首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Muscle-specific kinase (MuSK) is a receptor tyrosine kinase expressed exclusively in skeletal muscle, where it is required for formation of the neuromuscular junction. MuSK is activated by agrin, a neuron-derived heparan sulfate proteoglycan. Here, we report the crystal structure of the agrin-responsive first and second immunoglobulin-like domains (Ig1 and Ig2) of the MuSK ectodomain at 2.2 A resolution. The structure reveals that MuSK Ig1 and Ig2 are Ig-like domains of the I-set subfamily, which are configured in a linear, semi-rigid arrangement. In addition to the canonical internal disulfide bridge, Ig1 contains a second, solvent-exposed disulfide bridge, which our biochemical data indicate is critical for proper folding of Ig1 and processing of MuSK. Two Ig1-2 molecules form a non-crystallographic dimer that is mediated by a unique hydrophobic patch on the surface of Ig1. Biochemical analyses of MuSK mutants introduced into MuSK(-/-) myotubes demonstrate that residues in this hydrophobic patch are critical for agrin-induced MuSK activation.  相似文献   

2.
The muscle-specific receptor tyrosine kinase (MuSK) forms part of a receptor complex, activated by nerve-derived agrin, that orchestrates the differentiation of the neuromuscular junction (NMJ). The molecular events linking MuSK activation with postsynaptic differentiation are not fully understood. In an attempt to identify partners and/or effectors of MuSK, cross-linking and immunopurification experiments were performed in purified postsynaptic membranes from the Torpedo electrocyte, a model system for the NMJ. Matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) analysis was conducted on both cross-link products, and on the major peptide coimmunopurified with MuSK; this analysis identified a polypeptide corresponding to the COOH-terminal fragment of membrane-associated guanylate kinase (MAGUK) with inverted domain organization (MAGI)-1c. A bona fide MAGI-1c (150 kD) was detected by Western blotting in the postsynaptic membrane of Torpedo electrocytes, and in a high molecular mass cross-link product of MuSK. Immunofluorescence experiments showed that MAGI-1c is localized specifically at the adult rat NMJ, but is absent from agrin-induced acetylcholine receptor clusters in myotubes in vitro. In the central nervous system, MAGUKs play a primary role as scaffolding proteins that organize cytoskeletal signaling complexes at excitatory synapses. Our data suggest that a protein from the MAGUK family is involved in the MuSK signaling pathway at the vertebrate NMJ.  相似文献   

3.
Agrin induces the formation of specializations on chick myotubes in culture at which several components of the postsynaptic apparatus accumulate, including acetylcholine receptors (AChRs). Agrin also induces AChR phosphorylation. Several lines of evidence suggest that agrininduced phosphorylation of tyrosine residues in the β subunit of the AChR is an early step in receptor aggregation: agrin-induced phosphorylation and aggregation have the same dose dependence; treatments that prevent aggregation block phosphorylation; phosphorylation begins before any detectable change in receptor distribution, reaches a maximum hours before aggregation is complete, and declines slowly together with the disappearance of aggregates after agrin is withdrawn; agrin slows the rate at which receptors are solubilized from intact myotubes by detergent extraction; and the change in receptor extractability parallels the change in phosphorylation. A model for agrin-induced AChR aggregation is presented in which phosphorylation of AChRs by an agrin-activated protein tyrosine kinase causes receptors to become attached to the cytoskeleton, which reduces their mobility and detergent extractability, and leads to the accumulation of receptors in the vicinity of the activated kinase, forming an aggregate. © 1992 John Wiley & Sons, Inc.  相似文献   

