共查询到20条相似文献,搜索用时 0 毫秒
1.
Chenyang Li Yi Xu Shuai Fu Yu Liu Zongdi Li Tianze Zhang Jianxiang Wu Xueping Zhou 《PLoS pathogens》2021,17(3)
The movement of plant viruses is a complex process that requires support by the virus-encoded movement protein and multiple host factors. The unfolded protein response (UPR) plays important roles in plant virus infection, while how UPR regulates viral infection remains to be elucidated. Here, we show that rice stripe virus (RSV) elicits the UPR in Nicotiana benthamiana. The RSV-induced UPR activates the host autophagy pathway by which the RSV-encoded movement protein, NSvc4, is targeted for autophagic degradation. As a counteract, we revealed that NSvc4 hijacks UPR-activated type-I J-domain proteins, NbMIP1s, to protect itself from autophagic degradation. Unexpectedly, we found NbMIP1 stabilizes NSvc4 in a non-canonical HSP70-independent manner. Silencing NbMIP1 family genes in N. benthamiana, delays RSV infection, while over-expressing NbMIP1.4b promotes viral cell-to-cell movement. Moreover, OsDjA5, the homologue of NbMIP1 family in rice, behaves in a similar manner toward facilitating RSV infection. This study exemplifies an arms race between RSV and the host plant, and reveals the dual roles of the UPR in RSV infection though fine-tuning the accumulation of viral movement protein. 相似文献
2.
Rice yellow stunt rhabdovirus (RYSV) encodes seven genes in its negative-sense RNA genome in the order 3'-N-P-3-M-G-6-L-5'. The existence of gene 3 in the RYSV genome and an analogous gene(s) of other plant rhabdoviruses positioned between the P and M genes constitutes a unique feature for plant rhabdoviruses that is distinct from animal-infecting rhabdoviruses in which the P and M genes are directly linked. However, little is known about the function of these extra plant rhabdovirus genes. Here we provide evidence showing that the protein product encoded by gene 3 of RYSV, P3, possesses several properties related to a viral cell-to-cell movement protein (MP). Analyses of the primary and secondary protein structures suggested that RYSV P3 is a member of the "30K" superfamily of viral MPs. Biolistic bombardment transcomplementation experiments demonstrated that RYSV P3 can support the intercellular movement of a movement-deficient potexvirus mutant in Nicotiana benthamiana leaves. In addition, Northwestern blot analysis indicated that the RYSV P3 protein can bind single-stranded RNA in vitro, a common feature of viral MPs. Finally, glutathione S- transferase pull-down assays revealed a specific interaction between the RYSV P3 protein and the N protein which is a main component of the ribonucleocapsid, a subviral structure believed to be involved in the intercellular movement of plant rhabdoviruses. Together, these data suggest that RYSV P3 is likely a MP of RYSV, thus representing the first example of characterized MPs for plant rhabdoviruses. 相似文献
3.
4.
Rice stripe tenuivirus p2 may recruit or manipulate nucleolar functions through an interaction with fibrillarin to promote virus systemic movement 下载免费PDF全文
Luping Zheng Zhenguo Du Chen Lin Qianzhuo Mao Kangcheng Wu Jianguo Wu Taiyun Wei Zujian Wu Lianhui Xie 《Molecular Plant Pathology》2015,16(9):921-930
Rice stripe virus (RSV) is the type species of the genus Tenuivirus and represents a major viral pathogen affecting rice production in East Asia. In this study, RSV p2 was fused to yellow fluorescent protein (p2‐YFP) and expressed in epidermal cells of Nicotiana benthamiana. p2‐YFP fluorescence was found to move to the nucleolus initially, but to leave the nucleolus for the cytoplasm forming numerous distinct bright spots there at later time points. A bimolecular fluorescence complementation (BiFC) assay showed that p2 interacted with fibrillarin and that the interaction occurred in the nucleus. Both the nucleolar localization and cytoplasmic distribution of p2‐YFP fluorescence were affected in fibrillarin‐silenced N. benthamiana. Fibrillarin depletion abolished the systemic movement of RSV, but not that of Tobacco mosaic virus (TMV) and Potato virus X (PVX). A Tobacco rattle virus (TRV)‐based virus‐induced gene silencing (VIGS) method was used to diminish RSV NS2 (encoding p2) or NS3 (encoding p3) during RSV infection. Silencing of NS3 alleviated symptom severity and reduced RSV accumulation, but had no obvious effects on virus movement and the timing of symptom development. However, silencing of NS2 abolished the systemic movement of RSV. The possibility that RSV p2 may recruit or manipulate nucleolar functions to promote virus systemic infection is discussed. 相似文献
5.
