首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Biliary phospholipids have been hypothesized to be important for essential fatty acid homeostasis. We tested this hypothesis by investigating the intestinal absorption and the status of linoleic acid in mdr2 Pgp-deficient mice which secrete phospholipid-free bile. In mice homozygous (-/-) for disruption of the mdr2 gene and wild-type (+/+) mice, dietary linoleic acid absorption was determined by 72 h balance techniques. After enteral administration, [(13)C]-linoleic acid absorption was determined by measuring [(13)C]-linoleic acid concentrations in feces and in plasma. The status of linoleic acid was determined in plasma and in liver by calculating the molar percentage of linoleic acid and the triene:tetraene ratio. Although plasma concentration of [(13)C]-linoleic acid at 2 h after enteral administration was significantly lower in (-/-) compared to (+/+) mice (P相似文献   

2.
Partially purified preparations of lipoxygenase from the germinating barley embryos converted linoleic acid to 9- and 13-hydroperoxy linoleic acids in the ratio of approximately 3:1, while the similar preparations from the ungerminated embryos converted linoleic acid mainly to 9-hydroperoxy linoleic acid.

Isoelectric focusing of the partially purified preparations of the germinating embryos revealed the presence of the two lipoxygenase active peaks, having isoelectric point at pH 4.9 and 6.6, respectively. The former peak (barley lipoxygenase-1) was identical to lipoxygenase of the ungerminated embryos, but the latter peak (barley lipoxygenase-2) was found only in the germinating embryos. The newly found isoenzyme, barley lipoxygenase-2, converted linoleic acid mainly to 13-hydroperoxy linoleic acid, and could oxidize esterified derivatives of linoleic acid (methyl linoleate and trilinolein) much strongly than barley lipoxygenase-1.  相似文献   

3.
Liang CF  Chao JC  Hwang SM  Tsai YH 《IUBMB life》2002,54(5):275-279
Epidermal growth factor (EGF) was reported to regulate triacyl glycerol synthesis in various cells. Linoleic acid and its metabolites were thought to modulate the signal transduction of growth factors. This study determined whether linoleic acid regulated the effect of EGF on lipid contents in human intestinal C2BBe1 cells. Confluent cells were incubated with serum-free medium (control), EGF (45 ng/mL), linoleic acid (42 microg/mL), or combined EGF (45 ng/mL) and linoleic acid (42 microg/mL) for 48 h. The results showed EGF and linoleic acid significantly increased intracellular cholesterol and triglyceride levels compared with the control and combined groups. EGF was a more potent stimulator for triacyl glycerol synthesis in C2BBe1 cells than linoleic acid. However, intracellular cholesterol and triglyceride levels did not differ between the control and combined groups. The secretion of cholesterol and triglyceride into the medium by C2BBe1 cells did not differ among four groups. Both EGF and linoleic acid strongly stimulated the expression of EGF receptor mRNA in C2BBe1 cells at 48 h compared with the control and combined groups. Therefore, EGF and linoleic acid increased triacyl glycerol synthesis in C2BBe1 cells through stimulating the expression of EGF receptor mRNA. The effect of EGF and linoleic acid on this lipogenesis was reversed in the presence of both EGF and linoleic acid by downregulating the expression of EGF receptor mRNA.  相似文献   

