首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Resistance exercise increases heme synthesis in the bone marrow, but it does not improve the hemoglobin status in severe iron-deficient rats on a diet containing less than 5?mg iron/kg. The current study investigated whether resistance exercise could mitigate hemoglobin status via increasing heme synthesis in moderately iron-deficient rats. Male 4-week-old Sprague-Dawley rats were fed an iron-deficient diet containing 12?mg iron/kg for 3?weeks. The rats were divided into two groups: a sedentary (S) group (n?=?7) or an exercise (E) group (n?=?7). The rats in the E group performed a climbing exercise (5?min?×?6?sets/day, 3?days/week). The aminolevulinic acid dehydratase activity, hematocrit, and hemoglobin tended to be higher in group E than S. The iron content in the flexor hallucis longus muscle was significantly higher in E than S, whereas the content in the liver, spleen, kidney, and heart did not significantly differ between the groups. Therefore, resistance exercise appears to improve hemoglobin via increasing heme synthesis in the bone marrow in moderately iron-deficient rats.  相似文献   

2.
Resistance exercise increases heme synthesis in the bone marrow and the hemoglobin in iron-deficient rats. Post-exercise early nutrient provision facilitates skeletal muscle protein synthesis compared to late provision. However, the effects of post-exercise nutrition timing on hemoglobin synthesis are unclear. The current study investigated the effect of post-exercise meal timing on the activity of the key enzyme involved in hemoglobin synthesis, δ-aminolevulinic acid dehydratase (ALAD), in the bone marrow and examined the hemoglobin concentration in iron-deficient rats. Male 4-week-old Sprague-Dawley rats were fed an iron-deficient diet containing 12 mg iron/kg and performed climbing exercise (5 min × 6 sets/day, 3 days/week) for 3 weeks. The rats were divided into a group fed a post-exercise meal early after exercise (E) or a group fed the meal 4 h after exercise (L). A single bout of exercise performed after the 3-week training period increased the bone marrow ALAD activity, plasma iron concentration, and transferrin saturation. Although the plasma iron concentration and transferrin saturation were lower in the E group than the L group after a single bout of exercise, the basal hematocrit, hemoglobin, and TIBC after 3 weeks did not differ between the groups. Therefore, resistance exercise increases the bone marrow ALAD activity, while the post-exercise meal timing has no effect on the hemoglobin concentration in iron-deficient rats.  相似文献   

3.
Greater force produced with eccentric (ECC) compared to concentric (CONC) contractions, may comprise a stronger driver of muscle growth, which may be further augmented by protein supplementation. We investigated the effect of differentiated contraction mode with either whey protein hydrolysate and carbohydrate (WPH + CHO) or isocaloric carbohydrate (CHO) supplementation on regulation of anabolic signalling, muscle protein synthesis (MPS) and muscle hypertrophy. Twenty-four human participants performed unilateral isolated maximal ECC versus CONC contractions during exercise habituation, single-bout exercise and 12 weeks of training combined with WPH + CHO or CHO supplements. In the exercise-habituated state, p-mTOR, p-p70S6K, p-rpS6 increased by approximately 42, 206 and 213 %, respectively, at 1 h post-exercise, with resistance exercise per se; whereas, the phosphorylation was exclusively maintained with ECC at 3 and 5 h post-exercise. This acute anabolic signalling response did not differ between the isocaloric supplement types, neither did protein fractional synthesis rate differ between interventions. Twelve weeks of ECC as well as CONC resistance training augmented hypertrophy with WPH + CHO group compared to the CHO group (7.3 ± 1.0 versus 3.4 ± 0.8 %), independently of exercise contraction type. Training did not produce major changes in basal levels of Akt-mTOR pathway components. In conclusion, maximal ECC contraction mode may constitute a superior driver of acute anabolic signalling that may not be mirrored in the muscle protein synthesis rate. Furthermore, with prolonged high-volume resistance training, contraction mode seems less influential on the magnitude of muscle hypertrophy, whereas protein and carbohydrate supplementation augments muscle hypertrophy as compared to isocaloric carbohydrate supplementation .  相似文献   

