首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The E-cadherin/catenin complex is a powerful invasion suppressor in epithelial cells. It is expressed in the human MCF-7 breast cancer cell line family, but functionally defective in the invasive MCF-7/6 variant. Previous experiments have shown that IGF-I, tamoxifen, retinoic acid and tangeretin are able to upregulate the function of this complex in MCF-7/6 cells. We investigated the effect of 8-prenylnaringenin (8-PN), the phytoestrogen present in hops and beer, on aggregation, growth and invasion in MCF-7/6 cells. 8-PN was found to stimulate E-cadherin-dependent aggregation and growth of MCF-7/6 cells in suspension. These effects could be inhibited by the pure anti-estrogen ICI 182,780. 8-PN did not affect invasion of MCF-7/6 cells in the chick heart assay in vitro. In all these aspects 8-PN mimics the effects of 17beta-estradiol on MCF-7/6 cells.  相似文献   

2.
Cytokines and other paracrine or autocrine factors functionally modulate the invasion-suppressor and signal-transducing E-cadherin/catenin complex. We have used conditioned medium from human squamous carcinoma COLO 16 cells (CM COLO 16) as a source of such factors to modulate the E-cadherin/catenin complex in human breast carcinoma MCF-7 cells. CM COLO 16 induces scattering of MCF-7/AZ, but not of MCF-7/6 cells on tissue culture plastic substratum, and reduces aggregation of MCF-7/AZ cells in suspension. Insulin-like growth factor I counteracts this reduction of aggregation. Confocal laser scanning microscopy of immunocytochemical stainings shows loss of the honeycomb pattern of E-cadherin, alpha-catenin and beta-catenin, and internalization of those elements. Cell surface biotinylation shows a decrease in membrane-bound E-cadherin. Immunoprecipitation and cell fractionation show that the composition of the complex is maintained. Interleukin-1, interleukin-6, granulocyte-monocyte colony stimulating factor, stem cell factor, scatter factor/hepatocyte growth factor and transforming growth factor-beta, added separately to MCF-7/AZ cells, could not mimic the effects of CM COLO 16. Neither could we find evidence that the 80 kDa extracellular fragment of E-cadherin is implicated in scattering of MCF-7/AZ cells. This fragment is present in CM COLO 16, but it is also produced by the MCF-7/AZ cells themselves, even at higher levels. Our data point toward cytoplasmic internalization induced by paracrine factors as one of the downregulating mechanisms for the E-cadherin/catenin complex.  相似文献   

3.
Hyperactivation of the insulin-like growth factor I receptor (IGF-IR) contributes to primary breast cancer development, but the role of the IGF-IR in tumor metastasis is unclear. Here we studied the effects of the IGF-IR on intercellular connections mediated by the major epithelial adhesion protein, E-cadherin (E-cad). We found that IGF-IR overexpression markedly stimulated aggregation in E-cad-positive MCF-7 breast cancer cells, but not in E-cad-negative MDA-MB-231 cells. However, when the IGF-IR and E-cad were co-expressed in MDA-MB-231 cells, cell-cell adhesion was substantially increased. The IGF-IR-dependent cell-cell adhesion of MCF-7 cells was not related to altered expression of E-cad or alpha-, beta-, or gamma-catenins but coincided with the up-regulation of another element of the E-cad complex, zonula occludens-1 (ZO-1). ZO-1 expression (mRNA and protein) was induced by IGF-I and was blocked in MCF-7 cells with a tyrosine kinase-defective IGF-IR mutant. By co-immunoprecipitation, we found that ZO-1 associates with the E-cad complex and the IGF-IR. High levels of ZO-1 coincided with an increased IGF-IR/alpha-catenin/ZO-1-binding and improved ZO-1/actin association, whereas down-regulation of ZO-1 by the expression of an anti-ZO-1 RNA inhibited IGF-IR-dependent cell-cell adhesion. The results suggested that one of the mechanisms by which the activated IGF-IR regulates E-cad-mediated cell-cell adhesion is overexpression of ZO-1 and the resulting stronger connections between the E-cad complex and the actin cytoskeleton. We hypothesize that in E-cad-positive cells, the IGF-IR may produce antimetastatic effects.  相似文献   

4.
Cytokines and other paracrine or autocrine factors functionally modulate the invasion-suppressor and signal-transducing E-cadherin/catenin complex. We have used conditioned medium from human squamous carcinoma COLO 16 cells (CM COLO 16) as a source of such factors to modulate the E-cadherin/catenin complex in human breast carcinoma MCF-7 cells.