4.
We have investigated the extent to which modifications in the essential fatty acid content of mammalian cells can affect prostaglandin production. Swiss mouse 3T3 cells stimulated with the calcium ionophore A23187 produced 1.7 to 7 times more prostaglandin E(2) (PGE(2)) when the cultures were supplemented with linoleic acid. Increases in PGE(2) production as a result of linoleic acid supplementation occurred under all culture conditions except during the first 24 hr after attachment, when prostaglandin production was very high. Arachidonic acid supplementation produced a similar enhancement in the capacity of the cells to produce PGE(2), but no appreciable increase occurred when the cultures were supplemented with oleic acid. The phospholipids of the cells exposed to the linoleate-enriched medium contained 4 times more arachidonic acid and twice as much linoleic acid as compared with the corresponding controls. The choline phosphoglycerides were most highly enriched in arachidonic acid, but 2- to 3-fold increases also occurred in the inositol and ethanolamine phosphoglycerides. When cultures initially enriched with linoleic acid were transferred to an unsupplemented medium, the fatty acid composition as well as the capacity of the cells to produce PGE(2) reverted almost to control values. The amount of exogenous arachidonic acid converted to PGE(2) as measured by radioimmunoassay also was greater when the cells were enriched with linoleic acid. Studies with radioactive arachidonic acid indicated that the distribution of prostaglandin metabolites was not affected appreciably by linoleic acid enrichment. These findings suggest that at least two factors contribute to the increased capacity of the cultures supplemented with linoleate to produce PGE(2). One is enrichment of the phospholipid substrate pools with arachidonic acid. The other is an increased ability of the cells to synthesize PGE(2) from unesterified arachidonic acid, perhaps because the prostaglandin-forming enzymes are more active.-Denning, G. M., P. H. Figard, and A. A. Spector. Effect of fatty acid modification on prostaglandin production by cultured 3T3 cells.  相似文献   

5.
Guanylate cyclase (EC 4.6.1.2) of synaptic plasma membranes of rat cerebral cortex was stimulated about 6-fold by several unsaturated fatty acids (arachidonic, linolenic, linoleic, oleic, palmitoleic and myristoleic acid). Ricinoleic acid (12-hydroxyoleic acid) was much less effective. Saturated fatty acids (C10 and C14-C20) and the methylester of linoleic acid were ineffective. Stimulation by linoleic acid was influenced by the concentration of enzyme protein. At 480 μg/ml of protein 0.6 mm -linoleic acid produced maximal activation of 6-fold_ Activity stimulated by linoleic acid examined with 1.0 mm -GTP was maximal at pH 7.8-7.9 and with 2 mm -MnCl2, whereas basal activity showed broad optimal pH and Mn2+-concentration dependence. Activation of the enzyme by linoleic acid was only partially reversed by washing. Particulate guanylate cyclase of heart, small intestine, adrenal medulla, liver and lung was also activated by linoleic acid. The extents of activation (1.5-14.7-fold) by linoleic acid and the concentrations (0.2-1.0 mat) required for maximal activation depended on the tissues.  相似文献   

6.
Diets containing linoleic acid at 10, 25 and 45% of total dietary fatty acids were fed to three groups of post-smolt Atlantic salmon (Salmo salar) for 18 weeks. Incorporation of linoleic acid into membrane phospholipids of leucocytes and gills increased in response to dietary intake. In general, there was an increase in arachidonic acid and a decrease in eicosapentaenoic acid in the individual phospholipids of both cell types in response to increasing dietary linoleic acid. These changes in eicosanoid precursors were reflected in significantly increased plasma concentrations of 6-keto-PGF1 alpha and TXB2 in salmon given the highest dietary linoleic acid. In whole blood stimulated with the calcium ionophore A23187, LTB4, 12-HETE and TXB2 were significantly increased and 12-HEPE significantly decreased in response to increasing dietary linoleic acid. In isolated gill cells stimulated with A23187, 12-HEPE, 12-HETE, 14-HDHE and TXB2 were all decreased in response to increasing dietary linoleic acid, although the ratio of 12-HEPE/12-HETE was also decreased.  相似文献   

7.
We investigated in bile duct-ligated (BDL) and sham-operated control rats whether the frequent presence of essential fatty acid deficiency in cholestatic liver disease could be related to linoleic acid malabsorption, altered linoleic acid metabolism, or both. In plasma of BDL rats, the triene-to-tetraene ratio, a biochemical marker for essential fatty acid deficiency, was increased compared with controls (0.024 +/- 0.004 vs. 0.013 +/- 0.001; P < 0.05). Net and percentage of dietary linoleic acid absorbed were decreased in BDL rats compared with control rats (1.50 +/- 0.16 mmol/day and 81.3 +/- 3.3% vs. 2.08 +/- 0.07 mmol/day and 99.2 +/- 0.1%, respectively; each P < 0.001). At 24 h after [(13)C]linoleic acid administration, BDL rats had a similar ratio of plasma [(13)C]arachidonic acid to plasma [(13)C]linoleic acid concentration compared with control rats. Delta(6)-Desaturase activity was not significantly different in hepatic microsomes from control or BDL rats. At 3 h after [(13)C]linoleic acid administration, plasma appearance of [(13)C]linoleic acid and cumulative expiration of (13)CO(2) were decreased in BDL rats, compared with controls (by 54% and 80%, respectively). The present data indicate that the impaired linoleic acid status in cholestatic liver disease is mainly due to decreased net absorption and not to quantitative alterations in postabsorptive metabolism.  相似文献   