Interactions of the TGB1 protein during cell-to-cell movement of Barley stripe mosaic virus 下载免费PDF全文
We have recently used a green fluorescent protein (GFP) fusion to the gammab protein of Barley stripe mosaic virus (BSMV) to monitor cell-to-cell and systemic virus movement. The gammab protein is involved in expression of the triple gene block (TGB) proteins encoded by RNAbeta but is not essential for cell-to-cell movement. The GFP fusion appears not to compromise replication or movement substantially, and mutagenesis experiments demonstrated that the three most abundant TGB-encoded proteins, betab (TGB1), betac (TGB3), and betad (TGB2), are each required for cell-to-cell movement (D. M. Lawrence and A. O. Jackson, Mol. Plant Pathol. 2:65-75, 2001). We have now extended these analyses by engineering a fusion of GFP to TGB1 to examine the expression and interactions of this protein during infection. BSMV derivatives containing the TGB1 fusion were able to move from cell to cell and establish local lesions in Chenopodium amaranticolor and systemic infections of Nicotiana benthamiana and barley. In these hosts, the GFP-TGB1 fusion protein exhibited a temporal pattern of expression along the advancing edge of the infection front. Microscopic examination of the subcellular localization of the GFP-TGB1 protein indicated an association with the endoplasmic reticulum and with plasmodesmata. The subcellular localization of the TGB1 protein was altered in infections in which site-specific mutations were introduced into the six conserved regions of the helicase domain and in mutants unable to express the TGB2 and/or TGB3 proteins. These results are compatible with a model suggesting that movement requires associations of the TGB1 protein with cytoplasmic membranes that are facilitated by the TGB2 and TGB3 proteins. 相似文献
6.
Lim HS Bragg JN Ganesan U Lawrence DM Yu J Isogai M Hammond J Jackson AO 《Journal of virology》2008,82(10):4991-5006
Barley stripe mosaic virus (BSMV) encodes three movement proteins in an overlapping triple gene block (TGB), but little is known about the physical interactions of these proteins. We have characterized a ribonucleoprotein (RNP) complex consisting of the TGB1 protein and plus-sense BSMV RNAs from infected barley plants and have identified TGB1 complexes in planta and in vitro. Homologous TGB1 binding was disrupted by site-specific mutations in each of the first two N-terminal helicase motifs but not by mutations in two C-terminal helicase motifs. The TGB2 and TGB3 proteins were not detected in the RNP, but affinity chromatography and yeast two-hybrid experiments demonstrated that TGB1 binds to TGB3 and that TGB2 and TGB3 form heterologous interactions. These interactions required the TGB2 glycine 40 and the TGB3 isoleucine 108 residues, and BSMV mutants containing these amino acid substitution were unable to move from cell to cell. Infectivity experiments indicated that TGB1 separated on a different genomic RNA from TGB2 and TGB3 could function in limited cell-to-cell movement but that the rates of movement depended on the levels of expression of the proteins and the contexts in which they are expressed. Moreover, elevated expression of the wild-type TGB3 protein interfered with cell-to-cell movement but movement was not affected by the similar expression of a TGB3 mutant that fails to interact with TGB2. These experiments suggest that BSMV movement requires physical interactions of TGB2 and TGB3 and that substantial deviation from the TGB protein ratios expressed by the wild-type virus compromises movement. 相似文献
7.
8.
9.
Zhang Hongwei Qu Zhicai Zhang Xiaoning Bai Fengwei Wan Youzhong Shao Minghua Ye Mingming Shen Daleng 《International journal of peptide research and therapeutics》2002,9(1):15-20
Summary Phages with high affinity to the S protein obtained from rice stripe virus (RSV) were enriched from phage-displayed random
12-mer peptide library after three rounds of biopanning. 9 different peptides from the enriched library were selected by ELISA.