4.
The bioavailable iron in many aquatic ecosystems is extremely low, and limits the growth and photosynthetic activity of phytoplankton. In response to iron limitation, a group of chlorophyll-binding proteins known as iron stress-induced proteins are induced and serve as accessory light-harvesting components for photosystems under iron limitation. In the present study, we investigated physiological features of Acaryochloris marina in response to iron-deficient conditions. The growth doubling time under iron-deficient conditions was prolonged to ~3.4 days compared with 1.9 days under normal culture conditions, accompanied with dramatically decreased chlorophyll content. The isolation of chlorophyll-binding protein complexes using sucrose density gradient centrifugation shows six main green bands and three main fluorescence components of 712, 728, and 748 nm from the iron-deficient culture. The fluorescence components of 712 and 728 nm co-exist in the samples collected from iron-deficient and iron-replete cultures and are attributed to Chl d-binding accessory chlorophyll-binding antenna proteins and also from photosystem II. A new chlorophyll-binding protein complex with its main fluorescence peak at 748 nm was observed and enriched in the heaviest fraction from the samples collected from the iron-deficient culture only. Combining western blotting analysis using antibodies of CP47 (PSII), PsaC (PSI) and IsiA and proteomic analysis on an excised protein band at ~37 kDa, the heaviest fraction (?F6) isolated from iron-deficient culture contained Chl d-bound PSI–IsiA supercomplexes. The PSII-antenna supercomplexes isolated from iron-replete conditions showed two fluorescence peaks of 712 and 728 nm, which can be assigned as 6-transmembrane helix chlorophyll-binding antenna and photosystem II fluorescence, respectively, which is supported by protein analysis of the fractions (F5 and F6).  相似文献   

5.
The present study aimed to investigate the possible effect of pulse-modulated radiofrequency radiation (RFR) on rat skin hydroxyproline content, since skin is the first target of external electromagnetic fields. Skin hydroxyproline content was measured using liquid chromatography mass spectrometer method. Two months old male wistar rats were exposed to a 900 MHz pulse-modulated RFR at an average whole body specific absorption rate (SAR) of 1.35 W/kg for 20 min/day for 3 weeks. The radiofrequency (RF) signals were pulse modulated by rectangular pulses with a repetition frequency of 217 Hz and a duty cycle of 1:8 (pulse width 0.576 ms). A skin biopsy was taken at the upper part of the abdominal costa after the exposure. The data indicated that whole body exposure to a pulse-modulated RF radiation that is similar to that emitted by the global system for mobile communications (GSM) mobile phones caused a statistically significant increase in the skin hydroxyproline level (p = 0.049, Mann–Whitney U test). Under our experimental conditions, at a SAR less than the International Commission on Non-Ionizing Radiation Protection safety limit recommendation, there was evidence that GSM signals could alter hydroxyproline concentration in the rat skin.  相似文献   

6.
Nitric Oxide (NO) plays an important role in iron redistribution during exercise, while its molecular regulatory mechanism is still not clear. Our present studies were to investigate the effects of NO on iron metabolism and to elucidate the regulatory mechanism of iron transport in skeletal muscle both in vivo and in vitro. One group of male Wistar rats (300 ± 10 g) were subjected to an exercise of 30 min on a treadmill for 5 weeks (exercise group, EG, 6 rats) and the other one was placed on the treadmill without running (control group, CG, 6 rats). The cultured L6 rat skeletal muscle cells were treated with either 0.5 mM SNAP (NO donor) or not for 24 h, and their iron release and intake amount were examined by measuring radiolabelled 55Fe. The results showed: (1) The NO content (CG, 1.09 ± 0.18 μmol/g vs. EG, 1.49 ± 0.17 μmol/g) and non-heme iron in gastrocnemius (CG, 118.35 ± 11.41 μg/g vs. EG, 216.65 ± 11.10 μg/g) of EG were significantly increased compared with CG. (2) The expression of DMT1 (IRE) and TfR1 of EG was increased. (3) The iron intake was increased in L6 cells treated with SNAP (P < 0.01). (4) Western blot results showed the protein level of both TfR1 and DMT1 (IRE) in SNAP cells were up-regulated, while the expression of FPN1 was down-regulated (P < 0.05). The data suggested that the induced elevation of NO level by exercise lead to the up-regulation of both TfR1 and DMT1 (IRE), which in turn increasing the iron absorption in skeletal muscle.  相似文献   

