共查询到20条相似文献,搜索用时 0 毫秒
1.
Background Phylogenetic approaches are commonly used to predict which amino acid residues are critical to the function of a given protein.
However, such approaches display inherent limitations, such as the requirement for identification of multiple homologues of
the protein under consideration. Therefore, complementary or alternative approaches for the prediction of critical residues
would be desirable. Network analyses have been used in the modelling of many complex biological systems, but only very recently
have they been used to predict critical residues from a protein's three-dimensional structure. Here we compare a couple of
phylogenetic approaches to several different network-based methods for the prediction of critical residues, and show that
a combination of one phylogenetic method and one network-based method is superior to other methods previously employed. 相似文献
2.
The prediction of transmembrane (TM) helix and topology provides important information about the structure and function of a membrane protein. Due to the experimental difficulties in obtaining a high-resolution model, computational methods are highly desirable. In this paper, we present a hierarchical classification method using support vector machines (SVMs) that integrates selected features by capturing the sequence-to-structure relationship and developing a new scoring function based on membrane protein folding. The proposed approach is evaluated on low- and high-resolution data sets with cross-validation, and the topology (sidedness) prediction accuracy reaches as high as 90%. Our method is also found to correctly predict both the location of TM helices and the topology for 69% of the low-resolution benchmark set. We also test our method for discrimination between soluble and membrane proteins and achieve very low overall false positive (0.5%) and false negative rates (0 to approximately 1.2%). Lastly, the analysis of the scoring function suggests that the topogeneses of single-spanning and multispanning TM proteins have different levels of complexity, and the consideration of interloop topogenic interactions for the latter is the key to achieving better predictions. This method can facilitate the annotation of membrane proteomes to extract useful structural and functional information. It is publicly available at http://bio-cluster.iis.sinica.edu.tw/~bioapp/SVMtop. 相似文献
3.
β-turns are the most common type of non-repetitive structures, and constitute on average 25% of the amino acids in proteins. The formation of β-turns plays an important role in protein folding, protein stability and molecular recognition processes. In this work we present the neural network method NetTurnP, for prediction of two-class β-turns and prediction of the individual β-turn types, by use of evolutionary information and predicted protein sequence features. It has been evaluated against a commonly used dataset BT426, and achieves a Matthews correlation coefficient of 0.50, which is the highest reported performance on a two-class prediction of β-turn and not-β-turn. Furthermore NetTurnP shows improved performance on some of the specific β-turn types. In the present work, neural network methods have been trained to predict β-turn or not and individual β-turn types from the primary amino acid sequence. The individual β-turn types I, I', II, II', VIII, VIa1, VIa2, VIba and IV have been predicted based on classifications by PROMOTIF, and the two-class prediction of β-turn or not is a superset comprised of all β-turn types. The performance is evaluated using a golden set of non-homologous sequences known as BT426. Our two-class prediction method achieves a performance of: MCC=0.50, Qtotal=82.1%, sensitivity=75.6%, PPV=68.8% and AUC=0.864. We have compared our performance to eleven other prediction methods that obtain Matthews correlation coefficients in the range of 0.17-0.47. For the type specific β-turn predictions, only type I and II can be predicted with reasonable Matthews correlation coefficients, where we obtain performance values of 0.36 and 0.31, respectively. CONCLUSION: The NetTurnP method has been implemented as a webserver, which is freely available at http://www.cbs.dtu.dk/services/NetTurnP/. NetTurnP is the only available webserver that allows submission of multiple sequences. 相似文献
4.
Background:The wide availability of genome-scale data for several organisms has stimulated interest in computational approaches to gene function prediction. Diverse machine learning methods have been applied to unicellular organisms with some success, but few have been extensively tested on higher level, multicellular organisms. A recent mouse function prediction project (MouseFunc) brought together nine bioinformatics teams applying a diverse array of methodologies to mount the first large-scale effort to predict gene function in the laboratory mouse. Results:In this paper, we describe our contribution to this project, an ensemble framework based on the support vector machine that integrates diverse datasets in the context of the Gene Ontology hierarchy. We carry out a detailed analysis of the performance of our ensemble and provide insights into which methods work best under a variety of prediction scenarios. In addition, we applied our method to Saccharomyces cerevisiae and have experimentally confirmed functions for a novel mitochondrial protein. Conclusion:Our method consistently performs among the top methods in the MouseFunc evaluation. Furthermore, it exhibits good classification performance across a variety of cellular processes and functions in both a multicellular organism and a unicellular organism, indicating its ability to discover novel biology in diverse settings. 相似文献
5.