CM COLO 16 induces scattering of MCF-7/AZ, but not of MCF-7/6 cells on tissue culture plastic substratum, and reduces aggregation of MCF-7/AZ cells in suspension. Insulin-like growth factor I counteracts this reduction of aggregation. Confocal laser scanning microscopy of immunocytochemical stainings shows loss of the honeycomb pattern of E-cadherin, α-catenin and β-catenin, and internalization of those elements. Cell surface biotinylation shows a decrease in membrane-bound E-cadherin. Immunoprecip-itation and cell fractionation show that the composition of the complex is maintained. Interleukin-1, interleukin-6, granulocyte-monocyte colony stimulating factor, stem cell factor, scatter factor/hepatocyte growth factor and transforming growth factor-β, added separately to MCF-7/AZ cells, could not mimic the effects of CM COLO 16. Neither could we find evidence that the 80 k Da extracellular fragment of E-cadherin is implicated in scattering of MCF-7/AZ cells. This fragment is present in CM COLO 16, but it is also produced by the MCF-7/AZ cells themselves, even at higher levels.

Our data point toward cytoplasmic internalization induced by paracrine factors as one of the downregulating mechanisms for the E-cadherin/catenin complex.  相似文献   

5.
High levels of the Met tyrosine kinase receptor expression are associated with metastatic disease. Met activation by hepatocyte growth factor (HGF) is associated with decreased E-cadherin-dependent cell-cell contacts. The molecular mechanism underlying this process remains unclear. To better understand the relationship between E-cadherin and Met, we assessed Met localization in cells which form mature E-cadherin-dependent adhesion HT-29 and cells which have lost E-cadherin expression BT-549. Met colocalized with E-cadherin at the site of cell-cell adhesion in HT-29 cells, but Met was distributed in an intracellular compartment in BT-549 cells. Forced expression of E-cadherin in BT-549 cells recruited Met to the membrane. Cross-linking studies suggested that Met and E-cadherin interact in the extracellular domain in HT-29 cells. This is the first evidence of a physical interaction between Met and E-cadherin. We suggest that this receptor/cadherin pairing may be a mechanism for cellular presentation of receptors in a manner that localizes them optimally for interaction with ligand.  相似文献   

6.
Human MCF-7/6 breast cancer cells differ from their MCF-7/AZ counterparts by their invasiveness in a number of assays in vitro, such as invasion of MCF-7 spheroids into embryonic chick heart fragments or type I collagen gels. Comparative proteomic analysis of these two variants revealed an identical pattern, except for a 230 kDa protein present in the invasive MCF-7/6 variant, but hardly detectable in the non-invasive MCF-7/AZ one. This protein appeared to be the non-muscle myosin IIA heavy chain (NMIIA), also coined MYH9. Experimental inhibition of NMIIA by reducing either its expression (via stable shRNA transduction) or its function (via the specific ATPase inhibitor blebbistatin) underpinned the decisive role of NMIIA in MCF-7 cell invasion. Inhibition of NMIIA indeed blocked the invasion of MCF-7/6 cells in three-dimensional invasion substrata such as embryonic chick heart fragments and type I collagen gels. Invasiveness of MCF-7/6 cells has been related to poor formation and compaction of aggregates, due to a functionally defective E-cadherin/catenin complex. Both genetic and pharmacological inhibition of NMIIA stimulated MCF-7/6 cell aggregation. Together, these data indicate that NMIIA is a decisive protein for MCF-7 cells to invade, indicating that this molecule is a candidate for targeted anti-invasive treatment.  相似文献   