Circular dichroism (CD) spectra of the GST-S fusion protein with binding phages and non-binding phages showed that structure
of the S protein was changed after it bound to each of these 9 selected 12-mer peptides, which suggested that these peptides
might disrupt the function of S protein. Thus, those peptides might be used to develop plant resistance and disrupt virus
transmission. 3 of the 12-mer peptide genes were fused with the GST gene in pGEX 3X. The fusion proteins were also obtained
usingE. coli expression system and purified. 相似文献
10.
Hongwei Zhang Zhicai Qu Xiaoning Zhang Fengwei Bai Youzhong Wan Minghua Shao Mingming Ye Daleng Shen 《Letters in Peptide Science》2002,9(1):15-20
Phages with high affinity to the S protein obtained fromrice stripe virus (RSV) were enriched fromphage-displayed random 12-mer peptide library after threerounds of biopanning. 9 different peptides from theenriched library were selected by ELISA. Circulardichroism (CD) spectra of the GST-S fusion protein withbinding phages and non-binding phages showed thatstructure of the S protein was changed after it bound toeach of these 9 selected 12-mer peptides, which suggestedthat these peptides might disrupt the function of Sprotein. Thus, those peptides might be used to developplant resistance and disrupt virus transmission. 3 of the12-mer peptide genes were fused with the GST gene in pGEX3X. The fusion proteins were also obtained using E.coli expression system and purified. 相似文献
11.
12.
13.
14.
Tobacco mosaic virus movement protein functions as a structural microtubule-associated protein 下载免费PDF全文
Ashby J Boutant E Seemanpillai M Groner A Sambade A Ritzenthaler C Heinlein M 《Journal of virology》2006,80(17):8329-8344
The cell-to-cell spread of Tobacco mosaic virus infection depends on virus-encoded movement protein (MP), which is believed to form a ribonucleoprotein complex with viral RNA (vRNA) and to participate in the intercellular spread of infectious particles through plasmodesmata. Previous studies in our laboratory have provided evidence that the vRNA movement process is correlated with the ability of the MP to interact with microtubules, although the exact role of this interaction during infection is not known. Here, we have used a variety of in vivo and in vitro assays to determine that the MP functions as a genuine microtubule-associated protein that binds microtubules directly and modulates microtubule stability. We demonstrate that, unlike MP in whole-cell extract, microtubule-associated MP is not ubiquitinated, which strongly argues against the hypothesis that microtubules target the MP for degradation. In addition, we found that MP interferes with kinesin motor activity in vitro, suggesting that microtubule-associated MP may interfere with kinesin-driven transport processes during infection. 相似文献
15.
Solubilization and promoter analysis of RNA polymerase from rice stripe virus. 总被引:5,自引:0,他引:5 下载免费PDF全文
The RNA-dependent RNA polymerase associated with rice stripe virus was dissociated from viral RNA (vRNA) by CsCl centrifugation. The solubilized RNA-free RNA polymerase transcribed a model RNA template 50 nucleotides in length carrying the 5'- and 3'-terminal conserved sequences of all four genome RNA segments. A 3'-terminal half molecule of the model template was also active as a template. Hence, we propose that the 3'-terminal conserved sequence serves as a promoter for the rice stripe virus-associated RNA polymerase. The solubilized enzyme, however, was unable to transcribe vRNA. The failure of the solubilized enzyme to transcribe vRNA is discussed in relation to the apparent loss of RNA polymerase activity after treatment of virions with high concentrations of salt. 相似文献
16.
17.
The movement protein (MP) and coat protein (CP) encoded by Alfalfa mosaic virus (AMV) RNA 3 are both required for virus transport. RNA 3 vectors that expressed nonfused green fluorescent protein (GFP), MP:GPF fusions, or GFP:CP fusions were used to study the functioning of mutant MP and CP in protoplasts and plants. C-terminal deletions of up to 21 amino acids did not interfere with the function of the CP in cell-to-cell movement, although some of these mutations interfered with virion assembly. Deletion of the N-terminal 11 or C-terminal 45 amino acids did not interfere with the ability of MP to assemble into tubular structures on the protoplast surface. Additionally, N- or C-terminal deletions disrupted tubule formation. A GFP:CP fusion was targeted specifically into tubules consisting of a wild-type MP. All MP deletion mutants that showed cell-to-cell and systemic movement in plants were able to form tubular structures on the surface of protoplasts. Brome mosaic virus (BMV) MP did not support AMV transport. When the C-terminal 48 amino acids were replaced by the C-terminal 44 amino acids of the AMV MP, however, the BMV/AMV chimeric protein permitted wild-type levels of AMV transport. Apparently, the C terminus of the AMV MP, although dispensable for cell-to-cell movement, confers specificity to the transport process. 相似文献
18.