Genome sequencing projects have ciphered millions of protein sequence, which require knowledge of their structure and function to improve the understanding of their biological role. Although experimental methods can provide detailed information for a small fraction of these proteins, computational modeling is needed for the majority of protein molecules which are experimentally uncharacterized. The I-TASSER server is an on-line workbench for high-resolution modeling of protein structure and function. Given a protein sequence, a typical output from the I-TASSER server includes secondary structure prediction, predicted solvent accessibility of each residue, homologous template proteins detected by threading and structure alignments, up to five full-length tertiary structural models, and structure-based functional annotations for enzyme classification, Gene Ontology terms and protein-ligand binding sites. All the predictions are tagged with a confidence score which tells how accurate the predictions are without knowing the experimental data. To facilitate the special requests of end users, the server provides channels to accept user-specified inter-residue distance and contact maps to interactively change the I-TASSER modeling; it also allows users to specify any proteins as template, or to exclude any template proteins during the structure assembly simulations. The structural information could be collected by the users based on experimental evidences or biological insights with the purpose of improving the quality of I-TASSER predictions. The server was evaluated as the best programs for protein structure and function predictions in the recent community-wide CASP experiments. There are currently >20,000 registered scientists from over 100 countries who are using the on-line I-TASSER server. 相似文献
8.
Prediction of protein function is one of the most challenging problems in the post-genomic era. In this paper, we propose a novel algorithm Improved ProteinRank (IPR) for protein function prediction, which is based on the search engine technology and the preferential attachment criteria. In addition, an improved algorithm IPRW is developed from IPR to be used in the weighted protein?protein interaction (PPI) network. The proposed algorithms IPR and IPRW are applied to the PPI network of S.cerevisiae. The experimental results show that both IPR and IPRW outweigh the previous methods for the prediction of protein functions. 相似文献
9.
BackgroundProteins are a kind of macromolecules and the main component of a cell, and thus it is the most essential and versatile material of life. The research of protein functions is of great significance in decoding the secret of life. In recent years, researchers have introduced multi-label supervised topic model such as Labeled Latent Dirichlet Allocation (Labeled-LDA) into protein function prediction, which can obtain more accurate and explanatory prediction. However, the topic-label corresponding way of Labeled-LDA is associating each label (GO term) with a corresponding topic directly, which makes the latent topics to be completely degenerated, and ignores the differences between labels and latent topics.ResultTo achieve more accurate probabilistic modeling of function label, we propose a Partially Function-to-Topic Prediction (PFTP) model for introducing the local topics subset corresponding to each function label. Meanwhile, PFTP not only supports latent topics subset within a given function label but also a background topic corresponding to a ‘fake’ function label, which represents common semantic of protein function. Related definitions and the topic modeling process of PFTP are described in this paper. In a 5-fold cross validation experiment on yeast and human datasets, PFTP significantly outperforms five widely adopted methods for protein function prediction. Meanwhile, the impact of model parameters on prediction performance and the latent topics discovered by PFTP are also discussed in this paper.ConclusionAll of the experimental results provide evidence that PFTP is effective and have potential value for predicting protein function. Based on its ability of discovering more-refined latent sub-structure of function label, we can anticipate that PFTP is a potential method to reveal a deeper biological explanation for protein functions. 相似文献
10.