4.
Agrin released from motor nerve terminals activates a muscle-specific receptor tyrosine kinase (MuSK) in muscle cells to trigger formation of the skeletal neuromuscular junction. A key step in synaptogenesis is the aggregation of acetylcholine receptors (AChRs) in the postsynaptic membrane, a process that requires the AChR-associated protein, rapsyn. Here, we mapped domains on MuSK necessary for its interactions with agrin and rapsyn. Myotubes from MuSK(-/)- mutant mice form no AChR clusters in response to agrin, but agrin-responsiveness is restored by the introduction of rat MuSK or a Torpedo orthologue. Thus, MuSK(-/)- myotubes provide an assay system for the structure-function analysis of MuSK. Using this system, we found that sequences in or near the first of four extracellular immunoglobulin-like domains in MuSK are required for agrin responsiveness, whereas sequences in or near the fourth immunoglobulin-like domain are required for interaction with rapsyn. Analysis of the cytoplasmic domain revealed that a recognition site for the phosphotyrosine binding domain-containing proteins is essential for MuSK activity, whereas consensus binding sites for the PSD-95/Dlg/ZO-1-like domain-containing proteins and phosphatidylinositol-3-kinase are dispensable. Together, our results indicate that the ectodomain of MuSK mediates both agrin- dependent activation of a complex signal transduction pathway and agrin-independent association of the kinase with other postsynaptic components. These interactions allow MuSK not only to induce a multimolecular AChR-containing complex, but also to localize that complex to a primary scaffold in the postsynaptic membrane.  相似文献   

5.
At the developing neuromuscular junction, a motoneuron-derived factor called agrin signals through the muscle-specific kinase receptor to induce postsynaptic aggregation of the acetylcholine receptor (AChR). The agrin signaling pathway involves tyrosine phosphorylation of the AChR beta subunit, and we have tested its role in receptor localization by expressing tagged, tyrosine-minus forms of the beta subunit in mouse Sol8 myotubes. We find that agrin-induced phosphorylation of the beta subunit occurs only on cell surface AChR, and that AChR-containing tyrosine-minus beta subunit is targeted normally to the plasma membrane. Surface AChR that is tyrosine phosphorylated is less detergent extractable than nonphosphorylated AChR, indicating that it is preferentially linked to the cytoskeleton. Consistent with this, we find that agrin treatment reduces the detergent extractability of AChR that contains tagged wild-type beta subunit but not tyrosine-minus beta subunit. In addition, agrin-induced clustering of AChR containing tyrosine-minus beta subunit is reduced in comparison to wild-type receptor. Thus, we find that agrin-induced phosphorylation of AChR beta subunit regulates cytoskeletal anchoring and contributes to the clustering of the AChR, and this is likely to play an important role in the postsynaptic localization of the receptor at the developing synapse.  相似文献   

6.
We previously demonstrated several nicotinic acetylcholine receptor (nAChR) subunits and associated proteins in human sperm. Here, we identified in sperm for the first time two additional nAChR-associated molecules: (1) agrin(SN)Z(+) in human sperm localized in the posterior post-acrosomal, neck, and flagellar mid-piece regions; (2) a low-molecular weight isoform of muscle-specific receptor tyrosine kinase in human and mouse sperm localized in the flagellar mid-piece of human sperm.  相似文献   

7.
Muscle-specific kinase (MuSK) is an essential receptor tyrosine kinase for the establishment and maintenance of the neuromuscular junction (NMJ). Activation of MuSK by agrin, a neuronally derived heparan-sulfate proteoglycan, and LRP4 (low-density lipoprotein receptor-related protein-4), the agrin receptor, leads to clustering of acetylcholine receptors on the postsynaptic side of the NMJ. The ectodomain of MuSK comprises three immunoglobulin-like domains and a cysteine-rich domain (Fz-CRD) related to those in Frizzled proteins, the receptors for Wnts. Here, we report the crystal structure of the MuSK Fz-CRD at 2.1 Å resolution. The structure reveals a five-disulfide-bridged domain similar to CRDs of Frizzled proteins but with a divergent C-terminal region. An asymmetric dimer present in the crystal structure implicates surface hydrophobic residues that may function in homotypic or heterotypic interactions to mediate co-clustering of MuSK, rapsyn, and acetylcholine receptors at the NMJ.  相似文献   