Identification of Arabidopsis proteins that interact with the cauliflower mosaic virus (CaMV) movement protein 总被引:7,自引:0,他引:7
Huang Zhong Andrianov Vyacheslav M. Han Yu Howell Stephen H. 《Plant molecular biology》2001,47(5):663-675
Gene I of cauliflower mosaic virus (CaMV) encodes a protein that is required for virus movement. The CaMV movement protein (MP) was used in a yeast 2-hybrid system to screen an Arabidopsis cDNA library for cDNAs encoding MP-interacting (MPI) proteins. Three different clones were found encoding proteins (MPI1, -2 and -7) that interact with the N-terminal third of the CaMV MP. The interaction in the 2-hybrid system between MPI7 and CaMV MP mutants correlated with the infectivity of the mutants. A non-infectious MP mutant, ER2A, with two amino acid changes in the N-terminal third of the MP failed to interact with MPI7, while an infectious second-site mutant, that differed from ER2A by only a single amino acid change, interacted in the 2-hybrid system. MPI7 is encoded by a member of a large, but diverse gene family in Arabidopsis. MPI7 is related in sequence, size and hydropathy profile to mammalian proteins (such as rat PRA1) described as a rab acceptor. The gene encoding MPI7 is expressed widely is Arabidopsis plants, and in transgenic plants the MPI7:GFP fusion protein is localized in the cytoplasm, concentrated in punctate spots. In protoplasts transfected with CFP:MP and MPI7:YFP, CFP:MP colocalized to some of the sites where MPI7:YFP is expressed. At these sites, fluorescence resonance energy transfer (FRET) between fluorophores was observed indicating an interaction in planta between the CaMV MP and MPI7. 相似文献
19.
Requirements for cell-to-cell movement of Barley stripe mosaic virus in monocot and dicot hosts 总被引:1,自引:0,他引:1
The Barley stripe mosaic virus (BSMV) RNAß genome contains a series of overlapping open reading frames termed the triple gene block. The three most abundant proteins, βb, βc and βd, have been shown to have essential roles in infectivity, but their function in cell-to-cell movement has not previously been unambiguously defined, nor has the role of a minor translational read-through protein, βd' been characterized. We have now examined the direct involvement of each of these proteins in cell-to-cell movement in planta by engineering fusions of the green fluorescent protein (GFP) to a cysteine-rich regulatory protein designated γb. Microscopic examination of inoculated and systemically infected barley and oat leaves revealed high levels of fluorescence that moved rapidly through the compact striate vascular tissue without infecting epidermal cells. In contrast, a radial pattern of fluorescence spread through a large number of epidermal and mesophyll cells before entry into the reticulate vascular tissue of the dicot hosts Nicotiania benthamiana and Chenopodium amaranticolor . Mutational analyses indicated that the βb, βc and βd proteins are each essential for cell-to-cell movement in local lesion and systemic hosts, whereas the βd' protein is dispensable. Collectively, these results demonstrate conclusively that the three major triple gene block-encoded proteins act in concert to mediate cell-to-cell movement of BSMV. 相似文献
20.
《Gene》1996,173(1):75-79
A genetic fusion between the gene encoding green fluorescent protein (GFP) from the jellyfish Aequorea victoria, with that of the Ob-tobamovirus movement protein (MP) resulted in the expression of a fluorescent fusion protein (MP: :GFP) that was fully biologically active in mediating the cell-to-cell spread of the Ob-virus. The MP::GFP fusion was used to follow in planta the subcellular trafficking of MP. GFP-tagged MP was transiently expressed and found to be associated with several subcellular compartments and structures including trans-wall structures, presumably plasmodesmata, and filament structures. The MP::GFP fusion can be used to monitor MP association with host proteins and structures, and for the isolation of interacting host components. 相似文献