首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
Protein kinase D (PKD/PKCmu) immunoprecipitated from COS-7 cells transiently transfected with either a constitutively active mutant of Rho (RhoQ63L) or the Rho-specific guanine nucleotide exchange factor pOnco-Lbc (Lbc) exhibited a marked increase in basal activity. Addition of aluminum fluoride to cells co-transfected with PKD and wild type Galpha(13) also induced PKD activation. Co-transfection of Clostridium botulinum C3 toxin blocked activation of PKD by RhoQ63L, Lbc, or aluminum fluoride-stimulated Galpha(13). Treatment with the protein kinase C inhibitors GF I or Ro 31-8220 prevented the increase in PKD activity induced by RhoQ63L, Lbc, or aluminum fluoride-stimulated Galpha(13). PKD activation in response to Galpha(13) signaling was also completely prevented by mutation of Ser-744 and Ser-748 to Ala in the kinase activation loop of PKD. Co-expression of C. botulinum C3 toxin and a COOH-terminal fragment of Galpha(q) that acts in a dominant-negative fashion blocked PKD activation in response to agonist stimulation of bombesin receptor. Expression of the COOH-terminal region of Galpha(13) also attenuated PKD activation in response to bombesin receptor stimulation. Our results show that Galpha(13) contributes to PKD activation through a Rho- and protein kinase C-dependent signaling pathway and indicate that PKD activation is mediated by both Galpha(q) and Galpha(13) in response to bombesin receptor stimulation.  相似文献   

2.
G protein alpha subunits mediate activation of signaling pathways through G protein-coupled receptors (GPCR) by virtue of GTP-dependent conformational rearrangements. It is known that regions of disorder in crystal structures can be indicative of conformational flexibility within a molecule, and there are several such regions in G protein alpha subunits. The amino-terminal 29 residues of Galpha are alpha-helical only in the heterotrimer, where they contact the side of Gbeta, but little is known about the conformation of this region in the active GTP bound state. To address the role of the Galpha amino-terminus in G-protein activation and to investigate whether this region undergoes activation-dependent conformational changes, a site-directed cysteine mutagenesis study was carried out. Engineered Galpha(i1) proteins were created by first removing six native reactive cysteines to yield a mutant Galpha(i1)-C3S-C66A-C214S-C305S-C325A-C351I that no longer reacts with cysteine-directed labels. Several cysteine substitutions along the amino-terminal region were then introduced. All mutant proteins were shown to be folded properly and functional. An environmentally sensitive probe, Lucifer yellow, linked to these sites showed a fluorescence change upon interaction with Gbetagamma and with activation by AlF(4)(-). Other fluorescent probes of varying charge, size, and hydrophobicity linked to amino-terminal residues also revealed changes upon activation with bulkier probes reporting larger changes. Site-directed spin-labeling studies showed that the N-terminus of the Galpha subunit is dynamically disordered in the GDP bound state, but adopts a structure consistent with an alpha-helix upon interaction with Gbetagamma. Interaction of the resulting spin-labeled Galphabetagamma with photoactivated rhodopsin, followed by rhodopsin-catalyzed GTPgammaS binding, caused the amino-terminal domain of Galpha to revert to a dynamically disordered state similar to that of the GDP-bound form. Together these results suggest conformational changes occur in the amino-termini of Galpha(i) proteins upon subunit dissociation and upon activating conformational changes. These solution studies reveal insights into conformational changes that occur dynamically in solution.  相似文献   

3.
Previously we used mass spectrometry to show that the yeast G protein alpha subunit Gpa1 is ubiquitinated at Lys-165, located within a subdomain not present in other G alpha proteins (Marotti, L. A., Jr., Newitt, R., Wang, Y., Aebersold, R., and Dohlman, H. G. (2002) Biochemistry 41, 5067-5074). Here we describe the functional role of Gpa1 ubiquitination. We find that Gpa1 expression is elevated in mutants deficient in either proteasomal or vacuolar protease function. Vacuolar protease pep4 mutants accumulate monoubiquitinated Gpa1, and much of the protein is localized within the vacuolar compartment. In contrast, proteasome-defective rpt6/cim3 mutants accumulate polyubiquitinated Gpa1, and in this case the protein exhibits cytoplasmic localization. Cells that lack Ubp12 ubiquitin-processing protease activity accumulate both mono- and polyubiquitinated forms of Gpa1. In this case, Gpa1 accumulates in both the cytoplasm and vacuole. Finally, a Gpa1 mutant that lacks the ubiquitinated subdomain remains unmodified and is predominantly localized at the plasma membrane. These data reveal a strong relationship between the extent of ubiquitination and trafficking of the G protein alpha subunit to its site of degradation.  相似文献   