8.
Neurotrophins are usually viewed as secreted proteins that control long-term survival and differentiation of neurons. However, recent studies have established that among the most important functions of neurotrophins is their capacity to regulate synaptic functions and plasticity. When altering synaptic function, neurotrophins are able to produce two types of outcomes, an immediate effect on synaptic transmission and long-term control of synaptic structure and function. The first effect occurs within seconds or minutes after the neurotrophic factor has been applied and usually involves acute modification of synaptic transmission. The second effect takes hours and days, as protein synthesis is required to complete the structural changes. Neurotrophins and their receptors are expressed within the neuromuscular system, making these agents ideal candidates for the short-and long-term regulation of skeletal muscle function. For instance, neurotrophins can alter neuromuscular function acutely, by modulating the amount of neurotransmitter released with each nerve impulse, or chronically, by changing postsynaptic properties or the content and size of synaptic vesicles. It is obvious that the effects of neurotrophins depend on the specific neurotrophin involved (four neurotrophins have been found in mammals; these are nerve growth factor, brain-derived neurotrophic factor, and neurotrophins-3 and-4) and on the specific synapse being studied. Growing evidence highlights the role of neurotrophins in the development and function of neuromuscular synapses. This review will examine the role of neurotrophins in the regulation of neuromuscular transmission. Neirofiziologiya/Neurophysiology, Vol. 39, Nos. 4/5, pp. 327–337, July–October, 2007.  相似文献   

9.
d -Serine, the endogenous ligand for the glycine modulatory binding site of the NMDA receptor, and serine racemase, the enzyme that converts l -serine to d -serine, have been reported in vertebrate retina; initial reports suggested that localization was restricted to Müller glial cells. Recent reports, in which d -serine and serine racemase were detected in neurons of the brain, prompted the present investigation of neuronal expression of d -serine and serine racemase in retina and whether expression patterns were developmentally regulated. RT-PCR, in situ hybridization, western blotting, immunohistochemistry, and immunocytochemical methods were used to localize d -serine and serine racemase in intact retina obtained from 1 to 3 day, 3 week, and 18 week mouse retinas and in primary ganglion cells harvested by immunopanning from neonatal mouse retina. Results of these analyses revealed robust expression of d -serine and serine racemase in ganglion cells, both in intact retina and in cultured cells. The levels appear to be developmentally regulated with d -serine levels being quite high in ganglion cells of neonatal retinas and decreasing rapidly postnatally. Serine racemase levels are also developmentally regulated, with high levels detected during the early postnatal period, but diminishing considerably in the mature retina. This represents the first report of neuronal expression of d -serine and serine racemase in the vertebrate retina and suggests an important contribution of neuronal d -serine during retinal development.  相似文献   

10.
11.
Aggregation of acetylcholine receptors (AChRs) in muscle fibers by nerve-derived agrin plays a key role in the formation of neuromuscular junctions. So far, the effects of agrin on muscle fibers have been studied in culture systems, transgenic animals, and in animals injected with agrin--cDNA constructs. We have applied purified recombinant chick neural and muscle agrin to rat soleus muscle in vivo and obtained the following results. Both neural and muscle agrin bind uniformly to the surface of innervated and denervated muscle fibers along their entire length. Neural agrin causes a dose-dependent appearance of AChR aggregates, which persist > or = 7 wk after a single application. Muscle agrin does not cluster AChRs and at 10 times the concentration of neural agrin does not reduce binding or AChR-aggregating activity of neural agrin. Electrical muscle activity affects the stability of agrin binding and the number, size, and spatial distribution of the neural agrin--induced AChR aggregates. Injected agrin is recovered from the muscles together with laminin and both proteins coimmunoprecipitate, indicating that agrin binds to laminin in vivo. Thus, the present approach provides a novel, simple, and efficient method for studying the effects of agrin on muscle under controlled conditions in vivo.  相似文献   

12.
We have tested the hypothesis that activation of the insulin receptor tyrosine kinase is due to autophosphorylation of tyrosines 1146, 1150 and 1151 within a putative autoinhibitory domain. A synthetic peptide corresponding to residues 1134–1162, with tyrosines substituted by alanine or phenylalanine, of the insulin receptor subunit was tested for its inhibitory potency and specificity towards the tyrosine kinase activity. This synthetic peptide gave inhibition of the insulin receptor tyrosine kinase autophosphorylation and phosphorylation of the exogenous substrate poly(Glu, Tyr) with an approximate IC50 of 100 M. Inhibition appeared to be independent of the concentrations of insulin or the substrate poly(Glu, Tyr) but was decreased by increasing concentrations of ATP. This same peptide also inhibited the EGF receptor tyrosine kinase but not a serine/threonine protein kinase. These results are consistent with the hypothesis that this autophosphorylation domain contains an autoinhibitory sequence. (Mol Cell Biochem120: 103–110, 1993)Abbreviations IR Insulin Receptor - SDS/PAGE Sodium Dodecyl Sulfate Polyacrylamide Gel Electrophoresis - CaM Calmodulin - HEPES 4-(2-Hydroxyethyl)-Piperazineethane-Sulfonic Acid - DMEM Dulbecco's Modified Eagle' Medium - PMSF Phenylmethyl-Sulfonyl Fluoride - HPLC High Performance Liquid Chromatography - PKC Protein Kinase C - PKI Inhibitory Peptide for cAMP-Kinase - CaMK II Ca2+/Calmodulin-Dependent Protein Kinase II - CaN A A Subunit of Calcineurin  相似文献   

