共查询到20条相似文献,搜索用时 9 毫秒
1.
Correia C Monzani E Moura I Lampreia J Moura JJ 《Biochemical and biophysical research communications》1999,256(2):367-371
Tetraheme cytochrome c3 (13 kDa) and flavodoxin (16 kDa), are small electron transfer proteins that have been used to mimic, in vitro, part of the electron-transfer chain that operates between substract electron donors and respiratory electron acceptors partners in Desulfovibrio species (Palma, N., Moura, I., LeGall, J., Van Beeumen, J., Wampler, J., Moura, J. J. G. (1994) Biochemistry 33, 6394-6407). The electron transfer between these two proteins is believed to occur through the formation of a specific complex where electrostatic interaction is the main driving force (Stewart, D., LeGall, J., Moura, I., Moura, J.J.G., Peck, H.D., Xavier, A.V., Weiner, P.K. and Wampler, J.E. (1988) Biochemistry 27, 2444-2450, Stewart, D., LeGall, J., Moura, I., Moura, J.J.G., Peck, H.D., Xavier, A.V., Weiner, P., Wampler, J. (1989) Eur. J. Biochem. 185, 695-700). In order to obtain structural information of the pre-complex, a covalent complex between the two proteins was prepared. A water-soluble carbodiimide [EDC (1-ethyl-3(3 dimethylaminopropyl) carbodiimide hydrochloride] was used for the cross linking reaction. The reaction was optimized varying a wide number of experimental parameters such as ionic strength, protein and cross linker concentration, and utilization of different cross linkers and reaction time between the crosslinker and proteins. 相似文献
2.
M Czjzek F Guerlesquin V Roig F Payan M Bruschi R Haser 《Journal of molecular biology》1992,228(3):995-997
An octa-heme cytochrome c3, isolated as a dimeric molecule of about 30 kDa from the anaerobic bacteria Desulfovibro desulfuricans Norway, has been crystallized in a form suitable for atomic resolution X-ray structural investigations. The crystals are trigonal, space group P3(1)21 (or its enantiomorph P3(2)21), with cell dimensions: a = b = 72.9 A c = 62.7 A. The asymmetric unit contains most probably one monomer and a solvent content of about 60%. Under this assumption, the crystallographic 2-fold axis relates the two subunits of the dimer. Diffraction extends to 2.0 A. 相似文献
3.
Cytochrome c3 from Desulfovibrio gigas is electrostatically adsorbed on Ag electrodes coated with self-assembled monolayers (SAMs) of 11-mercaptoundecanoic acid. The redox equilibria and electron transfer dynamics of the adsorbed four-heme protein are studied by surface enhanced resonance Raman spectroscopy. Immobilization on the coated electrodes does not cause any structural changes in the redox sites. The potential-dependent stationary experiments distinguish the redox potential of heme IV (-0.19 V versus normal hydrogen electrode) from those of the other hemes for which an average value of -0.3 V is determined. Taking into account the interfacial potential drops, these values are in good agreement with the redox potentials of the protein in solution. The heterogenous electron transfer between the electrode and heme IV of the adsorbed cytochrome c3 is analyzed on the basis of time-resolved experiments, leading to a formal electron transfer rate constant of 15 s(-1), which is a factor of 3 smaller than that of the monoheme protein cytochrome c. 相似文献
4.
da Costa PN Marujo PE van Dongen WM Arraiano CM Saraiva LM 《Biochimica et biophysica acta》2000,1492(1):271-275
The gene encoding the tetraheme cytochrome c(3) from Desulfovibrio gigas was cloned and sequenced from a 2.7-kb EcoRI-PstI insert of D. gigas DNA. The derived amino acid sequence showed that the D. gigas cytochrome c(3) is synthesized as a precursor protein with an N-terminal signal peptide sequence of 25 residues and allowed the correction of the previous reported amino acid sequence (Matias et al. Protein Science 5 (1996) 1342-1354). Expression in D. vulgaris (Hildenborough) was possible by conjugal transfer of a recombinant broad-host-range vector pSUP104 containing a SmaI fragment of the D. gigas cytochrome c(3) gene. Biochemical, immunological and spectroscopic analysis of the purified protein showed that the recombinant cytochrome is identical to that isolated from D. gigas. 相似文献
5.