4.
Gs and Gi2 are G proteins whose alpha subunits are 65% homologous. Within the 355 amino acid alpha i2 polypeptide, substitution of residues Ile213-Lys319 with the corresponding alpha s region (Ile235-Arg356) generated a chimera that activated adenylyl cyclase, indicating that the alpha s activation domain resides within this 122 amino acid alpha s sequence. Mutation within alpha s residues Glu15-Pro144 resulted in an alpha s polypeptide having an enhanced rate of GDP dissociation. Mutation within two regions of the N-terminus influenced the ability of pertussis toxin to ADP-ribosylate the alpha subunit polypeptide, a reaction controlled by the beta gamma subunit complex. The findings define the G protein alpha subunit N-terminus as a regulatory region controlling beta gamma subunit interactions and GDP dissociation independent of the GTPase and effector activation domains.  相似文献   

5.
Gs and Gi, respectively, activate and inhibit the enzyme adenylyl cyclase. Regulation of adenylyl cyclase by the heterotrimeric Gs and Gi proteins requires the dissociation of GDP and binding of GTP to the alpha s or alpha i subunit. The beta gamma subunit complex of Gs and Gi functions, in part, to inhibit GDP dissociation and alpha subunit activation by GTP. Multiple beta and gamma polypeptides are expressed in different cell types, but the functional significance for this heterogeneity is unclear. The beta gamma complex from retinal rod outer segments (beta gamma t) has been shown to discriminate between alpha i and alpha s subunits (Helman et al: Eur J Biochem 169:431-439, 1987). beta gamma t efficiently interacts with alpha i-like G protein subunits, but poorly recognizes the alpha s subunit. beta gamma t was, therefore, used to define regions of the alpha i subunit polypeptide that conferred selective regulation compared to the alpha s polypeptide. A series of alpha subunit chimeras having NH2-terminal alpha i and COOH-terminal alpha s sequences were characterized for their regulation by beta gamma t, measured by the kinetics of GTP gamma S activation of adenylyl cyclase. A 122 amino acid NH2-terminal region of the alpha i polypeptide encoded within an alpha i/alpha s chimera was sufficient for beta gamma t to discriminate the chimera from alpha s. A shorter 54 amino acid alpha i sequence substituted for the corresponding NH2-terminal region of alpha s was insufficient to support the alpha i-like interaction with beta gamma t. The findings are consistent with our previous observation (Osawa et al: Cell 63:697-706, 1990) that a region in the NH2-terminal moiety functions as an attenuator domain controlling GDP dissociation and GTP activation of the alpha subunit polypeptide and that the attenuator domain is involved in functional recognition and regulation by beta gamma complexes.  相似文献   

6.
An antiserum (13CB) was generated against a synthetic peptide, HDNLKQLMLQ, which is predicted to represent the C-terminal decapeptide of the alpha subunit of the novel G-protein, G13. Competitive ELISA indicated that the antiserum reacted with this peptide but that it showed minimal ability to recognize peptides which represent the equivalent regions of the pertussis toxin-insensitive G-proteins, Gq + G11, G12, G15 + G16, GL1 (also called G14) as Gz, and well as other G-proteins. Immunoblots of human platelet membranes with antiserum 13CB identified a single 43-kDa polypeptide, and while this immunoreactivity was abolished by the presence of the cognate peptide it was not modified by the presence of peptides corresponding to the equivalent region of other G-proteins. Immunoreactivity corresponding to G13 alpha was detected in a range of cell types with human platelets having the highest levels of this polypeptide.  相似文献   

7.
8.
Protein kinase D (PKD/PKCmu) immunoprecipitated from COS-7 cells transiently transfected with a constitutively active alpha subunit of G(q) (Galpha(q)Q209L) exhibited a marked increase in basal activity, which was not further enhanced by treatment of the cells with phorbol 12,13-dibutyrate. In contrast, transient transfection of COS-7 cells with activated Galpha(12)Q229L or Galpha(13)Q226L neither promoted PKD activation nor interfered with the increase of PKD activity induced by phorbol 12,13-dibutyrate. The addition of aluminum fluoride to cells co-transfected with PKD and wild type Galpha(q) induced a marked increase in PKD activity, which was comparable with that induced by expression of Galpha(q)Q209L. Treatment with the protein kinase C inhibitor GF I or Ro 31-8220 prevented the increase in PKD activity induced by aluminum fluoride. Expression of a COOH-terminal fragment of Galpha(q) that acts in a dominant negative fashion attenuated PKD activation in response to agonist stimulation of bombesin receptor. PKD activation in response to either Galpha(q) or bombesin was completely prevented by mutation of Ser(744) and Ser(748) to Ala in the kinase activation loop of PKD. Our results show that Galpha(q) activation is sufficient to stimulate sustained PKD activation via protein kinase C and indicate that the endogenous Galpha(q) mediates PKD activation in response to acute bombesin receptor stimulation.  相似文献   

