodamelanoleuca)是中国特有的珍稀动物,它们以高纤维含量的竹子为主食,但却具有与食肉动物相似的消化系统结构,为适应高纤维的食物,它们又形成了与食竹相适应的消化生理特点。其整个消化道内膜上粘液腺丰富,在野外,这些粘液腺的分泌物包裹于大熊猫所摄食的竹茎、  相似文献   

14.
The mean time to initial reversal response (MTIRR) and the mean time to perching (MTP) were measured in 34 raptors sedated with xylazine hydrochloride with dosages ranging from 1.0 to 20 mg/kg intravenously (i.v.) and 2.5 to 20.0 mg/kg intramuscularly (i.m.). Yohimbine hydrochloride, given i.v. (0.2 mg/kg), 30 min after the injection of the xylazine, shortened the MTIRR and MTP compared to the controls. No adverse effects were noted due to the use of yohimbine. Yohimbine appeared to be a safe and effective antagonist for xylazine sedation in raptors.  相似文献   

15.
Pharmacokinetics and tissue residues of Telazol in free-ranging polar bears   总被引:1,自引:0,他引:1  
A pharmacokinetic and tissue residue study was conducted to assess the risks associated with human consumption of polar bears in arctic Canada that have been exposed to the immobilizing drug Telazol, a mixture of tiletamine hydrochloride and zolazepam hydrochloride. Twenty-two bears were remotely injected with about 10 mg/kg of Telazol. Following immobilization, serum samples were collected serially at regular intervals until the bears awakened. Sixteen of the bears were relocated and killed under permit by local hunters at various times from 0.5 to 11 days after dosing. Serum, kidney, muscle and adipose tissue samples were collected immediately after death. All samples were stored at -70 C until analysis by HPLC. The concentration-time data of tiletamine and zolazepam in serum during the immobilization period were fitted to curves by computer and the pharmacokinetic parameters assessed. In addition, the serum and tissue samples collected at the time of death were analyzed for both parent drugs, for one metabolite of tiletamine (CI-398), and for three metabolites of zolazepam (metabolites 1, 2 and 4). A one-compartment model with first-order absorption and elimination best fit the time-series data for the drugs in serum during the immobilization period. This model gave half-lives (mean +/- SE) for tiletamine and zolazepam of 1.8+/-0.2 h and 1.2+/-0.08 h, respectively, clearance values of 2.1+/-0.3 l x h(-1) x kg(-1) and 1.1+/-0.1 l x h(-1) x kg(-1), and volumes of distribution of 5.2+/-0.6 l/kg and 1.8+/-0.2 l/kg. The concentrations of both drugs and their metabolites declined rapidly to trace levels by 24 h post-dosing, although extremely low concentrations of some metabolites were encountered sporadically over the entire sampling period. In particular, zolazepam metabolite 2, remained detectable in fat and muscle tissue at the end of the study, 11 days after dosing. It was concluded that during immobilization, both tiletamine and zolazepam levels decline rapidly in a monoexponential fashion, and their pharmacokinetic parameters in polar bears are similar to those observed in other species. Tissue levels of the drugs and their metabolites declined sufficiently rapidly that individuals eating meat from exposed bears would be unlikely to experience pharmacological effects from the drugs. Nevertheless, slight exposure to the drugs and/or their metabolites might be possible for an indeterminate time after dosing.  相似文献   

16.
Sixteen captive female red deer were successfully anesthetized to surgically implant a telemetry system. The deer were immobilized with (mean±SD) 1.79±0.29 mg/kg xylazine and 1.79±0.29 mg/kg tiletamine/zolazepam given intramuscularly with a dart gun. Anesthesia was maintained for 69±2 min using a total intravenous protocol with a catheter placed in the jugular vein. Group X received xylazine (0.5±0.055 mg/kg/hr) and group D, detomidine (2±0.22 μg/kg/hr), both in combination with ketamine (2±0.02 mg/kg/hr) and midazolam (0.03±0.0033 mg/kg/hr), as a constant rate infusion. Anesthesia was reversed with 0.09±0.01 mg/kg atipamezole and 8.7±1.21 μg/kg sarmazenil given intravenously in both groups. These drug combinations provided smooth induction, stable anesthesia for surgery, and rapid recovery. Respiratory depression and mild hypoxemia were seen, and we, therefore, recommend using supplemental intranasal oxygen.  相似文献   