7.
Inflammasomes are protein complexes formed in response to tissue injury and inflammation to regulate the formation of proinflammatory cytokines. Nod-like receptor pyrin domain containing 3 (NLRP3) is one such inflammasome involved in pancreatic inflammation. Caspase activation recruitment domain (CARD) is an interaction motif found in all the major components of NLRP3 inflammasome such as apoptosis associated speck-like CARD containing protein (ASC) and procaspase-1. NLRP3 activates procaspase-1 with the concerted action of CARD domain of ASC. In the present study, the effect of rutin, a natural flavonoid on the expression of ASC of NLRP3, was investigated in rats treated with ethanol (EtOH) and cerulein (Cer). Male albino Wistar rats were divided into four groups. Groups 1 and 2 rats were fed normal diet, whereas groups 3 and 4 rats were fed EtOH (36 % of total calories) containing diet for a total period of 5 weeks and also administered Cer (20 µg/kg body weight i.p.) thrice weekly for the last 3 weeks. In addition, groups 2 and 4 rats received daily 100 mg/kg body weight of rutin from third week. Rutin co-administration significantly decreased the level of pancreatic marker enzymes, oxidative stress markers, inflammatory markers, mRNA expression of caspase-1, cytokines, ASC–NLRP3, and protein expression of caspase-1 and ASC in rats received EtOH–Cer. The results of the study revealed that rutin can reduce inflammation in pancreas probably by influencing the down regulation of ASC–NLRP3 which might result in the reduced activation of caspase-1 and controlled cytokine production.  相似文献   

8.
In this study, a central venous catheter (CVC)—associated infection model was established in rats to investigate and evaluate the effect of biofilms on the virulence of the pathogens. Twenty-four adult SD rats were randomly divided into biofilm positive (BF+) and biofilm negative (BF?) groups to be challenged with strains of S.epidermidis. Serum levels of inflammatory cytokines were measured and the infection rate and counts of bacteria cells were studied. Compared to rats of BF? group, the serum level of TNF and IL-6 significantly increased in rats of BF+ group (P < 0.01) and the level of IL-10 and IFN-γ significantly decreased (P < 0.01), striking the balance of pro-inflammatory/anti-inflammatory cytokines. The infection rate and bacterial counts in tissues and blood of rats of BF + group were significantly higher than those of rats of BF? group (P < 0.05).Inflammatory cell infiltration in vital organs (heart, lung, liver and kidneys) was more significant in rats of BF+ group than that of rats of BF- group. CVC-associated infection model can be successfully reproduced in rats by injecting 5 × 106 CFU of S.epidermidis. Biofilm formation can significantly enhance the virulence of the bacteria, leading to uncontrolled infection. The serum level of inflammatory cytokines, infection rate and the extent of inflammatory cell infiltration are important markers for evaluating the virulence of biofilm.  相似文献   

9.
Anti-convulsant effects of physical exercise and lipoic acid (LA), also referred to as thioctic acid with antioxidant activity, were investigated using chemical induced seizure model. We investigated the synergic effect of physical exercise and LA on kainic acid-induced seizure activity caused by oxidative stress. After 8 weeks of swimming training, body weight decreased and endurance capacity increased significantly compared to sedentary mice. Kainic acid (30 mg/kg, i.p.) evoked seizure activity 5 min after injection, and seizure activity peaked approximately 80 min after kainic acid treatment. Median seizure activity score in KA only treated group was 4.55 (range 0.5–5), 3.45 for “LA + KA” group (range 0.5–4.3), 3.12 for “EX + KA” group (range 0.05–3.4, p < 0.05 vs. “KA only” group), 2.13 for “EX + LA + KA” group (range 0.5–3.0, p < 0.05 vs. “EX + KA” group). Also, there was a synergic cooperation of exercise and LA in lowering the mortality in kainic acid treated mice (χ2 = 5.45, p = 0.031; “EX + KA” group vs. “LA + EX + KA” group). In addition, the synergic effect of exercise and LA was found in PGx activity compared to separated treatment (“LA + EX + KA”: 37.3 ± 1.36; p < 0.05 vs. “LA + KA” and “EX + KA” group). These results indicate that physical exercise along with LA could be a more efficient method for modulating seizure activity and oxidative stress.  相似文献   