7.
Loss of E-cadherin-mediated cell-cell adhesion and expression of proteolytic enzymes characterize the transition from benign lesions to invasive, metastatic tumor, a rate-limiting step in the progression from adenoma to carcinoma in vivo. A soluble E-cadherin fragment found recently in the serum and urine of cancer patients has been shown to disrupt cell-cell adhesion and to drive cell invasion in a dominant-interfering manner. Physical disruption of cell-cell adhesion can be mimicked by the function-blocking antibody Decma. We have shown previously in MCF7 and T47D cells that urokinase-type plasminogen activator (uPA) activity is up-regulated upon disruption of E-cadherin-dependent cell-cell adhesion. We explored the underlying molecular mechanisms and found that blockage of E-cadherin by Decma elicits a signaling pathway downstream of E-cadherin that leads to Src-dependent Shc and extracellular regulated kinase (Erk) activation and results in uPAgene activation. siRNA-mediated knockdown of endogenous Src-homology collagen protein (Shc) and subsequent expression of single Shc isoforms revealed that p46(Shc) and p52(Shc) but not p66(Shc) were able to mediate Erk activation. A parallel pathway involving PI3K contributed partially to Decma-induced Erk activation. This report describes that disruption of E-cadherin-dependent cell-cell adhesion induces intracellular signaling with the potential to enhance tumorigenesis and, thus, offers new insights into the pathophysiological mechanisms of tumor development.  相似文献   

8.
E-cadherin is a transmembrane protein that mediates Ca(2+)-dependent cell-cell adhesion. Cdc42, a member of the Rho family of small GTPases, participates in cytoskeletal rearrangement and cell cycle progression. Recent evidence reveals that members of the Rho family modulate E-cadherin function. To further examine the role of Cdc42 in E-cadherin-mediated cell-cell adhesion, we developed an assay for active Cdc42 using the GTPase-binding domain of the Wiskott-Aldrich syndrome protein. Initiation of E-cadherin-mediated cell-cell attachment significantly increased in a time-dependent manner the amount of active Cdc42 in MCF-7 epithelial cell lysates. By contrast, Cdc42 activity was not increased under identical conditions in MCF-7 cells incubated with anti-E-cadherin antibodies nor in MDA-MB-231 (E-cadherin negative) epithelial cells. By fusing the Wiskott-Aldrich syndrome protein/GTPase-binding domain to a green fluorescent protein, activation of endogenous Cdc42 by E-cadherin was demonstrated in live cells. These data indicate that E-cadherin activates Cdc42, demonstrating bi-directional interactions between the Rho- and E-cadherin signaling pathways.  相似文献   

9.
10.
IQGAP1 and calmodulin modulate E-cadherin function   总被引:4,自引:0,他引:4  
Ca(2+)-dependent cell-cell adhesion is mediated by the cadherin family of transmembrane proteins. Adhesion is achieved by homophilic interaction of the extracellular domains of cadherins on adjacent cells, with the cytoplasmic regions serving to couple the complex to the cytoskeleton. IQGAP1, a novel RasGAP-related protein that interacts with the cytoskeleton, binds to actin, members of the Rho family, and E-cadherin. Calmodulin binds to IQGAP1 and regulates its association with Cdc42 and actin. Here we demonstrate competition between calmodulin and E-cadherin for binding to IQGAP1 both in vitro and in a normal cellular milieu. Immunocytochemical analysis in MCF-7 (E-cadherin positive) and MDA-MB-231 (E-cadherin negative) epithelial cells revealed that E-cadherin is required for accumulation of IQGAP1 at cell-cell junctions. The cell-permeable calmodulin antagonist CGS9343B significantly increased IQGAP1 at areas of MCF-7 cell-cell contact, with a concomitant decrease in the amount of E-cadherin at cell-cell junctions. Analysis of E-cadherin function revealed that CGS9343B significantly decreased homophilic E-cadherin adhesion. On the basis of these data, we propose that disruption of the binding of calmodulin to IQGAP1 enhances the association of IQGAP1 with components of the cadherin-catenin complex at cell-cell junctions, resulting in impaired E-cadherin function.  相似文献   