The kinetic aspects of the reduction process in cytochrome c3 from Desulfovibrio gigas have been investigated over a wide range of pH values ranging between pH 5.8 and pH 9.8. The data have been analyzed in the framework of an I2H4 interaction network coupled to a proton-linked equilibrium between two tertiary structures (Cornish-Bowden, A. & Koshland, D.E. Jr (1970) J. Biol. Chem. 245, 6241-6250). The kinetic rate constants for the reduction of the four hemes for the two tertiary conformations have been characterized in the framework of the thermodynamic network obtained from the equilibrium analysis (Coletta, M., Catarino, T., LeGall, J.J. & Xavier, A.V. (1991) Eur. J. Biochem. 202, 1101-1106). The intrinsic reduction rate constants determined by reaction with sodium dithionite for two hemes (namely heme 4 and heme 1) are significantly faster than those for the other two heme residues. In view of the equilibrium redox properties, heme 4 (with the fastest reduction rate) may then work as the kinetic electron-capturing site for the electrons from sodium dithionite. The transfer to hemes 2 and 3 then occurs by virtue of their free-energy levels at equilibrium. At our experimental conditions, there is also transfer of electrons to hemes 2 and 3 from heme 1, which is reduced at a slower rate than heme 4, thus contributing to the biphasic kinetics observed for the overall process. The kinetic parameters obtained are discussed in terms of the mechanism proposed for the coupling between the electron and proton transfer, as induced by the heme/heme cooperativity network. 相似文献
6.
F Guerlesquin M Noailly M Bruschi 《Biochemical and biophysical research communications》1985,130(3):1102-1108
The complex formation of two electron transfer proteins, cytochrome c3 and ferredoxin I from Desulfovibrio desulfuricans Norway, has been shown by 1H-NMR spectroscopy. Presence of ferredoxin I produces ferricytochrome c3 1H-NMR spectrum modifications. The chemical shift of perturbated heme methyl resonances has been used to determine the stoichiometry of the complex. At pH 7.6 and 20 degrees C, the two proteins were found to form a complex 1:1 with an association constant, KA, of 10(4) M-1. Two of the four hemes are affected by presence of ferredoxin I and may be involved in the electron transfer sites. The heme methyl resonances are average resonances of free and bound cytochrome c3 resonances, indicating a fast exchange process on the NMR time scale. 相似文献
7.
A thermodynamic model is presented to describe the redox behaviour of the tetraheme cytochrome c3 from Desulfovibrio gigas. This molecule displays different intrinsic redox potentials for the four hemes and during the redox titration process, interactions among different hemes occur, thus altering the values of redox potentials according to which of the hemes are oxidized [Santos, H., Moura, J.J.G., Moura, I., LeGall, J. & Xavier, A.V. (1984) Eur. J. Biochem. 141, 283-296]. This complex cooperative behaviour [Xavier, A.V. (1986) J. Inorg. Biochem. 28, 239-243] has been analyzed here using an I2H4-interaction network [Cornish-Bowden, A. & Koshland, D.E. Jr (1970) J. Biol. Chem. 245, 6241-6250] coupled to a proton-linked equilibrium between two tertiary structures. Such a formalism, which requires a reduced number of parameters, is able to fully account quantitatively for the pH dependence of the NMR redox-titration curves. The 'redox-Bohr' effect is discussed in terms of the available structure and thermodynamic data and a functional mechanism is proposed. 相似文献
8.
Cláudio M. Soares Paulo J. Martel Maria A. Carrondo 《Journal of biological inorganic chemistry》1997,2(6):714-727
The pH dependence of the redox potentials in the tetrahemic cytochrome c
3 from Desulfovibrio vulgaris Hildenborough (redox-Bohr effect) is here investigated using continuum electrostatics methods. The redox-Bohr effect seems
to be associated with changes in the protonation state of charged residues in the protein, but the exact residues had not
been identified. The global pK
a of this phenomenon is dependent on the redox state of the molecule, and the influence of the pH on the microscopic potential
of each heme has been experimentally quantified. The availability of detailed experimental data provides us with important
and unique guides to the performance of ab initio pK
a calculations aiming at the identification of the groups involved. These calculations were performed in several redox states
along the reduction pathway, with the double objective of finding groups with redox-linked pK
a shifts, and absolute pK
as compatible with the redox-Bohr effect. The group with the largest pK
a shift along the reduction pathway is propionate D from heme I. Its effect on the redox potential of individual hemes, as
calculated by electrostatic calculations, correlates very well with the experimental order of influence, making it a likely
candidate. Abnormal titration of the same propionate has been experimentally observed on a homologous cytochrome c
3 from a different strain, thus strengthening the theoretical result. However, its absolute calculated pK
a in the fully oxidised cytochrome is outside the zone where the phenomenon is known to occur, but the calculation shows a
strong dependence on small conformational changes, suggesting large uncertainties in the calculated value. A group with a
pK
a value within the experimentally observed range is propionate D from heme IV. Its influence on the redox potential of the
hemes does not correlate with the experimental order, indicating that, although it may be one of the possible players on the
phenomenon, it cannot be solely responsible for it. Mutation of the Lys45 residue is suggested as an indirect way of probing
the importance of the propionate D from heme I in the mechanism. Non-heme groups may also be involved in this process; our
calculations indicate His67 and the N-terminal as groups that may play a role. Accuracy and applicability of current continuum
electrostatic methods are discussed in the context of this system.