10.
To explore protective mechanism of Panax notoginseng saponins (PNS) on rat hemorrhagic shock model in recovery stage. 72 Wistar rats were selected and divided into control group, model group and PNS group with 24 rats in each group. 200 mg/kg PNS was injected intravenously at 60 min of hemorrhagic shock stage in PNS groups. Changes of endotoxin, MPO, IL-6, SOD, MDA and TNF α were observed at 30 and 120 min of recovery stage by ELISA; water content of lung and intestine was detected; HE staining was applied to observe morphological change of intestinal mucosa, kidney, liver and lung; western blot was used to detect intercellular adhesion molecule-1 (ICAM-1) level in lung tissue and intestine tissue. At 30 min and 120 min of recovery stage, MDA, MPO, endotoxin, TNF α and IL-6 levels significantly increased in model group compared with control group, however SOD level significantly decreased, the difference was statistically significant (P < 0.05); PNS dose-dependently decreased MDA, MPO, endotoxin, TNF α and IL-6 levels, and increased SOD level, which was statistically significant (P < 0.05); In results of water content detection, water content in lung tissue and intestine tissue was significantly higher than in control group, however, after being treated with PNS, the water content was significantly decreased; HE staining showed the morphologic change of lung tissue cells; Western blot showed that in lung tissue and intestine tissue, ICAM-1 level in model group was significantly higher than in control group, and it was lower in PNS group than in model group. PNS can increase SOD activity, decrease levels of MDA, endotoxin and MPO, decrease expression of TNF α and IL-6, and decrease water content in lung tissue and intestine tissue. Thus, PNS is protective to rat hemorrhagic shock model by anti oxidative stress and anti-inflammatory pathways, and ICAM-1 may play an important role in the mechanism.  相似文献   

11.
目的:对比观察不同干预疗法对去卵巢骨质疏松大鼠肱骨骨矿物质含量的影响。方法:按体重将80只成年雌性SD大鼠分层后随机分为假手术组和去卵巢组。手术11周时,将去卵巢组大鼠按体重分层后又随机分为去卵巢组、跑台运动组、振动组、金雀异黄酮组、氯化锂组和雌激素组。跑台运动组每周进行4次45 min、速度18 m/min、跑道倾角5°的跑台训练;振动组每天进行2次15 min、频率90 HZ/min、7次/周的振动治疗;金雀异黄酮组每天按体重灌胃1次金雀异黄酮,剂量为1 mg/kg体重;氯化锂组每周按体重腹腔注射氯化锂3次,剂量为15 mg/kg;雌激素组每周按体重颈部皮下注射3次17β-雌二醇,剂量为25μg/kg。持续处理8周时,于末次处理结束36-48小时内,按解剖位置截取双肱骨,称量肱骨湿重、去脂肪干重以及煅烧后的灰重。结果:与假手术组比较,去卵巢组肱骨湿重/体重、去脂肪干重/体重和灰重/体重均显著下降;与去卵巢组比较,跑台运动组、振动组、金雀异黄酮组和雌激素组肱骨湿重/体重、去脂肪干重/体重、灰重/体重均显著增加,而氯化锂组虽有所升高,但差异无显著性。结论:除氯化锂处理外,其他几种处理均能减缓去卵巢骨质疏松大鼠肱骨骨量的丢失,对防治去卵巢骨质疏松大鼠的骨质疏松有一定的作用。  相似文献   