11.
Recently, we identified dysadherin, a novel carcinoma-associated glycoprotein, and showed that overexpression of dysadherin in human hepatocarcinoma PLC/PRF/5 cells could suppress E-cadherin-mediated cell-cell adhesion and promote tumor metastasis. The present study shows evidence that dysadherin is actually O-glycosylated. This was based on a direct carbohydrate composition analysis of a chimera protein of an extracellular domain of dysadherin fused to an Fc fragment of immunoglobulin. To assess the importance of O-glycosylation in dysadherin function, dysadherin-transfected hepatocarcinoma cells were cultured in a medium containing benzyl-alpha-GalNAc, a modulator of O-glycosylation. This treatment facilitated homotypic cell adhesion among dysadherin transfectants accompanied with morphological changes, indicating that the anti-adhesive effect of dysadherin was weakened. Modification of O-glycan synthesis also resulted in down-regulation of dysadherin expression and up-regulation of E-cadherin expression in dysadherin transfectants but did not affect E-cadherin expression in mock transfectants. Structural analysis of O-glycans released from the dysadherin chimera proteins indicated that a series of O-glycans with core 1 and 2 structures are attached to dysadherin, and their sialylation is remarkably inhibited by benzyl-alpha-GalNAc treatment. However, sialidase treatment of the cells did not affect calcium-dependent cell aggregation, which excluded the possibility that sialic acid itself is directly involved in cell-cell adhesion. We suggest that aberrant O-glycosylation in carcinoma cells inhibits stable expression of dysadherin and leads to the up-regulation of E-cadherin expression by an unknown mechanism, resulting in increased cell-cell adhesion. The carbohydrate-directed approach to the regulation of dysadherin expression might be a new strategy for cancer therapy.  相似文献   

12.
Mammalian Par1 is a family of serine/threonine kinases comprised of four homologous isoforms that have been associated with tumor suppression and differentiation of epithelial and neuronal cells, yet little is known about their cellular functions. In polarizing kidney epithelial (Madin-Darby canine kidney [MDCK]) cells, the Par1 isoform Par1b/MARK2/EMK1 promotes the E-cadherin-dependent compaction, columnarization, and cytoskeletal organization characteristic of differentiated columnar epithelia. Here, we identify two functions of Par1b that likely contribute to its role as a tumor suppressor in epithelial cells. 1) The kinase promotes cell-cell adhesion and resistance of E-cadherin to extraction by nonionic detergents, a measure for the association of the E-cadherin cytoplasmic domain with the actin cytoskeleton, which is critical for E-cadherin function. 2) Par1b attenuates the effect of Dishevelled (Dvl) expression, an inducer of wnt signaling that causes transformation of epithelial cells. Although Dvl is a known Par1 substrate in vitro, we determined, after mapping the PAR1b-phosphorylation sites in Dvl, that PAR1b did not antagonize Dvl signaling by phosphorylating the wnt-signaling molecule. Instead, our data suggest that both proteins function antagonistically to regulate the assembly of functional E-cadherin-dependent adhesion complexes.  相似文献   

13.
Elevated Src kinase in epithelial cancer cells induces adhesion changes that are associated with a mesenchymal-like state. We recently showed that Src induces dynamic integrin adhesions in KM12C colon cancer cells, whereas E-cadherin-dependent cell-cell contacts become disorganized. This promotes a fibroblastic-like morphology and expression of the mesenchymal marker vimentin. Furthermore, Src-induced deregulation of E-cadherin, and the associated mesenchymal transition, is dependent on integrin signaling (Avizienyte et al., Nat. Cell Biol. 2002, 4, 632-638), although the nature of downstream signals that mediate these Src- and integrin-dependent effects are unknown. Here we show that the SH2 and SH3 domains of Src mediate peripheral accumulation of phospho-myosin, leading to integrin adhesion complex assembly, whereas loss of SH2 or SH3 function restores normal regulation of E-cadherin and inhibits vimentin expression. Inhibitors of MEK, ROCK, or MLCK also suppress peripheral accumulation of phospho-myosin and Src-induced formation of integrin-dependent adhesions, whereas at the same time restoring E-cadherin redistribution to regions of cell-cell contact. Our data therefore implicate peripheral phospho-myosin activity as a point of convergence for upstream signals that regulate integrin- and E-cadherin-mediated adhesions. This further implicates spatially regulated contractile force as a determinant of epithelial cell plasticity, particularly in cancer cells that can switch between epithelial and mesenchymal-like states.  相似文献   