9.
A diverse array of external stimuli, including most hormones and neurotransmitters, bind to cell surface receptors that activate G proteins. Mating pheromones in yeast Saccharomyces cerevisiae activate G protein-coupled receptors and initiate events leading to cell cycle arrest in G(1) phase. Here, we show that the Gα subunit (Gpa1) is phosphorylated and ubiquitinated in response to changes in the cell cycle. We systematically screened 109 gene deletion strains representing the non-essential yeast kinome and identified a single kinase gene, ELM1, as necessary and sufficient for Gpa1 phosphorylation. Elm1 is expressed in a cell cycle-dependent manner, primarily at S and G(2)/M. Accordingly, phosphorylation of Gpa1 in G(2)/M phase leads to polyubiquitination in G(1) phase. These findings demonstrate that Gpa1 is dynamically regulated. More broadly, they reveal how G proteins can simultaneously regulate, and become regulated by, progression through the cell cycle.  相似文献   

10.
Alpha 16, a member of the alpha q subfamily of G protein alpha subunits, was recently identified in human hematopoietic cells. In order to elucidate the function of this novel alpha subunit, we cloned and mutagenized its cDNA to obtain a constitutively active protein. COS-1 cells were transfected with both wild-type and mutant cDNAs. Expression was confirmed by immunoblotting using a rabbit antiserum raised against the C-terminal decapeptide of alpha 16. The constitutively activated mutant alpha 16-R186C caused a two-fold increase in the formation of inositol trisphosphate in intact COS-1 cells, while the wild-type alpha 16 subunit had no effect. We conclude that alpha 16 is involved in coupling cell surface receptors of human hematopoietic cells to stimulation of phospholipase C.  相似文献   

11.
Yoshikawa DM  Hatwar M  Smrcka AV 《Biochemistry》2000,39(37):11340-11347
When the beta(5) (short form) and gamma(2) subunits of heterotrimeric G proteins were expressed with hexahistidine-tagged alpha(i) in insect cells, a heterotrimeric complex was formed that bound to a Ni-NTA-agarose affinity matrix. Binding to the Ni-NTA-agarose column was dependent on expression of hexahistidine-tagged alpha(i) and resulted in purification of beta(5)gamma(2) to near homogeneity. Subsequent anion-exchange chromatography of beta(5)gamma(2) resulted in resolution of beta(5) from gamma(2) and further purification of beta(5). The purified beta(5) eluted as a monomer from a size-exclusion column and was resistant to trypsin digestion suggesting that it was stably folded in the absence of gamma. beta(5) monomer could be assembled with partially purified hexahistidine-tagged gamma(2) in vitro to form a functional dimer that could selectively activate PLC beta2 but not PLC beta3. alpha(o)-GDP inhibited activation of PLC beta2 by beta(5)gamma(2) supporting the idea that beta(5)gamma(2) can bind to alpha(o). beta(5) monomer and beta(5)gamma(2) only supported a small degree of ADP ribosylation of alpha(i) by pertussis toxin (PTX), but beta(5) monomer was able to compete for beta(1)gamma(2) binding to alpha(i) and alpha(o) to inhibit PTX-catalyzed ADP ribosylation. These data indicate that beta(5) functionally interacts with PTX-sensitive GDP alpha subunits and that beta(5) subunits can be assembled with gamma subunits in vitro to reconstitute activity and also support the idea that there are determinants on beta subunits that are selective for even very closely related effectors.  相似文献   