12.
The objective of the study was to explore the effects of olanzapine–fluoxetine combination (OFC) treatment of major depressive disorders on the quality of life in the acute treatment period. Methods were prospective and observational design. One hundred and three patients of major depressive disorders were observed. One group of 53 patients received OFC treatment (OFC group); the other group of 50 patients received the treatment of duloxetine (duloxetine group). Two groups were needed to be observed 8 weeks. Observed indicators were Hamilton Depression Rating Scale for Depression (HAMD-24) and four factor scores: the slow, sleep disorders, anxiety/somatization, and hopelessness, Clinical Global Impression-Severity of Illness (CGI-S), WHO quality of life scale (WHOQOL-BREF), and sub-rate measurements. HAMD-24 and four factor scores observation time were assessed before and after treatment; 1, 2, 4, 8 weeks, WHOQOL-BREF score, and sub-time measurements were assessed before treatment and 8 weeks after treatment. HAMD-24 scores of OFC patients in the first week were significantly lower than those of the duloxetine group. The sleep factor scores of OFC patients were significantly lower than those of the duloxetine group in 4 and 8 weeks. By the end of 8 weeks, OFC group was rated significantly lower than the duloxetine group in the physical area. In the acute treatment period, OFC treatment effected faster than the single duloxetine in patients with major depressive disorders. OFC effected within 1 week and was better than the single duloxetine in improving the sleep and physical conditions.  相似文献   

13.
The effect of exercise training on myocardial Na+/H+ exchanger-1 (NHE1) protein expression was examined. Adult female Sprague–Dawley rats were randomly divided into sedentary (S; n?=?8) and exercised (E; n?=?9) groups. Twenty-four hours after the last exercise bout, hearts were weighed and connected to an isolated perfused working heart apparatus for evaluation of cardiac functional performance. Heart weight and heart weight/body weight from E rats was significantly increased by 7.1 and 7.2 % (P?<?0.05), respectively, compared with S hearts. The E hearts displayed 15 % greater cardiac output and 35 % external cardiac work compared with the S group at both low and high workloads (P?<?0.05 for both parameters). Left ventricular tissue from the same hearts was homogenized and NHE1 and Na+/Ca2+ exchanger (NCX) content determined by Western blotting. E hearts had a 38 % (P?<?0.001) reduction in NHE1 content related to S hearts, and there was no difference in NCX content between groups. Cytochrome c oxidase activity in plantaris increased by 100 % (P?<?0.05) and was assessed as a marker of mitochondria content and to verify training status. Our data indicate that exercise training at an intensity that results in cardiac hypertrophy and improved performance is accompanied by decreased NHE1 content in heart.  相似文献   

14.

[Purpose]

The purpose of this study was to investigate the effects of the different endurance exercise intensities on the macrophage infiltration and adipocyte inflammation of ovariectomized rats.

[Methods]

24 female SD rats (6 weeks old) were randomly assigned to sham control (SC; n=6), ovariectomized control (OC; n=6), ovariectomized low intensity exercise (OL; n=6), and ovariectomized moderate intensity exercise (OM; n=6) groups. The two training groups ran for 60 min/day, 5 times/ week at 18 and 26m/min for 16 weeks. Twenty-four hours after the last exercise session, rats were sacrified, and epididymal pads were analyzed. F4/80 and IL-6 expressions were evaluated by western blotting. ICAM-1, VCAM-1 TLR4, TNF-α, and MCP-1 mRNA expressions were evaluated by RT-PCR.

[Results]

In comparison with OC group, OM group showed significantly lower body weight gain and adipose tissue mass. Also, OM group markedly inhibited F4/80 expression, adhesion molecule (ICAM-1, VCAM-1) and pro-inflammatory cytokines (TLR4, TNF-α, MCP-1) mRNA expressions in adipose tissue. In contrast, OL group partially prevented body weight gain while other examined parameter were unaffected by low intensity exercise training.

[Conclusion]

The results of this study suggest that OM group inhibits visceral macrophage infiltration by suppressing the adhesion molecules. It may also attenuate cytokine production in the adipose tissue by repressing the TLR4-mediated pro-inflammatory signaling cascades in ovariectomized rats.  相似文献   

15.
The interaction of dietary iron and zinc was studied in chicks. Zinc was found to be more toxic in iron-deficient animals than iron-supplemented animals as measured by hemoglobin concentrations and growth. Analyses of the kidney and liver for iron and zinc were carried out. As the level of iron was increased from 0-1000 ppm supplementation, the concentration of liver zinc increased. The organ levels of iron were decreased as the dietary zinc levels were increased from 0-5000 ppm. Radioisotope studies using65Zn revealed that the iron content of the diet did not affect absorption of zinc. Administration of the isotope, either in an intestinal segment or intravenously, resulted in more zinc being taken up by the liver in the iron supplemented animals. This was especially noted when the ratio of the isotope in liver to that in the blood was compared. Gel chromatography of kidney and liver homogenates revealed that iron deficiency resulted in less zinc being eluted in a volume characteristic of metallothionein compared to homogenates of organs from iron supplemented animals. The results indicate that iron-supplemented animals have a greater capacity for sequestering zinc on metallothionein than do iron-deficient animals. Conversely, iron-deficient chicks were more susceptible to the effects of zinc toxicity than are iron-adequate chicks.  相似文献   