BackgroundCurrent technology has demonstrated that mutation and deregulation of non-coding RNAs (ncRNAs) are associated with diverse human diseases and important biological processes. Therefore, developing a novel computational method for predicting potential ncRNA-disease associations could benefit pathologists in understanding the correlation between ncRNAs and disease diagnosis, treatment, and prevention. However, only a few studies have investigated these associations in pathogenesis.ResultsThis study utilizes a disease-target-ncRNA tripartite network, and computes prediction scores between each disease-ncRNA pair by integrating biological information derived from pairwise similarity based upon sequence expressions with weights obtained from a multi-layer resource allocation technique. Our proposed algorithm was evaluated based on a 5-fold-cross-validation with optimal kernel parameter tuning. In addition, we achieved an average AUC that varies from 0.75 without link cut to 0.57 with link cut methods, which outperforms a previous method using the same evaluation methodology. Furthermore, the algorithm predicted 23 ncRNA-disease associations supported by other independent biological experimental studies.ConclusionsTaken together, these results demonstrate the capability and accuracy of predicting further biological significant associations between ncRNAs and diseases and highlight the importance of adding biological sequence information to enhance predictions. 相似文献
11.
Assigning functions to unknown proteins is one of the most important problems in proteomics. Several approaches have used protein-protein interaction data to predict protein functions. We previously developed a Markov random field (MRF) based method to infer a protein's functions using protein-protein interaction data and the functional annotations of its protein interaction partners. In the original model, only direct interactions were considered and each function was considered separately. In this study, we develop a new model which extends direct interactions to all neighboring proteins, and one function to multiple functions. The goal is to understand a protein's function based on information on all the neighboring proteins in the interaction network. We first developed a novel kernel logistic regression (KLR) method based on diffusion kernels for protein interaction networks. The diffusion kernels provide means to incorporate all neighbors of proteins in the network. Second, we identified a set of functions that are highly correlated with the function of interest, referred to as the correlated functions, using the chi-square test. Third, the correlated functions were incorporated into our new KLR model. Fourth, we extended our model by incorporating multiple biological data sources such as protein domains, protein complexes, and gene expressions by converting them into networks. We showed that the KLR approach of incorporating all protein neighbors significantly improved the accuracy of protein function predictions over the MRF model. The incorporation of multiple data sets also improved prediction accuracy. The prediction accuracy is comparable to another protein function classifier based on the support vector machine (SVM), using a diffusion kernel. The advantages of the KLR model include its simplicity as well as its ability to explore the contribution of neighbors to the functions of proteins of interest. 相似文献
12.
New directions in computational methods for the prediction of protein function are discussed. THEMATICS, a method for the location and characterization of the active sites of enzymes, is featured. THEMATICS, for Theoretical Microscopic Titration Curves, is based on well-established finite-difference Poisson-Boltzmann methods for computing the electric field function of a protein. THEMATICS requires only the structure of the subject protein and thus may be applied to proteins that bear no similarity in structure or sequence to any previously characterized protein. The unique features of catalytic sites in proteins are discussed. Discussion of the chemical basis for the predictive powers of THEMATICS is featured in this paper. Some results are given for three illustrative examples: HIV-1 protease, human apurinic/apyrimidinic endonuclease, and human adenosine kinase. 相似文献
13.
Predicting protein function is one of the most challenging problems of the post-genomic era. The development of experimental methods for genome scale analysis of molecular interaction networks has provided new approaches to inferring protein function. In this paper we introduce a new graph-based semi-supervised classification algorithm Sequential Linear Neighborhood Propagation (SLNP), which addresses the problem of the classification of partially labeled protein interaction networks. The proposed SLNP first constructs a sequence of node sets according to their shortest distance to the labeled nodes, and then predicts the function of the unlabel proteins from the set closer to labeled one, using Linear Neighborhood Propagation. Its performance is assessed on the Saccharomyces cerevisiae PPI network data sets, with good results compared with three current state-of-the-art algorithms, especially in settings where only a small fraction of the proteins are labeled. 相似文献
14.