Received: 27 March 1997 / Accepted: 19 August 1997 相似文献
9.
NMR studies of electron transfer mechanisms in a protein with interacting redox centres: Desulfovibrio gigas cytochrome c3 总被引:1,自引:0,他引:1
H Santos J J Moura I Moura J LeGall A V Xavier 《European journal of biochemistry》1984,141(2):283-296
The proton NMR spectra of the tetrahaem cytochrome c3 from Desulfovibrio gigas were examined while varying the pH and the redox potential. The analysis of the NMR reoxidation pattern was based on a model for the electron distribution between the four haems that takes into account haem-haem redox interactions. The intramolecular electron exchange is fast on the NMR time scale (larger than 10(5) s-1). The NMR data concerning the pH dependence of the chemical shift of haem methyl resonances in different oxidation steps and resonance intensities are not compatible with a non-interacting model and can be explained assuming a redox interaction between the haems. A complete analysis at pH* = 7.2 and 9.6, shows that the haem-haem interacting potentials cover a range from -50 mV to +60 mV. The midpoint redox potentials of some of the haems, as well as some of their interacting potentials, are pH-dependent. The physiological relevance of the modulation of the haem midpoint redox potentials by both the pH and the redox potential of the solution is discussed. 相似文献
10.
Marianne Brugna M.T. Giudici-Orticoni Silvia Spinelli Kieron Brown Mariella Tegoni Mireille Bruschi 《Proteins》1998,33(4):590-600
Hydrogenases from Desulfovibrio are found to catalyze hydrogen uptake with low potential multiheme cytochromes, such as cytochrome c3, acting as acceptors. The production of Fe-only hydrogenase from Desulfovibrio vulgaris Hildenborough was improved with respect to the growth phase and media to determine the best large-scale bacteria growth conditions. The interaction and electron transfer from Fe-only hydrogenase to multiheme cytochrome has been studied in detail by both BIAcore and steady-state measurements. The electron transfer between [Fe] hydrogenase and cytochrome c3 appears to be a cooperative phenomenon (h = 1.37). This behavior could be related to the conductivity properties of multihemic cytochromes. An apparent dissociation constant was determined (2 × 10-7 M). The importance of the cooperativity for contrasting models proposed to describe the functional role of the hydrogenase/cytochrome c3 complex is discussed. Presently, the only determined structure is from [NiFe] hydrogenase and there are no obvious similarities between [NiFe] and [Fe] hydrogenase. Furthermore, no crystallographic data are available concerning [Fe] hydrogenase. The first results on crystallization and X-ray crystallography are reported. Proteins 33:590–600, 1998. © 1998 Wiley-Liss, Inc. 相似文献
11.
Amino acid sequence of cytochrome c3 from Desulfovibrio vulgaris 总被引:1,自引:0,他引:1
12.
13.
Crystals of the quadrihaemic cytochrome c3 (Mr = 13,000) from Desulfovibrio desulfuricans Norway and of two heavy-atom derivatives have been obtained. X-ray diffraction intensities have been collected down to 3 Å resolution for the native protein crystals and the mercury derivative. 相似文献
14.
I Moura B H Huynh R P Hausinger J Le Gall A V Xavier E Münck 《The Journal of biological chemistry》1980,255(6):2493-2498
15.
We present a new examination of the EPR redox titration data for the tetraheme cytochrome c3 from Desulfovibrio vulgaris Miyazaki. Our analysis includes the contribution of the interaction potentials between the four redox sites and is based on the model previously developed for the study of cytochrome c3 from Desulfovibrio desulfuricans Norway. We observed, as for D. desulfuricans Norway cytochrome c3, that the conformation of the heme with the lowest redox potential, heme 4, is sensitive to the redox state of the heme with the highest potential, heme 1. However in D. vulgaris Miyazaki cytochrome c3 spectral simulations show that heme 4 is present in two conformational states which interconvert partially when heme 1 is reduced. The sets of redox parameters which satisfy the fitting procedure of the titration curves are in the following domain: -250 mV less than or equal to e41 less than or equal to -220 mV, -325 mV less than or equal to e2 less than or equal to -320 mV, -335 mV less than or equal to e3 less than or equal to -330 mV, -360 mV less than or equal to e4 less than or equal to -355 mV, -5 mV less than or equal to I12 less than or equal to 20 mV, -10 mV less than or equal to I13 less than or equal to 5 mV, -15 mV less than or equal to I23 less than or equal to -5 mV, -15 mV less than or equal to I24 less than or equal to -10 mV, -25 mV, less than or equal to I34 less than or equal to -15 mV. As in D. desulfuricans Norway cytochrome c3 the interactions are moderate. Simple electrostatic considerations suggest that these moderate values could be related to the large accessibility of the hemes to the solvent. Our work does not confirm the existence of a cooperative interaction between heme 2 and heme 3 which has been proposed on the basis of electrochemical measurements. 相似文献
16.