16.
The effects of severe and moderate iron deficiency upon the antibody response to influenza virus were investigated in rats. Three groups of weanling male Wistar rats were fed one of two iron-deficient diets (5 mg and 15 mg iron/kg diet) or a normal iron-containing diet (35 mg iron/kg diet). A group of individually pair-fed rats was introduced with the low iron-consuming rats. The effects of the diets upon various iron status parameters were followed during the 4th, 5th, 6th, and 7th week of diet. After 4 weeks of feeding different diets, an intraperitoneal injection of inactivated influenza virus A/New Jersey/76 was performed and a recall injection was done at 5 weeks. Primary and secondary antibody responses were assayed. Rats were sacrificed at 7 weeks of diet. After 4 weeks of feeding different diets, the rats fed the 5 mg iron/kg diet were severely anemic and rats fed 15 mg iron/kg diet were moderately iron-deficient, as shown by their iron status parameters. Growth was delayed in anemic and matched pair-fed rats. A primary antibody response was almost nonexistent in all groups. Secondary antibody titers were significantly weaker in anemic rats than in ad libitum controls, but were not different from those of pair-fed rats. This response was similar in moderately iron-deficient, ad libitum, and pair-fed rats. These results show that antibody synthesis in response to the influenza virus vaccine is preserved in moderate iron deficiency but is reduced in severe anemia. The reduction in energy consumption associated with severe iron deficiency in the rat could play a part in the altered humoral response.  相似文献   

17.
The previous studies all focus on the effect of probiotics and antibiotics on infection after liver transplantation. Here, we focus on the effect of gut microbiota alteration caused by probiotics and antibiotics on hepatic damage after allograft liver transplantation. Brown-Norway rats received saline, probiotics, or antibiotics via daily gavage for 3 weeks. Orthotopic liver transplantation (OLT) was carried out after 1 week of gavage. Alteration of the intestinal microbiota, liver function and histopathology, serum and liver cytokines, and T cells in peripheral blood and Peyer’s patch were evaluated. Distinct segregation of fecal bacterial diversity was observed in the probiotic group and antibiotic group when compared with the allograft group. As for diversity of intestinal mucosal microbiota and pathology of intestine at 2 weeks after OLT, antibiotics and probiotics had a significant effect on ileum and colon. The population of Lactobacillus and Bifidobacterium in the probiotic group was significantly greater than the antibiotic group and the allograft group. The liver injury was significantly reduced in the antibiotic group and the probiotic group compared with the allograft group. The CD4/CD8 and Treg cells in Peyer’s patch were decreased in the antibiotic group. The intestinal Treg cell and serum and liver TGF-β were increased markedly while CD4/CD8 ratio was significantly decreased in the probiotic group. It suggested that probiotics mediate their beneficial effects through increase of Treg cells and TGF-β and deduction of CD4/CD8 in rats with acute rejection (AR) after OLT.  相似文献   