12.
Wang L  Xu YY  Ma QB  Li D  Xu ZH  Chong K 《Cell research》2006,16(12):916-922
  相似文献   

13.
Trichoderma species are used commercially as biocontrol agents against a number of phytopathogenic fungi due to their mycoparasitic characterisitics. The mycoparasitic response is induced when Trichoderma specifically recognizes the presence of the host fungus and transduces the host-derived signals to their respective regulatory targets. We made deletion mutants of the tga3 gene of Trichoderma atroviride, which encodes a novel G protein alpha subunit that belongs to subgroup III of fungal Galpha proteins. Deltatga3 mutants had changes in vegetative growth, conidiation, and conidial germination and reduced intracellular cyclic AMP levels. These mutants were avirulent in direct confrontation assays with Rhizoctonia solani or Botrytis cinerea, and mycoparasitism-related infection structures were not formed. When induced with colloidal chitin or N-acetylglucosamine in liquid culture, the mutants had reduced extracellular chitinase activity even though the chitinase-encoding genes ech42 and nag1 were transcribed at a significantly higher rate than they were in the wild type. Addition of exogenous cyclic AMP did not suppress the altered phenotype or restore mycoparasitic overgrowth, although it did restore the ability to produce the infection structures. Thus, T. atroviride Tga3 has a general role in vegetative growth and can alter mycoparasitism-related characteristics, such as infection structure formation and chitinase gene expression.  相似文献   

14.
Genetic and structural analysis of the alpha chain polypeptides of heterotrimeric G proteins defines functional domains for GTP/GDP binding, GTPase activity, effector activation, receptor contact and beta gamma subunit complex regulation. The conservation in sequence comprising the GDP/GTP binding and GTPase domains among G protein alpha subunits readily allows common mutations to be made for the design of mutant polypeptides that function as constitutive active or dominant negative alpha chains when expressed in different cell types. Organization of the effector activation, receptor and beta gamma contact domains is similar in the primary sequence of the different alpha subunit polypeptides relative to the GTP/GDP binding domain sequences. Mutation within common motifs of the different G protein alpha chain polypeptides have similar functional consequences. Thus, what has been learned with the Gs and Gi proteins and the regulation of adenylyl cyclase can be directly applied to the analysis of newly identified G proteins and their coupling to receptors and regulation of putative effector enzymes.  相似文献   

15.
It has recently been reported that synthetic peptides corresponding to the C-terminal sequence of G alpha, can be used to study the molecular mechanisms of interaction between this protein and G protein coupled receptors (Hamm et al., Science, 1988, Vol. 241, pp. 832-835). A conformational analysis on a 11 amino acids peptide from the G alpha(S) C-terminus, G alpha(S)(384-394) (H-QRMHLRQYELL-OH), was performed by nmr spectroscopy and molecular modeling methods. Two-dimensional nmr spectra, recorded in hexafluoroacetone/water, a mixture with structure stabilizing properties, showed an unusually high number of nuclear Overhauser effects, forming significative pattern to the drawing of a secondary structure. Conformations consistent with experimental NOE distances were obtained through molecular dynamics and energy minimization methods. These calculations yielded two stable conformers corresponding to an alpha-turn and a type III beta-turn involving the last five C-terminal residues. Interestingly, the alpha-turn conformation was found to overlap with good agreement the crystallographic structure of the same fragment in the G alpha(S) protein.  相似文献   

16.
Lyssand JS  Bajjalieh SM 《FEBS letters》2007,581(30):5765-5768
Receptors that signal through heterotrimeric [corrected] GTP binding (G) proteins mediate the majority of intercellular communication. Recent evidence suggests that receptors acting through G proteins also transfer signals across the nuclear membrane. Here we present cell fractionation and immunolabeling data showing that the heterotrimeric [corrected] G protein subunit Galphai is associated with mitochondria. This finding suggests that G protein receptor signaling may be a feature common to all membranes.  相似文献   

17.
Stimulation of the thyrotropin receptor (TSHR) activates G proteins of all four subfamilies (G(s), G(i/o), G(q/11), and G(12/13)). Whereas G(s)/cAMP-dependent cellular responses upon TSHR stimulation are well established, other signaling pathways are less characterized. We evaluated TSH-elicited cellular responses in human follicular thyroid carcinoma cells stably expressing the TSHR and in primary, nonneoplastic human thyrocytes. In these cellular models, stimulation with TSH caused activation of p44/42 MAPK and subsequent induction of c-Fos. MAPK stimulation occurred independently of G(s), G(i/o), and G(q/11) signaling. Dominant negative constructs of G(12) or G(13) as well as shRNA-mediated suppression of Galpha(12) or Galpha(13) revealed that MAPK activation was dependent on G(13) but not on G(12) signaling. Furthermore, G(13)-dependent transactivation of the epidermal growth factor receptor was necessary for MAPK activation in follicular carcinoma cells, whereas EGFR was not involved in MAPK activation in nonneoplastic primary thyrocytes. The use of bacterial inhibitors of monomeric GTPases revealed that MAPK activation proceeded independently of Rho proteins but was clostridial toxin B-sensitive, suggesting involvement of Cdc42 or Rac. Thus, our data shed new light on cAMP-independent TSHR signaling and identify the first G(13)-dependent TSHR signaling pathway in human thyrocytes.  相似文献   