8.
Calcium-translocating activity of linoleic acid and its lipoxygenase (linoleate: oxygen oxidoreductase; EC 1.13.11.12) metabolites or autoxidation products was determined in vitro by estimation of 45Ca transport from a bulk aqueous to a bulk organic phase. Fresh commercial linoleic acid, tested immediately after removal from a sealed vial, stimulated calcium translocation only at concentrations greater than 1 mM. In contrast, 45Ca translocation by linoleic acid exposed to air was detectable at 10 microM. Oxidation products of linoleic acid obtained either by incubation with lipoxygenase or by autoxidation were much less potent than the calcium ionophore A23187. The products obtained by enzymic oxidation of linoleic acid enhanced contractility in the Langendorff-perfused guinea pig heart up to 45% over control (at 3 X 10(-8) M). The inotropic response was transient with rapid onset and not affected by the beta-adrenergic antagonist, propranolol. The autoxidation products of linoleic acid increased cardiac contractility up to 43% at 10(-6) M. In contrast, fresh linoleic acid caused only a negative inotropic effect at 10(-8) to 3 X 10(-7) M, progressing to contracture at 10(-6) M. These findings suggest that conflicting reports on the cardiostimulant effect of linoleic acid may be due to varying levels of the autoxidation products. Linoleic acid metabolites in vivo may have a physiological role in myocardial function related to their Ca2+-ionophoric activity.  相似文献   

9.
The alterations by peroxisome proliferators of metabolism of linoleic acid in rat liver were studied. Administration of P-chlorophenoxyisobutyric acid (clofibric acid) enhanced in vivo conversion of linoleic acid to its desaturated and/or elongated metabolites, 6,9,12-octadecatrienoic acid, 8,11,14-eicosatrienoic acid, and arachidonic acid, whereas the formation of 11,14-eicosadienoic acid was decreased. These changes observed in vivo were confirmed in vitro to be due to the increases in activities of delta 6 desaturation of linoleic acid to 6,9,12-octadecatrienoic acid (18.4 times), delta 8 desaturation of 11,14-eicosadienoic acid to 8,11,14-eicosatrienoic acid (3.4 times), and delta 5 desaturation of 8,11,14-eicosatrienoic acid to arachidonic acid (4.1 times). No considerable changes in activities of chain elongation of either linoleic acid or 6,9,12-octadecatrienoic acid were observed. The increases in the activities of three desaturations by clofibric acid were prevented by the treatment of rats with cycloheximide. The inductions of delta 6 and delta 5 desaturations were brought about by the treatment of rats with 2,2'-(decamethylenedithio)diethanol or di-(2-ethylhexyl)-phthalate, peroxisome proliferators structurally unrelated to clofibric acid, as well. These changes in metabolism of linoleic acid by clofibric acid were consistent with the changes in mass proportion of omega 6 fatty acids in hepatic lipid. Physiological significance of the marked changes in linoleic acid metabolism by peroxisome proliferators was discussed.  相似文献   