BackgroundLarge amounts of data are being generated by high-throughput genome sequencing methods. But the rate of the experimental functional characterization falls far behind. To fill the gap between the number of sequences and their annotations, fast and accurate automated annotation methods are required. Many methods, such as GOblet, GOFigure, and Gotcha, are designed based on the BLAST search. Unfortunately, the sequence coverage of these methods is low as they cannot detect the remote homologues. Adding to this, the lack of annotation specificity advocates the need to improve automated protein function prediction.ResultsWe designed a novel automated protein functional assignment method based on the neural response algorithm, which simulates the neuronal behavior of the visual cortex in the human brain. Firstly, we predict the most similar target protein for a given query protein and thereby assign its GO term to the query sequence. When assessed on test set, our method ranked the actual leaf GO term among the top 5 probable GO terms with accuracy of 86.93%.ConclusionsThe proposed algorithm is the first instance of neural response algorithm being used in the biological domain. The use of HMM profiles along with the secondary structure information to define the neural response gives our method an edge over other available methods on annotation accuracy. Results of the 5-fold cross validation and the comparison with PFP and FFPred servers indicate the prominent performance by our method. The program, the dataset, and help files are available at http://www.jjwanglab.org/NRProF/. 相似文献
16.
Many real-world systems such as irregular ECG signal, volatility of currency exchange rate and heated fluid reaction exhibit highly complex nonlinear characteristic known as chaos. These chaotic systems cannot be retreated satisfactorily using linear system theory due to its high dimensionality and irregularity. This research focuses on prediction and modelling of chaotic FIR (Far InfraRed) laser system for which the underlying equations are not given. This paper proposed a method for prediction and modelling a chaotic FIR laser time series using rational function neural network. Three network architectures, TDNN (Time Delayed Neural Network), RBF (radial basis function) network and the RF (rational function) network, are also presented. Comparisons between these networks performance show the improvements introduced by the RF network in terms of a decrement in network complexity and better ability of predictability. 相似文献
17.
Multiple sequence alignments have much to offer to the understanding of protein structure, evolution and function. We are developing approaches to use this information in predicting protein-binding specificity, intra-protein and protein-protein interactions, and in reconstructing protein interaction networks. 相似文献
19.
Protein binding sites are the places where molecular interactions occur. Thus, the analysis of protein binding sites is of crucial importance to understand the biological processes proteins are involved in. Herein, we focus on the computational analysis of protein binding sites and present structure-based methods that enable function prediction for orphan proteins and prediction of target druggability. We present the general ideas behind these methods, with a special emphasis on the scopes and limitations of these methods and their validation. Additionally, we present some successful applications of computational binding site analysis to emphasize the practical importance of these methods for biotechnology/bioeconomy and drug discovery. 相似文献
20.
MOTIVATION: The prediction of beta-turns is an important element of protein secondary structure prediction. Recently, a highly accurate neural network based method Betatpred2 has been developed for predicting beta-turns in proteins using position-specific scoring matrices (PSSM) generated by PSI-BLAST and secondary structure information predicted by PSIPRED. However, the major limitation of Betatpred2 is that it predicts only beta-turn and non-beta-turn residues and does not provide any information of different beta-turn types. Thus, there is a need to predict beta-turn types using an approach based on multiple sequence alignment, which will be useful in overall tertiary structure prediction. RESULTS: In the present work, a method has been developed for the prediction of beta-turn types I, II, IV and VIII. For each turn type, two consecutive feed-forward back-propagation networks with a single hidden layer have been used where the first sequence-to-structure network has been trained on single sequences as well as on PSI-BLAST PSSM. The output from the first network along with PSIPRED predicted secondary structure has been used as input for the second-level structure-to-structure network. The networks have been trained and tested on a non-homologous dataset of 426 proteins chains by 7-fold cross-validation. It has been observed that the prediction performance for each turn type is improved significantly by using multiple sequence alignment. The performance has been further improved by using a second level structure-to-structure network and PSIPRED predicted secondary structure information. It has been observed that Type I and II beta-turns have better prediction performance than Type IV and VIII beta-turns. The final network yields an overall accuracy of 74.5, 93.5, 67.9 and 96.5% with MCC values of 0.29, 0.29, 0.23 and 0.02 for Type I, II, IV and VIII beta-turns, respectively, and is better than random prediction. AVAILABILITY: A web server for prediction of beta-turn types I, II, IV and VIII based on above approach is available at http://www.imtech.res.in/raghava/betaturns/ and http://bioinformatics.uams.edu/mirror/betaturns/ (mirror site). 相似文献
|