18.
C A Weiss  H Huang    H Ma 《The Plant cell》1993,5(11):1513-1528
Heterotrimeric GTP binding proteins (G proteins) are important signal transducers in lower eukaryotes and in animal cells. In plants, the occurrence of GTP binding proteins has been reported, but their biological function remains unclear. Two genes coding for G protein alpha subunits have been cloned: GPA1 in Arabidopsis and TGA1 in tomato. To gain some insights into the function of GPA1, we describe an extensive immunolocalization of GPalpha1, the gene product of GPA1, during Arabidopsis development. Our results show that the GPalpha1 is present through all stages of development and in all organs examined, with the exception of mature seeds. It is expressed in roots, floral stem, rosette leaves, cauline leaves, flowers, and seed pods. Interestingly, the level of GPalpha1 protein is higher in immature organs than in mature organs. GPalpha1 is present at a high level in the root meristem and elongation zone, in the shoot and floral meristems, and in the leaf primordium and floral organ (sepal, petal, stamen, and gynoecium) primordia. During flower development, dividing microspores, but not mature pollen, show high levels of GPalpha1. During pollination, GPalpha1 is present in the growing pollen tubes. The protein is also present in nectaries and developing ovules and, after fertilization, in developing embryos. In mature tissue, GPalpha1 is preferentially found in the vascular system but is also present in other cell types. The complexity of the GPalpha1 localization pattern suggests that GPalpha1 might be involved in different signaling pathways depending on the developmental stage.  相似文献   

19.
G proteins transmit a variety of extracellular signals into intracellular responses. The Galpha and Gbetagamma subunits are both known to regulate effectors. Interestingly, the Galpha subunit also determines subtype specificity of Gbetagamma effector interactions. However, in light of the common paradigm that Galpha and Gbetagamma subunits dissociate during activation, a plausible mechanism of how this subtype specificity is generated was lacking. Using a fluorescence resonance energy transfer (FRET)-based assay developed to directly measure mammalian G protein activation in intact cells, we demonstrate that fluorescent Galpha(i1,2,3), Galpha(z), and Gbeta(1)gamma(2) subunits do not dissociate during activation but rather undergo subunit rearrangement as indicated by an activation-induced increase in FRET. In contrast, fluorescent Galpha(o) subunits exhibited an activation-induced decrease in FRET, reflecting subunit dissociation or, alternatively, a distinct subunit rearrangement. The alpha(B/C)-region within the alpha-helical domain, which is much more conserved within Galpha(i1,2,3) and Galpha(z) as compared with that in Galpha(o), was found to be required for exhibition of an activation-induced increase in FRET between fluorescent Galpha and Gbetagamma subunits. However, the alpha(B/C)-region of Galpha(il) alone was not sufficient to transfer the activation pattern of Galpha(i) to the Galpha(o) subunit. Either residues in the first 91 amino acids or in the C-terminal remainder (amino acids 93-354) of Galpha(il) together with the alpha(B/C)-helical region of Galpha(i1) were needed to transform the Galpha(o)-activation pattern into a Galpha(i1)-type of activation. The discovery of subtype-selective mechanisms of G protein activation illustrates that G protein subfamilies have specific mechanisms of activation that may provide a previously unknown basis for G protein signaling specificity.  相似文献   

20.
An efficient one-step affinity purification of bovine brain G protein betagamma subunits (betagamma's) is described. The betagamma's, in a detergent extract of brain membranes, are first dissociated from the alpha subunits (alpha's), reassociated with decahistidine-tagged alphail produced in bacteria, and then adsorbed onto Ni2+-nitrilotriacetic acid-agarose via the histidine tag. This mild adsorption retained the high activity of the ligand alpha's, in contrast to the commonly used chemical crosslinking methods. A wash step with a buffer containing chaotropic ions (SCN-) completely removed contaminating proteins that were refractory to washes with high concentrations of detergents, after which the highly purified betagamma's were eluted with a buffer containing Al3+, Mg2+, and F- ions. The obtained betagamma's were found to be fully functional, as assessed by their ability to support pertussis toxin-catalyzed ADP-ribosylation of alphail. Since the combination of the mild adsorption via the histidine tag and the wash with chaotropic ions can be easily applied to purifying betagamma's from various animal tissues, this new chromatographic method is expected to facilitate the purification of other membrane proteins that bind to Galpha and/or Galphabetagamma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号