13.
Trophic deprivation contributes to astrocyte damage that occurs in acute and chronic neurodegenerative disorders. Unraveling the underlying mechanisms may pave way to novel cytoprotective strategies. Cultured mouse astrocytes responded to trophic deprivation with a large and transient increase in the expression of p21ras, which was secondary to an enhanced formation of reactive oxygen species (ROS) detected by cytofluorimetric analysis after preloading with 2',7'-dichlorofluorescein diacetate. The increase in p21ras levels was largely attenuated by the reducing agent, N -acetylcysteine, which was proven to reduce ROS formation in astrocytes subjected to serum deprivation. We extended the analysis to the Ha-Ras isoform, which has been implicated in mechanisms of cytotoxicity. We found that serum deprivation enhanced the expression and activity of Ha-Ras without changing Ha-Ras mRNA levels. The increase in Ha-Ras levels was sensitive to the protein synthesis inhibitor, cycloheximide, suggesting that serum deprivation increases translation of preformed Ha-Ras mRNA. The late decline in Ha-Ras levels observed after 60 min was prevented by the proteasome inhibitor, MG132, as well as by the selective mitogen-activated protein kinase (MAPK) inhibitor, PD98059. Serum deprivation led to the activation of the MAPK pathway in cultured astrocytes, as shown by an increase in phosphorylated extracellular signal-regulated kinase 1/2 levels after 5 and 30 min. Finally, using the siRNA technology, we found that an acute knock-down of Ha-Ras was protective against astrocyte damage induced by serum deprivation. We conclude that cultured astrocytes respond to trophic deprivation with an increased expression in Ha-Ras, which is limited by the concomitant activation of the MAPK pathway, but is nevertheless involved in the pathophysiology of cell damage.  相似文献   

14.
Glutamate is the major excitatory neurotransmitter in the CNS. Although its role in neurons has been studied extensively, little is known about its function in astrocytes. We studied the effects of glutamate on signaling pathways in primary astrocytes. We found that the tyrosine kinase related adhesion focal tyrosine kinase (RAFTK) is tyrosine phosphorylated in response to glutamate in a time- and dose-dependent manner. This phosphorylation was pertussis toxin (PTX) sensitive and could be attenuated by the depletion of Ca2+ from intracellular stores. RAFTK tyrosine phosphorylation was mediated primarily by class I/II metabotropic glutamate receptors and depends on protein kinase C (PKC) activation. Glutamate treatment of primary astrocytes also results in a significant increase in the activity of the mitogen-activated protein kinases [extracellular signal-related kinases 1/2 (ERK1/2)]. Like RAFTK phosphorylation, ERK1/2 activation is PTX sensitive and can be attenuated by the depletion of intracellular Ca2+ and by PKC inhibition, suggesting that RAFTK might mediate the glutamate-dependent activation of ERK1/2. Furthermore, we demonstrated that glutamate stimulation of primary astrocytes leads to a significant increase in DNA synthesis. Glutamate-stimulated DNA synthesis is PTX sensitive and can be inhibited by the MAP kinase kinase inhibitor PD98059, suggesting that in primary astrocytes, glutamate might signal via RAFTK and MAP kinase to promote DNA synthesis and cell proliferation.  相似文献   