14.
Loss of estrogen-responsiveness and impaired E-cadherin expression/function has been linked to increased metastatic potential of breast cancer cells. In this study, we report that proliferation of breast cancer cells can resume following removal of a toxic stimulus causing severe impairment of cell adhesion and estrogen responsiveness. This type of response was induced by okadaic acid (OA) in MCF-7 cells, and was accompanied by an almost complete block of DNA synthesis, loss of cell-cell contact and cell detachment from culture dishes, loss of estrogen receptor (ER), progesterone receptor (PR) and E-cadherin, whereas only a weak, if any, inhibition of protein synthesis could be observed. These responses were detected in MCF-7 cells after a 1-day treatment with 50 nM OA, and could be reversed if OA-treated cells were recovered in a culture medium devoid of the toxin, so that rescued cells resumed growth 8-12 days after replating. By pulse-chase experiments, we found that protein synthesis was not significantly affected in rescued cells, whose DNA synthesis, instead, was almost completely blocked during the first days of MCF-7 cell rescue from OA treatment. We also analyzed E-cadherin, mitogen activated protein kinase isoforms ERK1 and ERK2, Bcl-2 and BAX proteins during the rescue of MCF-7 cells from OA-induced cell death, and found that their expression followed temporally defined patterns. Cellular levels of E-cadherin returned to control levels within the first days of the rescue, followed by ER, ERK1, and ERK2, and finally by Bcl-2 and BAX proteins. Under our experimental conditions, restoration of cell adhesion did not require a functional ER system, but recovery of a normal ER pool accompanied resumption of estrogen-dependent proliferation of OA-treated MCF-7 cells.  相似文献   

15.
E-cadherin, a well-characterized cell-cell adhesion molecule, executes multifunction roles on cell behaviors. However, its effect on chemo-resistance remains controversial. In this study, we found that E-cadherin positive breast cell lines were less sensitive to staurosporine compared to E-cadherin negative ones. Next, we substantiated that the expression of E-cadherin in MDA-MB-435 cells could partly counteract the cytotoxic effect induced by staurosporine through a series of apoptosis assay. The resistance of E-cadherin over-expressing cells to staurosporine may due to the up-regulation of Bcl-2/Bax ratio. When E-cadherin interference plasmids were transfected into MCF-7 cells, Bcl-2 expression was down-regulated. Moreover, perturbation of E-cadherin function by blocking the cell-cell contact resulted in decreased cellular levels of Bcl-2 protein expression. All these results demonstrated the chemo-resistance function of E-cadherin in the condition of staurosporine treatment, therefore, might contribute effective therapeutic strategies in breast carcinoma.  相似文献   

16.
Fast plasma membrane movements (FPMM) are involved in ruffling, blebbing, fast shape change, and fast translocation. A simple method for the quantification of FPMM was used to study the relation between FPMM and invasive capacity in five pairs of invasive and noninvasive variants from four different epithelial cell types. The human mammary cell line MCF-7/6, the ras-transformed dog kidney cell line ras-MDCK, the ras-transformed mouse mammary gland cell lines NM9-ras-12 and NM-f-ras-TD, and spontaneously transformed late passage mouse lens explant MLE cells, all of which were invasive in vitro, showed more FPMM in our measurements and displayed more ruffling activity on time-lapse video films than the related or parental MCF-7/AZ, MDCK-3, NM9, and NM-f cell lines and early passage MLE cells, none of which were invasive. Interestingly, induction of invasive capacity in MCF-7/AZ cells by retinoic acid was accompanied by an increase in FPMM, but speed of translocation was not increased. Together these observations support the hypothesis that a certain level of FPMM is a prerequisite for invasive capacity.  相似文献   