10.
The origin of arachidonic acid (AA) found in the epidermis is not known. Two possibilities exist: either de novo synthesis within the epidermal keratinocyte, or transport of AA formed at distant tissue sites. The current study examined the ability of cultured murine and human keratinocytes to metabolize exogenously added linoleic acid (LA). Conversion of radiolabeled substrate (14C-LA) into 18:3(n-6), 20:2(n-6), 20:3(n-6), and 20:4(n-6) (AA) was noted. The conversion of non-radiolabeled 18:3(n-6) or 20:2(n-6) was also examined and the pattern of metabolites synthesized suggests that the preferred metabolic pathway for conversion of linoleic acid into arachidonic acid is via the classically described pathway in which a delta 6 desaturase constitutes the initial reaction. Although cultured skin fibroblasts are known to convert linoleic acid into arachidonic acid, the current study demonstrates that cultured epidermal keratinocytes can also avidly metabolize exogenous linoleic acid. The ability of cultured keratinocytes, and not of whole epidermis in vivo, to convert linoleic acid into arachidonic acid suggests that specific enzymatic activities may be induced by the tissue culture system itself. Hence, findings of metabolic capabilities in cultured cells may not necessarily be extrapolated to the in vivo situation.  相似文献   

11.
Sciadonic acid (20:3 Delta-5,11,14) and juniperonic acid (20:4 Delta-5,11,14,17) are polyunsaturated fatty acids (PUFAs) that lack the Delta-8 double bond of arachidonic acid (20:4 Delta-5,8,11,14) and eicosapentaenoic acid (20:5 Delta-5,8,11,14,17), respectively. Here, we demonstrate that these conifer oil-derived PUFAs are metabolized to essential fatty acids in animal cells. When Swiss 3T3 cells were cultured with sciadonic acid, linoleic acid (18:2 Delta-9,12) accumulated in the cells to an extent dependent on the concentration of sciadonic acid. At the same time, a small amount of 16:2 Delta-7,10 appeared in the cellular lipids. Both 16:2 Delta-7,10 and linoleic acid accumulated in sciadonic acid-supplemented CHO cells, but not in peroxisome-deficient CHO cells. We confirmed that 16:2 Delta-7,10 was effectively elongated to linoleic acid in rat liver microsomes. These results indicate that sciadonic acid was partially degraded to 16:2 Delta-7,10 by two cycles of beta-oxidation in peroxisomes, then elongated to linoleic acid in microsomes. Supplementation of Swiss 3T3 cells with juniperonic acid, an n-3 analogue of sciadonic acid, induced accumulation of alpha-linolenic acid (18:3 Delta-9,12,15) in cellular lipids, suggesting that juniperonic acid was metabolized in a similar manner to sciadonic acid. This PUFA remodeling is thought to be a process that converts unsuitable fatty acids into essential fatty acids required by animals.  相似文献   

12.
Human lipid intake contains various amounts of trans fatty acids. Refined vegetable and frying oils, rich in linoleic acid and/or alpha-linolenic acid, are the main dietary sources of trans-18:2 and trans-18:3 fatty acids. The aim of the present study was to compare the oxidation of linoleic acid, alpha-linolenic acid, and their major trans isomers in human volunteers. For that purpose, TG, each containing two molecules of [1-(13)C]linoleic acid, alpha-[1-(13)C]linolenic acid, [1-(13)C]-9cis,12trans-18:2, or [1-(13)C]-9cis,12cis,15trans-18:3, were synthesized. Eight healthy young men ingested labeled TG mixed with 30 g of olive oil. Total CO(2) production and (13)CO(2) excretion were determined over 48 h. The pattern of oxidation was similar for the four fatty acids, with a peak at 8 h and a return to baseline at 24 h. Cumulative oxidation over 8 h of linoleic acid, 9cis,12trans-18:2, alpha-linolenic acid, and 9cis,12cis,15trans-18:3 were, respectively, 14.0 +/- 4.1%, 24.7 +/- 6.7%, 23.6 +/- 3.3%, and 23.4 +/- 3.7% of the oral load, showing that isomerization increases the postprandial oxidation of linoleic acid but not alpha-linolenic acid in men.  相似文献   

