首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
一种双亲有机化合物聚苯乙烯马来酸丁酯(SMA)经酰胺键与重组人铜锌超氧化物歧化酶(rhCu/Zn SOD)共价交联,制得修饰酶.当42%游离氨基被修饰时,保留酶活力为88%.酶蛋白主链结构在修饰前后变化不大.与天然酶相比,修饰酶的生物半衰期延长了22倍,抗蛋白水解酶能力亦有所增强.  相似文献   

2.
一种双亲有机化合物聚苯乙烯马来酸丁酯(SMA)经酰胺键与重组人铜锌超氧化物歧化酶(rhCu/ZnSOD)共价交联,制得修饰酶,当42%游离氨基被修饰时,保留酶活力为88%。酶蛋白主链结构在修饰前后变化不大。与天然酶相比,修饰酶的生物半衰期延长了22倍,抗蛋白水解酶能力亦有所增强。  相似文献   

3.
聚乙二醇修饰超氧化物歧化酶稳定性变化的研究   总被引:4,自引:0,他引:4  
尹亮  赵树进 《生物技术》2003,13(4):29-30
目的:了解各种分子量的聚乙二醇修饰超氧化物歧化酶(SOD)对其稳定的影响。方法:采用氰尿酰氯的修饰方法,用分子量为2000~20000的聚乙二醇(PEG)修饰SOD,测定SOD的酶活残存率及对修饰后的SOD的耐热、耐酸、耐碱和抗酶解能力进行研究。结果:聚乙二醇修饰后的SOD的耐热性、耐酸、耐碱以及抗酶解能力都明显增强,其中发现分子量6000的PEG修饰的SOD活件残余率较高,对酸、碱和酶的抗性较强。结论:分子量为6000PEG修饰的SOD的稳定性较高。  相似文献   

4.
棕榈酰化超氧化物歧化酶的制备及性质研究   总被引:3,自引:0,他引:3  
为了增强超氧化物歧化酶的稳定性,用棕榈酸对其进行了修饰,在修饰条件下,酶分子表面氨基修饰率为55%时,酶的活力回收为63%。修饰后的酶在耐热、耐酸、耐碱、抗有机溶剂变性和抗蛋白水解能力上均高于天然超氧化物歧化酶,为将超氧化物歧化酶作成实用药物和进一步扩大其应用范围创造了条件。  相似文献   

5.
本文对比研究了溴化氰活化及高碘酸活化肝素修饰的两种修饰尿激酶的性质。结果表明尿激酶在溴化氰活化肝素(肝素CN),高碘酸钠活化肝素(肝素I_4)的共价修饰后,其残余自由氨基分别是64%和52%;酶活性分别保留94%和90%;抗胃蛋白酶水解以及抗冻融变性的能力均高于天然酶;在离体血浆中的失活速变低于天然酶。本文还对修饰酶进行了萤光及紫外差光谱的分析,讨论了修饰过程对构象的影响。  相似文献   

6.
采用经高碘酸钠活化的右旋糖酐修饰Savinase蛋白酶,通过凝胶过滤层析(GPC)和圆二色性光谱(CD)表征了修饰后蛋白酶分子量和结构的变化,测试了修饰酶的反应动力学参数,并考察了温度及pH对修饰酶活力的影响。凝胶过滤层析结果证明修饰后蛋白酶分子量明显提高,圆二色光谱分析表明修饰后蛋白酶的结构有所改变,进一步验证了右旋糖酐和蛋白酶发生了反应。与原酶相比,修饰酶对底物的亲和力增加。原酶和修饰酶的最适温度均为40℃,在30℃~50℃之间修饰酶表现出优于原酶的热稳定性。在pH8.5~9.5之间,修饰酶的稳定性高于原酶。  相似文献   

7.
氨基糖苷类抗生素是高效、广谱的杀菌药物。随着在临床的广泛应用,抗生素的抗药性日趋严重,这在很大程度上降低了其临床应用的潜力。其中,最主要的原因就是细菌产生了一系列修饰酶修饰抗生素的特定基团,使其失去药效。细菌产生的修饰酶种类众多,主要包括磷酸化、乙酰化和腺苷化修饰酶。研究发现,一种酶可以修饰多种抗生素,同时,一种抗生素也可以被多种修饰酶修饰。由于修饰酶底物的广谱性,使得细菌的耐药性难以克服。因此,本文就氨基糖苷类修饰酶和抗生素相互作用的热力学和动力学性质进行了详细的论述,试图找出不同修饰酶失活抗生素药物的共同作用机制。这将为设计新的抗生素药物及修饰酶抑制剂、克服细菌的耐药性,提供理论指导和技术支持。  相似文献   