17.
A potential target of hormone action during prostate and mammary involution is the intercellular junction of adjacent secretory epithelium. This is supported by the long-standing observation that one of the first visible stages of prostate and mammary involution is the disruption of interepithelial adhesion prior to the onset of apoptosis. In a previous study addressing this aspect of involution, we acquired compelling evidence indicating that the disruption of E-cadherin-dependent adhesion initiates apoptotic programs during prostate and mammary involution. In cultured prostate and mammary epithelial cells, inhibition of E-cadherin-dependent aggregation resulted in cell death following apoptotic stimuli. Loss of cell-cell adhesion in the nonaggregated population appeared to result from the rapid truncation within the cytosolic domain of the mature, 120-kDa species of E-cadherin (E-cad(120)). Immunoprecipitations from cell culture and involuting mammary gland demonstrated that this truncation removed the beta-catenin binding domain from the cytoplasmic tail of E-cadherin, resulting in a non-beta-catenin binding, membrane-bound 97-kDa species (E-cad(97)) and a free cytoplasmic 35-kDa form (E-cad(35)) that is bound to beta-catenin. Examination of E-cadherin expression and cellular distribution during prostate and mammary involution revealed a dramatic reduction in junctional membrane staining that correlated with a similar reduction in E-cad(120) and accumulation of E-cad(97) and E-cad(35). The observation that E-cadherin was truncated during involution suggested that hormone depletion activated the same apoptotic pathway in vivo as observed in vitro. Based on these findings, we hypothesize that truncation of E-cadherin results in the loss of beta-catenin binding and cellular dissociation that may signal epithelial apoptosis during prostate and mammary involution. Thus, E-cadherin may be central to homeostatic regulation in these tissues by coordinating adhesion-dependent survival and dissociation-induced apoptosis.  相似文献   

18.
19.
Normal prostate expresses the receptor protein-tyrosine phosphatase, PTPmu, whereas LNCaP prostate carcinoma cells do not. PTPmu has been shown previously to interact with the E-cadherin complex. LNCaP cells express normal levels of E-cadherin and catenins but do not mediate either PTPmu- or E-cadherin-dependent adhesion. Re-expression of PTPmu restored cell adhesion to PTPmu and to E-cadherin. A mutant form of PTPmu that is catalytically inactive was re-expressed, and it also restored adhesion to PTPmu and to E-cadherin. Expression of PTPmu-extra (which lacks most of the cytoplasmic domain) induced adhesion to PTPmu but not to E-cadherin, demonstrating a requirement for the presence of the intracellular domains of PTPmu to restore E-cadherin-mediated adhesion. We previously observed a direct interaction between the intracellular domain of PTPmu and RACK1, a receptor for activated protein kinase C (PKC). We demonstrate that RACK1 binds to both the catalytically active and inactive mutant form of PTPmu. In addition, we determined that RACK1 binds to the PKCdelta isoform in LNCaP cells. We tested whether PKC could be playing a role in the ability of PTPmu to restore E-cadherin-dependent adhesion. Activation of PKC reversed the adhesion of PTPmuWT-expressing cells to E-cadherin, whereas treatment of parental LNCaP cells with a PKCdelta-specific inhibitor induced adhesion to E-cadherin. Together, these studies suggest that PTPmu regulates the PKC pathway to restore E-cadherin-dependent adhesion via its interaction with RACK1.  相似文献   

20.
The effect of lengthening the distance in an adhesion molecule between the receptor binding site and the membrane anchor was studied by inserting four Ig-like domains into the two Ig domain lymphocyte function-associated antigen 3 (LFA-3) molecule. The extended molecule expressed in Chinese hamster ovary (CHO) cells bound to CD2 on T lymphocytes 4- to 20-fold more efficiently than the wild-type molecule at 4 degrees C. Treatment of the CHO clones with neuraminidase to remove sialic acid, or with deoxymannojirimycin to reduce the bulk of N-linked glycosylation, showed that adhesion to both the wild-type and the chimeric LFA-3 molecules was under the influence of cell-cell repulsive forces to a similar extent and that these treatments had less effect than lengthening LFA-3. At higher temperatures, such as 22 and 37 degrees C, the efficiency of binding to the wild-type LFA-3 increased to levels comparable with binding to extended LFA-3. Our results suggest that more distal locations of the adhesive binding site from the cell membrane anchor increase the efficiency of cell-cell adhesion by enhancing the frequency of receptor encounter with ligand and that more proximal locations of the adhesive binding site can provide efficient cell-cell adhesion at physiological temperatures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号