13.
Forty-eight cows Holstein Friesian x Dutch Friesian (HF x DF) were randomly assigned to 2 groups fed 1 of 2 diets (isocaloric and isonitrogenous but different in linoleic/linolenic acid ratio) from 4 wk before expected parturition until 7 d after calving. Effects of the diet on plasma linoleic/linolenic acid ratio, plasma PGFM levels and placental explusion rate were studied. Dietary treatment resulted in significant differences in linoleic/linolenic acid ratio in blood plasma (1.00 +/- .22 vs 4.41 +/- .53). The placental expulsion rate was not significantly different between the 2 treatment groups. Plasma PGFM levels, as analyzed for 28 cows from 30 d before parturition until 1.5 d after parturition, were similar for the diets. Cows with a longer placental expulsion rate had lower PGFM levels at parturition (for instance, placental expulsion rate shorter (n = 11) and longer (n = 17) than 6 h, 1248 vs 2965 pg/ml, residual standard deviation 1185 pg/ml, P < 0.01). The results show that the dietary linoleic/linolenic acid ratio can influence the plasma linoleic/linolenic acid ratio without affecting the placental expulsion rate or plasma PGFM levels around parturition.  相似文献   

14.
Optical and EPR studies indicate that the iron present in lipoxygenase participates in catalysis. Addition of linoleic acid hydroperoxide to lipoxygenase 1 causes an increase in abosrbance over the range of 350 to 650 nm which is reversed when linoleic acid hydroperoxide is destroyed upon the addition of linoleic acid under anaerobic conditions. Lipoxygenase 1 alone exhibits no EPR signal but upon addition of linoleic acid hydroperoxide or linoleic acid several signals appear. Addition of linoleic acid hydroperoxide results in an EPR signal at g approximately equal to 6 accompanied by a small but relatively sharp signal at g approximately equal to 2. Under anaerobic conditions the latter is replaced by a broad anisotropic signal around g approximately equal to 2. The appearance of the EPR signal at g approximately equal to 6 coincides with the change in the optical spectrum of the enzyme. When linoleic acid is added under anaerobic conditions a broad anisotropic EPR signal around g approximately equal to 2 is observed. Thus it appears that lipoxygenase can exist in two forms: (a) a resting form with a very weak absorbance in the visible range of the light spectrum and no EPR signal and (b) an active form (after addition of linoleic acid hydroperoxide) with an increased optical absorbance and EPR signal at g approximately equal to 6. This observation may be related to the earlier discovery that the lipoxygenase reaction occurs with a lag which can be overcome by addition of product hydroperoxide. The EPR experiments indicate that lipoxygenase in the active form contains high spin ferric ion. Although EPR signals in the g approximately equal to 6 region are frequently observed with heme proteins, the only nonheme protein, other than lipoxygenase, reported to show an EPR signal in this region is the phenolytic dioxygenase, protocatechuate 3,4-dioxygenase (Peisach, J., Fujisawa, H., Blumberg, W. E., and Hayaishi, O. (1972) Fed. Proc. 31, 448).  相似文献   

15.
Dietary medium chain fatty acids (MCFA) and linoleic acid follow different metabolic routes, and linoleic acid activates PPAR receptors. Both these mechanisms may modify lipoprotein and fatty acid metabolism after dietary intervention. Our objective was to investigate how dietary MCFA and linoleic acid supplementation and body fat distribution affect the fasting lipoprotein subclass profile, lipoprotein kinetics, and postprandial fatty acid kinetics. In a randomized double blind cross-over trial, 12 male subjects (age 51±7 years; BMI 28.5±0.8 kg/m2), were divided into 2 groups according to waist-hip ratio. They were supplemented with 60 grams/day MCFA (mainly C8:0, C10:0) or linoleic acid for three weeks, with a wash-out period of six weeks in between. Lipoprotein subclasses were measured using HPLC. Lipoprotein and fatty acid metabolism were studied using a combination of several stable isotope tracers. Lipoprotein and tracer data were analyzed using computational modeling. Lipoprotein subclass concentrations in the VLDL and LDL range were significantly higher after MCFA than after linoleic acid intervention. In addition, LDL subclass concentrations were higher in lower body obese individuals. Differences in VLDL metabolism were found to occur in lipoprotein lipolysis and uptake, not production; MCFAs were elongated intensively, in contrast to linoleic acid. Dietary MCFA supplementation led to a less favorable lipoprotein profile than linoleic acid supplementation. These differences were not due to elevated VLDL production, but rather to lower lipolysis and uptake rates.  相似文献   