8.
碘乙酸修饰兔肌甘油醛-3-磷酸脱氢酶蛋白过程中,以NAD~ 类似物代替NAD~ 测定它们对酶蛋白失活速度的影响。在被测的五个NAD~ 类似物中CPAD~ ,FPAD~ 对酶有保护作用,降低了酶因修饰而失活的速度。其它三个类似物NGD~ ,APAD~ 和TPAD~ 在不同程度上加速碘乙酸引起的失活。这些类似物在对碘乙酸修饰速度造成影响方面表现的能力与它们作为氢受体能力相一致。以NAD~ 类似物代替NAD~ 测定它们对酶促乙酰磷酸水解作用的影响。与碘乙酸修饰时有些不同,CPAD~ ,TPAD~ 对这一水解过程无促进作用,而FPAD~ ,NGD~ 和APAD~ 有促进作用。各类似物的行为与羧甲基酶光照形成新萤光团过程中各类似物的行为相一致。  相似文献   

9.
碘乙酸修饰兔肌甘油醛-3-磷酸脱氨酶蛋白过程中,以NAD~ 类似物代替NAD~ 测定它们对酶蛋白失活速度的影响。在被测的五个NAD~ 类似物中CPAD~ ,FPAD~ 对酶有保护作用,降低了酶因修饰而失活的速度。其它三个类似物NGD~ ,APAD~ 和TPAD~ 在不同程度上加速碘乙酸引起的失活。这些类似物在对碘乙酸修饰速度造成影响方面表现的能力与它们作为氢受体能力相一致。以NAD~ 类似物代替NAD~ 测定它们对酶促乙酰磷酸水解作用的影响。与碘乙酸修饰时有些不同,CPAD~ ,TPAD~ 对这一水解过程无促进作用,而FPAD~ ,NGD~ 和APAD~ 有促进作用。各类似物的行为与羧甲基酶光照形成新萤光团过程中各类似物的行为相一致。  相似文献   

10.
聚乙二醇对菠萝蛋白酶的化学修饰   总被引:5,自引:0,他引:5  
方法:用琥珀酸酐法活化的聚乙二醇对菠萝蛋白酶进行化学修饰,得到菠萝蛋白酶的修饰酶,对比研究三种菠萝蛋白酶:修饰酶、混合酶、天然酶的热稳定性及酸碱稳定性,考察金属离子对三种菠萝蛋白酶的影响。结果:当在55℃水浴保温100min后天然酶活力只保留20%,混合酶活力保留37%,修饰酶活力保留58%;在pH3.0-4.5及pH6.0-7.0的条件下,修饰酶活力高于天然酶活力。当Ca2 的浓度达到0.05mg/mL时,修饰酶的活力高达257.66%;当Mg2 的浓度达到0.035mg/mL时,修饰酶的活力高达147.25%。一价离子Na 对三种菠萝蛋白酶无明显影响。结论:修饰的菠萝蛋白酶对温度和pH值的稳定性均比天然酶有很大程度的提高。混合酶的活力介于天然酶和修饰酶之间说明聚乙二醇对菠萝蛋白酶有一定的保护作用。二价离子Ca2 、Mg2 对三种菠萝蛋白酶活力均有不同程度的激活作用。  相似文献   

11.
The hybrid protein consisting of Tte DNA polymerase fragment and mutant Taq DNA polymerase (F667Y) fragment in the ratio 20 : 1 was constructed. Affinity of the modified enzyme (substitutions F669Y, V667I, and S692Q) to ddNTP was two orders higher than that of the wild type enzyme. The modified enzyme was used for sequencing DNA fragment with total deoxyguanosine and deoxycytidine content of 68%. In the polymerase chain reaction, the modified enzyme exhibits properties typical of the wild type Tte DNA polymerase.  相似文献   

12.
Horseradish peroxidase was modified by phthalic anhydride and glucosamine hydrochloride. The thermostabilities and removal efficiencies of phenolics by native and modified HRP were assayed. The chemical modification of horseradish peroxidase increased their thermostability (about 10- and 9-fold, respectively) and in turn also increased the removal efficiency of phenolics. The quantitative relationships between removal efficiency of phenol and reaction conditions were also investigated using modified enzyme. The optimum pH for phenol removal is 9.0 for both native and modified forms of the enzyme. Both modified enzyme could suffer from higher temperature than native enzyme in phenol removal reaction. The optimum molar ratio of hydrogen peroxide to phenol was 2.0. The phthalic anhydride modified enzyme required lower dose of enzyme than native horseradish peroxidase to obtain the same removal efficiency. Both modified horseradish peroxidase show greater affinity and specificity of phenol.  相似文献   