15.
The epidermal growth factor receptor (EGFR) gives name to a family of receptors formed by four members in mammals (EGFR, ErbB2, ErbB3, and ErbB4). Members of this family can be activated to become potent oncogenes, and many human and animal tumors express qualitatively or quantitatively altered receptors from this group. We have isolated and characterized a second egfr gene in the melanoma model fish Xiphophorus. Both Xiphophorus egfra and egfrb duplicates are co-orthologs of the mammalian egfr gene. Database analysis showed that not only egfr but also erbB3 and erbB4 are present as duplicates in some fish species. They originated from ancient duplication events that might be consistent with the hypothesis of a fish-specific genome duplication. In Xiphophorus, the egfrb gene underwent a second duplication that generated the melanoma-inducing oncogene Xmrk. The study and comparison of some of the functional characteristics of both Xiphophorus EGF receptors, including expression profile, ligand-binding abilities, and intracellular signal transduction revealed that Xiphophorus Egfra not only shares common features with Egfrb and the human EGFR but also shows significant differences in its functional characteristics. The mechanism of maintenance of these duplicates remains to be clarified.  相似文献   

16.
Endozepines, a family of regulatory peptides related to diazepam-binding inhibitor (DBI), are synthesized and released by astroglial cells. Because rat astrocytes express various subtypes of somatostatin receptors (sst), we have investigated the effect of somatostatin on DBI mRNA level and endozepine secretion in rat astrocytes in secondary culture. Somatostatin reduced in a concentration-dependent manner the level of DBI mRNA in cultured astrocytes. This inhibitory effect was mimicked by the selective sst4 receptor agonist L803-087 but not by the selective sst1, sst2 and sst3 receptor agonists L779-591, L779-976 and L797-778, respectively. Somatostatin was unable to further reduce DBI mRNA level in the presence of the MEK inhibitor U0126. Somatostatin and the sst1, sst2 and sst4 receptor agonists induced a concentration-dependent inhibition of endozepine release. Somatostatin and the sst1, sst2 and sst4 receptor agonists also inhibited cAMP formation dose-dependently. In addition, somatostatin reduced forskolin-induced endozepine release. H89 mimicked the inhibitory effect of somatostatin on endozepine secretion. In contrast the PLC inhibitor U73122, the PKC activator PMA and the PKC inhibitor calphostin C had no effect on somatostatin-induced inhibition of endozepine release. The present data demonstrate that somatostatin reduces DBI mRNA level mainly through activation of sst4 receptors negatively coupled to the MAPK pathway, and inhibits endozepine release through activation of sst1, sst2 and sst4 receptors negatively coupled to the adenylyl cyclase/PKA pathway.  相似文献   

17.
18.
We have recently demonstrated that multiple signalling pathways are involved in thrombin-induced proliferation in rat astrocytes. Thrombin acts by protease-activated receptor-1 (PAR-1) via mitogen-activated protein kinase activity. Signalling includes both Gi/(betagamma subunits)-phosphatidylinositol 3-kinase and a Gq-phospholipase C/Ca2+/protein kinase C (PKC) pathway. In the present study, we investigated the possible protein tyrosine kinases which might be involved in thrombin signalling cascades. We found that, in astrocytes, thrombin can evoke phosphorylation of proline-rich tyrosine kinase (Pyk2) via PAR-1. This process is dependent on the increase in intracellular Ca2+ and PKC activity. Moreover, in response to thrombin stimulation Pyk2 formed a complex with Src tyrosine kinase and adapter protein growth factor receptor-bound protein 2 (Grb2), which could be coprecipitated. Furthermore, both thrombin-induced Pyk2 phosphorylation and extracellular signal-regulated kinase (ERK) 1/2 phosphorylation can be attenuated by Src kinase inhibitor 4-amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolo[3,4-d]pyrimidine. From these data we conclude that PAR-1 uses Ca2+- and PKC-dependent Pyk2 to activate Src, thereby leading to ERK1/2 activation, which predominantly recruits Grb2 in rat astrocytes.  相似文献   

19.
Comment on: Jensen M, et al. Cell 2012; 149:173-87.  相似文献   

20.
Possible distortions of images of an object by the layer of nerve cells have been analyzed. It has been shown that, based on microoscillations of the visual apparatus, it is possible to propose the procedures of processing the arising diffraction scattering spectra and isolating from these spectra initial images that do not contradict the available morphological and neurophysiological data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号