16.
Functional characterization of the fatty acid desaturase genes and seed-specific promoters is prerequisite for altering the unsaturated fatty acid content of oilseeds by genetic manipulation. The ω-6 fatty acid desaturase (FAD2) and ω-3 fatty acid desaturase (FAD3) catalyze extra-plastidial desaturation of oleic acid to linoleic acid and linoleic acid to linolenic acid, respectively. These are major constituents in seed storage oils. Here, we report the complementation of a perilla linoleic acid desaturase (PrFAD3) cDNA under the seed-specific sesame FAD2 (SeFAD2) promoter in the Arabidopsis fad3 mutant. PrFAD3 is functionally active and the SeFAD2 promoter is applicable for modifying fatty acid composition in developing seeds. Transient expression of the GUS gene under that promoter in the developing seeds and leaves of sesame, soybean, and corn via microprojectile bombardment indicated that the SeFAD2 promoter likely will be useful for altering the seed phenotypes of dicot and monocot crops.  相似文献   

17.
Sunflower oil with high oleic acid content is in great demand due to its nutritional as well as industrial benefits. The trait is mainly controlled by dominant alleles at a major gene, Ol, with other modifiers. The objectives of this research were to map the oil content, oleic acid and linoleic acid content in sunflower seeds. An F2 mapping population from cytoplasmic male-sterile line COSF 7A (33–35 % oleic acid) and high oleic acid inbred line HO 5–13 (88–90 % oleic acid) was developed and phenotyped for oil content, oleic acid and linoleic acid content at the F2 seed level. High phenotypic and genotypic coefficients of variation were recorded for oleic acid and linoleic acid content. High heritability and high genetic advance as percent of mean was recorded for oleic acid and linoleic acid content. This indicated the presence of the additive type of gene action controlling the traits oleic acid content and linoleic acid content. The Ol gene was mapped to linkage group (LG) 14 and tightly linked to the marker HO_Fsp_b. In addition, two more quantitative trait loci (QTLs) for oleic acid content were identified in LG8 and LG9. Two QTLs for oil content and two QTLs for linoleic acid content were also identified. All these QTLs explained over 10 % of phenotypic variation. A study was conducted with 13 genotypes differing in oil quality as well as quantity over three seasons to assess the reliability of the identified QTLs over seasons. It resulted in the identification of two potential QTLs for oleic acid as well as linoleic acid content with the markers ORS 762 and HO_Fsp_b. These markers explained more than 57.6–66.6 % of phenotypic variation. Hence it can be concluded that these markers/QTLs would be useful in the marker-assisted selection breeding programme to improve oil quality. The present study also indicated the presence of at least two other genomic regions controlling oleic and linoleic acid content in sunflower.  相似文献   

18.
Hepatic metabolism of long-chain fatty acids were studied in young male rats fed a semisynthetic diet containing 20% (w/w) partially hydrogenated fish oil (PHFO)2, with or without 2% (w/w) linoleic acid. The enzymic activities involved in the formation and breakdown of long-chain acyl-CoA were both increased in the animals fed the semisynthetic diet, compared to pellet-fed control animals. Thus, the specific palmitoyl-CoA synthetase activity increased slightly in both the mitochondrial (1.4-fold) and the microsomal (1.6-fold) fractions. In the peroxisome-enriched fraction the activity was increased (about 2.6-fold) only on addition of linoleic acid to the diet. The data are consistent with an increased catabolism of long-chain fatty acids by a peroxisomal and a mitochondrial pathway. Thus, the total carnitine palmitoyltransferase activity increased 2-fold in the mitochondrial fraction, and was partly prevented by added linoleic acid. Peroxisomal beta-oxidation activity was also increased (about 7-fold) in livers of PHFO-fed rats, but did not change when linoleic acid was added. The PHFO-fed rats also revealed elevated capacity for hydrolysis of palmitoyl-CoA in both the mitochondrial (2.4-fold) and the cytosolic (2.0-fold) fractions and the latter was almost completely and selectively prevented by added linoleic acid. The s values of mitochondria and peroxisomes varied with the dietary regime, and some of the observed changes in the specific activities of the fatty acid metabolizing enzymes with multiple subcellular localization can be explained as an effect of changes in the s values of the organelles. Thus, the s value of mitochondria increased 1.8-fold as a result of PHFO feeding, but was fully prevented by linoleic acid in the diet. On the other hand, the s values of peroxisomes decreased by about 50% on feeding a PHFO diet, and by about 25% with added linoleic acid.  相似文献   