17.
From June 1998 to August 1999, 39 California sea lions (Zalophus californianus) were immobilized at a rehabilitation center in northern California (USA) using medetomidine plus zolazepam and tiletamine (MZT), alone and in combination with isoflurane, with atipamezole reversal. Animals were given 70 microg/kg medetomidine with 1 mg/kg of a 1:1 solution of tiletamine and zolazepam intramuscularly. Mean (+/-SD) time to maximal effect was 5+/-3 min. At the end of the procedure, animals were given 200 microg/kg atipamezole intramuscularly. Immobilization and recovery times were, respectively, 28+/-18 and 9+/-7 min for 15 animals maintained with MZT alone and 56+/-47 and 9+/-6 min for 18 animals intubated and maintained with isoflurane. One mortality occurred during anesthesia. Other disadvantages of the MZT combination included some prolonged ataxia, weakness and disorientation during recovery. However, the use of MZT resulted in faster induction and a more reliable plane of anesthesia that was reversible with atipamezole and safer than other previously used intramuscular agents. Physiological parameters including heart rate, respiratory rate, temperature, pulse oximeter saturation, and end-tidal carbon dioxide were monitored.  相似文献   

18.
In neutralizing heparin with intravenous protamine sulfate, hypotension may be prevented by administering the drug intraarterially. Forty patients underwent cardiac surgery with extracorporeal circulation in our hospital; each received a rapid injection of nondiluted protamine sulfate in the aortic root to reverse the effects of heparin. To maintain the blood volume at a constant level, volume expanders and inotropic drugs were avoided. The intraaortic injections ranged in duration from 0.2 min to 2.8 min, with a mean of 1.1 min. The mean systolic pressure only dropped from 92 mm Hg (SD +/- 21) before protamine injection to 85 mm Hg (SD +/- 23) after injection (p < 0.0001). In seven patients (18%), no hypotension was evident; in the remaining patients, the systolic pressure returned to preinjection values within a mean of 2.2 min. Coagulation was observed within 3 to 4 min (mean = 2.2 min) after the initiation of injection. This study indicates that intraaortic administration of protamine is a rapid and safe technique for heparin reversal after cardiopulmonary bypass.  相似文献   

19.
A combination of medetomidine, Telazol, and ketamine hydrochloride was used to immobilize captive Chacoan peccaries (Catagonus wagneri) for translocation within Paraguay during August-October 2002. Animals were darted in enclosed areas of varying size. The average dose used was 32.5+/-7.2 microg/kg of medetomidine, 0.63+/-0.2 mg/kg of Telazol, and 3.9+/-0.65 mg/kg of ketamine. First effects were noted at 4.3+/-2.1 min, and ability to handle the animals was achieved by 12.6+/-3.7 min. Heart and respiratory rates declined and oxygen saturation increased during anesthesia. Muscle relaxation was good. Atipamezole was used to antagonize the medetomidine, although recoveries were still slow. This drug combination provided adequate immobilization of Chacoan peccaries; however, this protocol would not be considered to be reversible, and confinement during recovery is recommended.  相似文献   

20.
Thirty seven southern elephant seals (Mirounga leonina) were singularly or repeatedly immobilized with combinations of ketamine hydrochloride (HCl) and xylazine HCl or ketamine HCl and diazepam. Atropine sulphate was included in the drug combinations. To permit experimental procedures the seals were immobilized for periods of 30-330 min. The mean induction dose of ketamine HCl was 8.71 +/- 0.25 mg/kg (mean +/- SE). The mean induction time was 16.02 +/- 2.62 min. For the elephant seals immobilized for periods in excess of 180 min, the mean dose of ketamine HCl used per hr was 3.31 +/- 0.13 mg/kg/hr and the mean dose of ketamine HCl used per hr postinduction was 1.31 +/- 0.15 mg/kg/hr. The mean dose of diazepam used was 0.09 +/- 0.01 mg/kg and the mean dose of xylazine HCl was 0.41 +/- 0.01 mg/kg. Elephant seals were weighed on 20 occasions (weight range: 897-1,932 kg) and the relationship between standard length and weight was found to be: Weight = 9.98 length - 2,317.63 (r2 = 0.724). Adverse reactions to seals immobilized only once or twice were not observed. Two seals immobilized on three occasions developed abscesses at the site of injection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号