Molecular dynamics simulations have been carried out on the complex formed between the tetraheme cytochrome c3 and the iron protein rubredoxin from the sulfate-reducing bacterium Desulfovibrio vulgaris. These simulations were performed both with explicit solvent water molecules included, and without solvent molecules using a distance-dependent dielectric constant to approximate the screening effects of solvent. The results of both simulations are strikingly different, indicating that the representation of environmental effects is important in such simulations. For example, a striking adaptation of the two proteins seen in the nonsolvated simulation is not seen when explicit solvent water is included; in fact, the complex appears to become weaker in the solvated simulation. Nonetheless, the iron-iron distance decreases more significantly in the solvated simulation than in the nonsolvated simulation. It was found that in both cases molecular dynamics optimized the structures further than energy minimization alone. 相似文献
17.
18.
Unique among sulphate-reducing bacteria, Desulfovibrio africanus has two periplasmic tetraheme cytochromes c3, one with an acidic isoelectric point which exhibits an unusually low reactivity towards hydrogenase, and another with a basic isoelectric point which shows the usual cytochrome c3reactivity. The crystal structure of the oxidised acidic cytochrome c3of Desulfovibrio africanus (Dva.a) was solved by the multiple anomalous diffraction (MAD) method and refined to 1.6 A resolution. Its structure clearly belongs to the same family as the other known cytochromes c3, but with weak parentage with those of the Desulfovibrio genus and slightly closer to the cytochromes c3of Desulfomicrobium norvegicum. In Dva.a, one edge of heme I is completely exposed to the solvent and surrounded by a negatively charged protein surface. Heme I thus seems to play an important role in electron exchange, in addition to heme III or heme IV which are the electron exchange ports in the other cytochromes c3. The function of Dva.a and the nature of its redox partners in the cell are thus very likely different.By alignment of the seven known 3D structures including Dva.a, it is shown that the structure which is most conserved in all cytochromes c3is the four-heme cluster itself. There is no conserved continuous protein structure which could explain the remarkable invariance of the four-heme cluster. On the contrary, the proximity of the heme edges is such that they interact directly by hydrophobic and van der Waals contacts. This direct interaction, which always involves a pyrrole CA-CB side-chain and its bound protein cysteine Sgammaatom, is probably the main origin of the four-heme cluster stability. The same kind of interaction is found in the chaining of the hemes in other multihemic redox proteins.The crystal structure of reduced Dva. a was solved at 1.9 A resolution. The comparison of the oxidised and reduced structures reveals changes in the positions of water molecules and polar residues which probably result from changes in the protonation state of amino acids and heme propionates. Water molecules are found closer to the hemes and to the iron atoms in the reduced than in the oxidised state. A global movement of a chain fragment in the vicinity of hemes III and IV is observed which result very likely from the electrostatic reorganization of the polypeptide chain induced by reduction. 相似文献
19.
Crystallization, preliminary X-ray study and crystal activity of the hydrogenase from Desulfovibrio gigas 总被引:1,自引:0,他引:1
Hydrogenase (EC 1.12) from Desulfovibrio gigas is a dimeric enzyme (26 and 62 (X 10(3) Mr) that catalyzes the reversible oxidation of molecular hydrogen. Single crystals of hydrogenase have been produced using the hanging drop method, with either PEG (polyethylene glycol) 6000 or ammonium sulfate as precipitants at pH 6.5. X-ray examination of the crystals indicates that those obtained with ammonium sulfate are suitable for structure determination to at least 3.0 A resolution when synchrotron radiation Sources are used (1 A = 0.1 nm). The crystals are monoclinic, with space group C2, and cell dimensions a = 257.0 A, b = 184.7 A, c = 148.3 A and beta = 101.3 degrees, and contain between four and ten molecules per asymmetric unit. The enzyme can be reactivated within the crystals under reducing conditions without crystal damage. 相似文献
20.
Menadione reductase from Desulfovibrio gigas 总被引:2,自引:0,他引:2
E C Hatchikian 《Biochimica et biophysica acta》1970,212(2):353-355