19.
We investigated the effects of stearic acid (saturated), oleic acid (monounsaturated), linoleic acid (n-6 polyunsaturated), and alpha-linolenic acid (n-3 polyunsaturated) on lipid metabolism in a hepatocyte-derived cell line, HepG2. HepG2 cells were cultured in medium supplemented with either stearic acid (0.1% w/v), oleic acid (0.1% v/v), linoleic acid (0.1% v/v), or alpha-linolenic acid (0.1% v/v). After 24 h, expression of lipid metabolism-associated genes was evaluated by real-time PCR. Alpha-linolenic acid showed a suppressive effect on the hepatic fatty acid de novo synthesis and fatty acid oxidation pathways, while linoleic acid also showed a tendency to suppress these pathways although the effect was weaker. Moreover, alpha-linolenic acid enhanced the expression of enzymes associated with reactive oxygen species (ROS) elimination. In contrast, oleic acid tended to promote fatty acid synthesis and oxidation. In conclusion, alpha-linolenic acid and linoleic acid may be expected to ameliorate hepatic steatosis by downregulating fatty acid de novo synthesis and fatty acid oxidation, and by upregulating ROS elimination enzymes. Oleic acid had no distinct effects for improving steatosis or oxidative stress.  相似文献   

20.
The cytosolic fraction of human polymorphonuclear leukocytes precipitated with 60% ammonium sulfate produced 5-lipoxygenase products from [14C]arachidonic acid and omega-6 lipoxygenase products from both [14C]linoleic acid and, to a lesser extent, [14C]- and [3H]arachidonic acid. The arachidonyl 5-lipoxygenase products 5-hydroperoxy-6,8,11,14-eicosatetraenoic acid (5-HPETE) and 5-hydroxy-6,8,11,14-eicosatetraenoic acid (5-HETE) derived from [14C]arachidonic acid, and the omega-6 lipoxygenase products 13-hydroperoxy-9,11-octadecadienoic acid (13-OOH linoleic acid) and 13-hydroxy-9,11-octadecadienoic acid (13-OH linoleic acid) derived from [14C]linoleic acid and 15-hydroxyperoxy-5,8,11,13-eicosatetraenoic acid (15-HPETE), and 15-hydroxy-5,8,11,13-eicosatetraenoic acid (15-HETE) derived from [14C]- and [3H]arachidonic acid were identified by TLC-autoradiography and by reverse-phase high-performance liquid chromatography (RP-HPLC). Products were quantitated by counting samples that had been scraped from replicate TLC plates and by determination of the integrated optical density during RP-HPLC. The arachidonyl 5-lipoxygenase had a pH optimum of 7.5 and was 50% maximally active at a Ca2+ concentration of 0.05 mM; the Km for production of 5-HPETE/5-HETE from arachidonic acid was 12.2 +/- 4.5 microM (mean +/- S.D., n = 3), and the Vmax was 2.8 +/- 0.9 nmol/min X mg protein (mean +/- S.D., n = 3). The omega-6 linoleic lipoxygenase had a pH optimum of 6.5 and was 50% maximally active at a Ca2+ concentration of 0.1 mM in the presence of 5 mM EGTA. When the arachidonyl 5-lipoxygenase and the omega-6 lipoxygenase were separated by DEAE-Sephadex ion exchange chromatography, the omega-6 lipoxygenase exhibited a Km of 77.2 microM and a Vmax of 9.5 nmol/min X mg protein (mean, n = 2) for conversion of linoleic acid to 13-OOH/13-OH linoleic acid and a Km of 63.1 microM and a Vmax of 5.3 nmol/min X mg protein (mean, n = 2) for formation of 15-HPETE/15-HETE from arachidonic acid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号