18.
Brooks et al. [Am. J. Physiol. 253 (Endocrinol. Metab. 16): E461-E466, 1987] demonstrated an elevated gluconeogenic rate in resting iron-deficient rats. Because physical exercise also imposes demand on this hepatic function, we hypothesized that exercise training superimposed on iron deficiency would augment the hepatic capacity for amino acid transamination/deamination and pyruvate carboxylation. Sprague-Dawley rats (n = 32) were obtained at weaning (21 days of age) and randomly assigned to iron-sufficient (dietary iron = 60 mg iron/kg diet) or iron-deficient (3 mg iron/kg) dietary groups. Dietary groups were subdivided into sedentary and trained subgroups. Treadmill training was 4 wk in duration, 6 days/wk, 1 h/day, 0% grade. Treadmill speed was initially 26.8 m/min and was decreased to 14.3 m/min over the 4-wk training period. The mild exercise-training regimen did not affect any measured variable in iron-sufficient rats. In contrast, in iron-deficient animals, training increased endurance capacity threefold and reduced blood lactate and the lactate-to-alanine ratio during submaximal exercise by 34 and 27%, respectively. The mitochondrial oxidative capacity of gastrocnemius muscle was increased 46% by training. However, the oxidative capacity of liver was not affected by either iron deficiency or training. Maximal rates of pyruvate carboxylation and glutamine metabolism by isolated liver mitochondria were also evaluated. Iron deficiency and training interacted to increase pyruvate carboxylation by intact mitochondria. Glutamine metabolism was increased roughly threefold by iron deficiency alone, and training amplified this effect to a ninefold increase over iron-sufficient animals.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
Piwi-interacting RNAs (piRNAs) play a role in gene silencing of retrotransposons, maintenance of spermatogenesis and maturation in germlines. The piRNA and PIWI protein are essential for fertility. To reveal piRNA function associated with testosterone, we investigated the expression of piRNA and piwi protein in normal male rats and testosterone-treated rats. Normal Sprague–Dawley (SD) rats were randomly selected and sacrificed at neonatal to late adolescence stage stages (2, 9, 16, 20, 24, 28, 35, and 42 days, n = 6 each). Additional SD rats were divided into four groups: group 1 received weekly injections of testosterone enanthate (8 mg/100 g) during 1–3 weeks; group 2 during 3–5 weeks; group 3 during 1–5 weeks; and group 4 was the control (n = 20 each). These animals were sacrificed at an age of 60 days. We investigated piRNA, PIWI, and Ago3 protein levels using real-time PCR, Western blot, and immunohistochemistry in each group. In normal rats, PIWI protein and piRNA were expressed at P24. The expression of PIWI and piRNA gradually increased from adolescence to adulthood on Western blot, real-time PCR and immunohistochemistry. In testosterone-treated rats, the expression of PIWI protein was analyzed by Western blot and shown to be significantly increased in group 1 (neonatal to juvenile injection). In real-time PCR, the expression of piRNA after testosterone treatment was increased in all groups (G1 166.8 ± 2.7; G2 113.3 ± 4.6; G3 70.2 ± 1.5 vs. control, 32.87 ± 2.0, all p < 0.001). The expression of testosterone in adolescence induces the development of male genitourinary organs and spermatogenesis. At the same time, the sexual hormones may activate the piRNA and PIWI protein. Our data demonstrate that patterns of piRNA and PIWI expression are similar to the secretion pattern of testosterone, and that piRNA expression was increased after testosterone treatment. Therefore, testosterone may affect testis function through the regulation of piRNA expression in rats.  相似文献   

20.
This study was carried out to investigate the possible role of increased nitric oxide (NO) production in the development of the low iron status in strenuously exercised rats. Female Sprague-Dawley rats were randomly assigned to four groups: sedentary (S1), sedentary + nitro-L-arginine methyl ester (L-NAME; S2), exercise (E1), and exercise + L-NAME (E2). Animals in the E1 and E2 groups swam for 2 h/day for 3 mo. L-NAME in the drinking water (1 mg/ml) was administrated to rats in the S2 and E2 groups for the same period. At the end of third month, hematological indexes and nitrite and nitrate (NOx) contents in the plasma and non-heme iron and NOx levels in the liver, spleen, and bone marrow cells were measured. Three months of exercise induced a significant increase in NOx content and a decrease in iron level both in plasma and tissues. Treatment with L-NAME, an inhibitor of NO synthase (NOS), led to a significant decrease in NOx and an increase in iron level both in plasma and tissues in the exercised rats. The E2 group had a significantly lower NOx content as well as a higher iron level both in plasma and tissues than the E1 group. However, the iron contents in the plasma and tissues of the E2 group were still significantly lower than those found in S1. No difference was found in NOx levels between E2 and S1. These findings showed that exercise was associated with elevation in NOx and reduction in iron in plasma and the tissues. Treatment with L-NAME was able to completely inhibit the effect of exercise on NOx as well as partly recover the decreased iron contents in plasma and tissues resulting from exercise. This suggests that the increased production of NO might be one of the causes of the lower iron status in exercised rats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号