13.
T Yoshimoto  S G Chao  Y Saito  I Imamura  H Wada  Y Inada 《Enzyme》1986,36(4):261-265
Escherichia coli tryptophanase was modified with 2,4-bis(O-methoxypolyethylene glycol)-6-chloro-s-triazine (activated PEG2, MW 5,000 x 2). The modified tryptophanase, in which approximately 43% of the total 120 amino groups and 38% of the total 16 sulfhydryl groups in the molecule were coupled, completely lost the immunoreactivity towards anti-tryptophanase serum from rabbit. Approximately 10% of the enzymic activity was retained. The modified enzyme showed the same physicochemical properties as the native enzyme: Km value for L-tryptophan (0.3 mmol/l), optimum pH (8.0) and optimum temperature (50 degrees C). The modified enzyme was more resistant than the native counterpart against proteolytic digestion with trypsin.  相似文献   

14.
Sarcosine oxidase [sarcosine: oxygen oxidoreductase (demethylating) EC 1.5.3.1] from Corynebacterium contained 8 sulfhydryl groups per mol of enzyme as determined with 5,5'-dithiobis(2-nitrobenzoic acid) (DTNB) in the presence of 0.2% SDS and by titration with p-chloromercuribenzoate (PMB). Among them, 2 groups were easily modified by iodoacetamide (IAA) and the modification resulted in complete loss of enzymatic activity. The inactivation by IAA followed first-order kinetics with respect to IAA concentration. The presence of acetate, a competitive inhibitor (I), protected the enzyme from inactivation by IAA. However, the protection was only approximately 50%. The enzyme was also inactivated by PMB, but in this case, there was practically no recovery of activity after treatment with thiol compounds. The enzyme was also rapidly inactivated by incubation with diethylpyrocarbonate (DEP). The absorbance change accompanying the inactivation showed that a single histidyl residue was modified by DEP, resulting in a complete loss of enzymatic activity. In the presence of acetate, the enzyme was completely protected from DEP-inactivation. Furthermore, DEP-inactivated enzyme recovered its enzymatic activity on treatment with hydroxylamine. These observations seem to imply that the modified histidine is essential for enzyme activity. In addition, modification by DEP changed the absorption spectrum in the visible region. This strongly suggests that the modified histidyl residue is present in the vicinity of the flavin moiety of the enzyme molecule.  相似文献   

15.
We have investigated targeting to the endoplasmic reticulum (ER) of wild-type GUS and a modified form (GUS S358) by making an N-terminal fusion of the -glucuronidase (GUS) enzyme with the wheat -amylase signal peptide.In vitro studies demonstrated that the modified GUS (S358) lacked the glycosylation site present within the wild-type enzyme. Analysis of transgenic tobacco plants revealed that the modified GUS enzyme retained activity upon passage to the ER. When further experiments were carried out to determine the cellular location of the modified GUS enzyme, it was found that (contrary to expectation) the majority of GUS activity was retained within the cell and was not secreted to the cell surface via the default pathway. The data indicated that the modified GUS enzyme is an unsuitable reporter enzyme for studying protein secretion.  相似文献   

16.
The incubation of maize malic enzyme at 37 degrees C with trypsin at a ratio of 150:1 of malic enzyme to trypsin caused rapid and complete inactivation of enzyme activity. The inactivation was caused by fairly specific cleavage of the enzyme monomer (62 kDa) into 40 kDa and 20 kDa fragments. The intensity of 40 kDa band increased with the time of treatment of enzyme with trypsin from 2 to 30 min. Substrates, especially NADP (25 microM) provided almost total protection against trypsin inactivation of the enzyme activity. The studies carried out with various other endoproteases indicated that endoprotease Lys-C was most effective in inactivating malic enzyme activity. The kinetic properties of the truncated enzyme have been studied. The Km value for malate in case of native and modified enzyme was found to be identical. Km NADP for the modified enzyme was slightly higher indicating that after proteolysis the enzyme affinity for NADP had decreased. Limited proteolysis with trypsin did not show any appreciable change in fluorescence properties of the modified enzyme. Binding of NADPH to the enzyme was not affected after modification.  相似文献   

17.
Heat-stable and fructose-1,6-bisphosphate-activated L-lactate dehydrogenase (EC 1.1.1.27) has been purified from an extremely thermophilic bacterium, Thermus caldophilus GK24 [Taguchi, H., Yamashita, M., Matsuzawa, H. and Ohta, T. (1982) J. Biochem. (Tokyo) 91, 1343-1348]. N-terminal sequence analysis of the first 34 amino acids of the enzyme indicates that the N-terminal arm region (first 1-20 residues) known for the vertebrate L-lactate dehydrogenases is completely missing in the T. caldophilus enzyme, while there is a high homology of sequence between the regions which are considered to be part of the NAD-binding domain. The C-terminal amino acid of the enzyme was phenylalanine. Analysis of the amino acid composition showed that T. caldophilus enzyme contained much more arginine and fewer lysine than other bacterial and vertebrate L-lactate dehydrogenases. On modification reaction with 2,3-butanedione in the presence of NADH and oxamate, an enhanced activity of the T. caldophilus L-lactate dehydrogenase was obtained independently of fructose 1,6-bisphosphate, and the modified enzyme was desensitized to fructose 1,6-bisphosphate. Amino acid analysis indicated that such a desensitization in the active state was caused by the modification of only one arginine residue per the enzyme subunit. Desensitization of the enzyme was inhibited in the presence of fructose 1,6-bisphosphate. A similar desensitization was observed using 1,2-cyclohexanedione instead of 2,3-butanedione. The enzyme was irreversibly modified with 2,3-butanedione and characterized. The irreversibly modified enzyme also showed an enhanced activity independently of fructose 1,6-bisphosphate, and its pyruvate saturation curve was similar to that of the native enzyme measured in the presence of fructose 1,6-bisphosphate. Fructose 1,6-bisphosphate, which increases the thermostability of the native enzyme, did not affect that of the modified enzyme, while thermostability of the modified enzyme slightly decreased. Amino acid analysis indicated that only the arginine content was decreased by the modification. These results show that arginine residue(s) exist in the binding site for fructose 1,6-bisphosphate on the enzyme, and that the arginine residue(s) play some important role in the allosteric regulation of the enzyme activity.  相似文献   

18.
Poly (acrylonitrile-methylmethacrylate-sodium vinylsulfonate) membranes were subjected to seven different chemical modifications. The amounts of new groups incorporated in the membranes with the modifications were determined. Urease was covalently immobilized on the modified membranes. Both the amount of bound protein and relative activity of immobilized urease were measured. The highest activity was found for urease bound to membranes modified with hydroxylammonium sulfate (68%) and hydrazinium sulfate (67%). Optimum pH of free urease was determined to be 5.8. For positively charged membranes, pH optimum was shifted to higher values, while for negatively charged membranes-to lower pH. The charge of the matrix affected also the rate of the enzyme reaction. The highest rate was measured with urease immobilized on membranes modified with hydroxylammonium sulfate and hydrazinium sulfate. The major part of the immobilized enzyme on different modified membranes remained stable-only ca. 20% of enzyme activity was lost for 4 h at 70 degrees C while the free enzyme was totally inactivated.  相似文献   

19.
The reaction of lysine with dithioesters was applied to horseradish peroxidase donor: hydrogen-peroxide oxidoreductase, EC 1.11.1.7) using carboxymethyl dithiotridecanoate: three to four lysine residues were modified. The modified enzyme was soluble and active in diethyl ether. Papain (EC 3.4.22.2) was modified with carboxymethyl dithiobenzoate: two lysine residues were modified. The modified enzyme was soluble and active in dimethylsulfoxide. From these results it is concluded that dithioesters are efficient reagents for the modification of peripheral lysine residues of proteins. Aromatic dithioesters, less reactive but more selective, should be recommended for thiol-dependent enzymes such as papain.  相似文献   

20.
A new family of asymmetric thiol-disulfide exchange reagents, the dinitrophenyl alkyl disulfides (DNPSSR), was used to modify rat liver phenylalanine hydroxylase. The results indicate that the enzyme has two different types of reactive sulfhydryl (SH) residues per subunit. One SH residue was modified selectively by a DNPSSR having a neutral and hydrophilic alkyl group, and this modification was accompanied by appreciable activation of enzyme; the other SH residue was modified only by an anionic DNPSSR, and this modification did not result in activation. The catalytic properties of phenylalanine hydroxylase activated by DNPSSR were similar to those of the N-ethylmaleimide- (NEM-) modified enzyme, but the process of activation by DNPSSR was quite different from modification with NEM. An analysis of the reaction kinetics of the modification and of catalysis by the modified enzyme suggests that DNPSSR modification causes a change in the subunit interaction leading to a loss of the negative cooperativity normally seen with phenylalanine hydroxylase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号